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Fuchs endothelial corneal dystrophy (FECD) is a progressive disorder characterized by corneal endothelial
decompensation leading to corneal edema, clouding, and vision impairment. Despite improved understanding over the
last century since its first description, the exact mechanism(s) behind the pathogenesis of FECD remain unknown, and
surgical correction is the only effective treatment available. Previous studies have suggested a role for changes in aqueous
humor (AH) composition in FECD pathogenesis, so to explore this possibility, we probed the AH proteome for alterations
correlating with end-stage corneal disease. Following albumin depletion we performed label-free quantitative tandem
mass spectrometry on proteins isolated from patients with and without FECD who were scheduled to undergo routine
cataract extraction. We identified 64 proteins, most of which were identified in previous AH proteomic studies of patients
with cataracts, in the albumin-depleted fraction. The levels of five of these were significantly lower (afamin, complement
C3, histidine-rich glycoprotein, immunoglobulin heavy [IgH], and protein family with sequence similarity 3, member C
[FAM3C]), while the levels of one (suprabasin) was significantly higher in patients with FECD compared to controls
(p≤0.01). We also identified 34 proteins in the albumin-bound fraction, four of which were significantly elevated in patients
with FECD including a hemoglobin fragment, immunoglobulin kappa (IgK), immunoglobulin lambda (IgL), and
uncharacterized protein albumin (ALB), (p≤0.01). Although it has been reported that females have a greater extent of
disease than males, we were unable to detect any significant differences in protein levels due to gender. Because FECD
is a progressive disorder, regression analyses were performed to determine any significant correlations with age, and of
interest retinol-binding protein 3 was significantly correlated with age in patients with FECD (p≤0.01), whereas no proteins
in the control group correlated with age. This is the first report indicating alterations in the AH proteome with FECD, and
taken together this study suggests several novel hypotheses regarding AH proteins role in FECD pathogenesis.

Fuchs endothelial corneal dystrophy (FECD) was
originally described by Ernst Fuchs over one hundred years
ago as a disease of the corneal epithelium; since then improved
technologies have enabled a more accurate description of the
disease [1]. Today it is recognized as an adult–onset,
progressive disorder characterized by a pleomorphic,
dysfunctional, and attenuated corneal endothelium, and a
thickening of Descemet’s membrane with accumulation of
focal excrescences referred to as “guttae” leading to stromal
edema and varying degrees of vision impairment [2] affecting
at least 4% of those over 40 years of age.

It has been known for several decades that evidence of
heritability is present in as many as 50% of affected patients
[3], and an increased prevalence has been reported in females
[1]. More recently missense mutations in genes such as
collagen alpha-2(VIII) chain (COL8A2) have been shown to
cause various forms of corneal endothelial dystrophy [4].
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Moreover, much work has been invested in discovering
possible mechanisms behind sporadic FECD pathogenesis.
There is evidence that unfolded protein response, oxidative
stress, and apoptosis play a role in the onset of the disease
particularly in regard to accelerated endothelial cell loss
[5-7]. Despite the great strides that have been made in
understanding FECD, the exact etiology remains unclear, and
currently the only permanent remedy is corneal
transplantation. Thus, further investigations into possible
mechanisms behind FECD that potentially could lead to novel
non-invasive therapeutic approaches are warranted.

Aqueous humor supports avascular tissues in the anterior
segment of the eye such as the corneal endothelium, maintains
intraocular pressure, and potentially influences the
pathogenesis of ocular diseases [8,9]. It has been speculated
that aqueous humor (AH) composition may play a role in
FECD [10,11], yet the precise role remains unknown. To
investigate this possibility, a necessary first step is to
determine which proteins are differentially expressed in the
AH of patients with FECD. Therefore, we performed label-
free quantitative mass spectrometry on AH samples from
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patients with late stage FECD and patients without FECD who
were scheduled to undergo routine cataract extraction.

METHODS
Sample collection: Patients were selected and samples
collected as previously described [12]. Briefly, study subjects
were patients scheduled to undergo routine cataract surgery at
a tertiary referral center, Price Vision Group (Indianapolis,
IN). Exclusion criteria were as follows: previous intraocular
surgery, history of conjunctivitis or any ocular infection
within the previous 3 months, intraocular inflammation, or
any eye disease other than FECD. An independent review
board (IRB) approved the study and all subjects signed a
written Informed Consent document. Before undergoing
cataract surgery, the patient's eye was anesthetized topically
with proparacaine. A stab incision was made in the peripheral
cornea, and 0.1 to 0.2 ml of anterior chamber fluid was
aspirated using a 30-gauge needle. Aqueous humor samples
were stored frozen in liquid nitrogen until analysis. A single
surgeon (F.W.P.) collected all the samples. Any sample
suspected of being contaminated with blood or iris pigment
was discarded. Samples from 23 subjects were analyzed (11
cataract patients and 12 patients with FECD and cataracts)
with 6 females in each group. The mean ages were 64.0±10.4
years (control group) and 62.8±8.8 year (FECD group); 22
patients were Caucasian and one patient with FECD was
African-American (Table 1).

Materials: Acetonitrile and ammonium bicarbonate were
purchased from Fisher Scientific (Fair Lawn, NJ).
Dithiothreitol (DTT) and iodoacetamide (IAA) were obtained
from Bio-Rad Laboratories (Hercules, CA). Trypsin was
purchased from Promega (Madison, WI). ProteoPrep
immunoaffinity depletion kit was purchased from Sigma (St.
Louis, MO). The following sample preparation and mass
spectrometric analyses were performed at METACyt

Biochemical Analysis Center (Department of Chemistry,
Indiana University, Bloomington, IN).
Depletion and protein assay: Depletion of albumin and
immunoglobulin G (IgG) was performed using ProteoPrep
immunoaffinity depletion kit as described in the instruction
manual with some modification. As the depletion kit is
designed for plasma samples and protein contents in aqueous
humor (AH) is significantly lower, preliminary studies were
performed to develop a protocol for optimal AH depletion,
which resulted in enhanced protein identification (data not
shown). Briefly, an estimate of material to be used to deplete
albumin and IgG from AH was made using a bicinchoninic
acid (BCA) protein assay and quantification of albumin and
IgG in AH samples relative to plasma assuming total protein
content of 80 µg/µl and 75% albumin and IgG in plasma. The
estimated amount of material by weight was measured from
the ProteoPrep immunoaffinity column and transferred to an
empty spin column, and depletion was performed as described
in the instruction manual.
Trypsin digestion: Protein samples were subjected to tryptic
digestion before analysis as follows: after thermal
denaturation at 95 °C for 5 min, samples were reduced through
the addition of DTT to a final concentration of 5 mM and
incubated at 60 °C for 45 min. Alkylation was then followed
by an addition of IAA to a final concentration of 20 mM for
45 min in the dark at room temperature. A second aliquot of
DTT was then added, increasing the final concentration of
DTT to about 10 mM. The samples were then incubated at
room temperature for 30 min to quench the alkylation
reaction. Next, trypsin was added (1:30 w/w) and microwave-
assisted enzymatic digestion was performed at 45 °C for 15
min at the power of 50 W using CEM Discover® System
(CEM, Matthews, NC). Finally enzymatic digestion was
quenched through the addition of 0.5 µl of neat formic acid.

TABLE 1. PATIENT DATA.

Normal FECD
age sex age sex
52 M 58 F
73 M 61 F
76 F 68 F
72 M 54 M
70 M 81 M
73 M 63 F
63 F 69 M
43 F 48 M
60 F 58 M
66 F 72 F
56 F 59 M
- - 62 F
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Instrumentation: Liquid chromatography tandem mass
spectrometry (LC-MS/MS) analyses of the tryptic digests
were performed using a Dionex 3000 Ultimate nano-LC
system (Dionex, Sunnyvale, CA) interfaced to an LTQ
Orbitrap hybrid mass spectrometer (Thermo Scientific, San
Jose, CA). Prior to separation, a 4-µl aliquot of trypsin
digestion (1 µg protein equivalent) was loaded onto a
PepMap300 C18 cartridge (5 µm, 300 Å; Dionex) and eluted
through the analytical column (150 mm×100 µm i.d, 200 Å
pores) packed with C18 magic (Michrom Bioresources,
Auburn, CA). Peptides originating from protein tryptic digests
were separated using a reversed-phase gradient from 10%–
55% B, 99.9% acetonitrile with 0.1% formic acid over 50 min
for proteins isolated from the aqueous humor, at 500 nl/min
flow rate and passed through an ADVANCE ionization source
(Michrom Bioresources). The mass spectrometer was
operated in an automated data-dependent mode that was
switching between MS scan and CID-MS. In this mode, eluted
LC products undergo an initial full-spectrum MS scan from
m/z 300 to 2000 in the Orbitrap at 15,000 mass resolutions,
and subsequently CID-MS (at 35% normalized collision
energy) was performed in the ion trap. The precursor ion was
isolated using the data-dependent acquisition mode with a 2
m/z isolation width to select automatically and sequentially
five most intense ions (starting with the most intense) from
the survey scan. The total cycle (6 scans) was continuously
repeated for the entire LC-MS run under data-dependent
conditions with dynamic exclusion set to 60 s. Performing MS
scanning in the Orbitrap offers high mass accuracy and
accurate charge state assignment of the selected precursor
ions.
Protein identification and label-free quantitation: The
acquired data were searched against the International Protein
Index (IPI) human database (ipi.HUMAN.v3.69.fasta) using
SEQUEST (v. Twenty-eight rev. 12) algorithms in Bioworks
(v. 3.3). General parameters were set to: peptide tolerance 2.0
amu, fragment ion tolerance 1.0 amu, enzyme limits set as
“fully enzymatic – cleaves at both ends,” and missed cleavage
sites set at 2. The searched peptides and proteins were
validated by PeptideProphet [13] and ProteinProphet [14] in
the Trans-Proteomic Pipeline (TPP, v. 3.3.0). Only proteins
with probability ≥0.9000 and peptides with probability
≥0.8000 were reported.

Protein quantification was performed using an in-house
software package, IdentiQuantXLTM. The retention time of
peptide for its intensity extraction was performed with an
experiment-based algorithm RetentionTimeXLTM .The
intensity of each validated peptide was extracted and the
protein quantity was calculated from peptide intensity.
Student’s t-test was performed to determine the significance
of differences between the two group means. P-values less
than 0.01 were considered to be statistically significant.
Linear regression analyses were performed using Spotfire®

(version 9.1.2).

RESULTS
Seeking to discover novel insights into FECD pathogenesis,
we performed label-free quantitative mass spectrometry on
AH samples derived from patients with and without FECD.
AH samples were depleted of interfering abundant proteins
such as albumin and proteins bound to albumin were eluted
in a separate fraction before LC-MSMS was used for protein
identification and quantification. Using stringent criteria for
protein identification we identified 64 proteins in the albumin-
depleted fraction (Table 2) and 34 proteins in the albumin-
bound fraction (Table 3) with high confidence. There were 6
statistically significant differentially expressed proteins in the
albumin-depleted fraction and 4 in the albumin-bound
fraction (p≤0.01); these are listed in bold in Table 2 and Table
3. The percent of the protein sequence covered by the peptides
identified with high confidence is listed for each protein along
with the number of unique sequences, the coefficient of
variation (CV), and the fold change compared to the protein
level in patients with FECD.

There were no statistically significant differences
between males and females in either group or among all
patients included in this study using a cut off p value of 0.01.
Using linear regression analyses, it was determined that there
were no individual proteins whose levels were significantly
associated with age in the normal group. However, at least one
protein, Retinol-binding protein 3 was positively correlated
with age in the FECD group (R2=0.49; p≤0.01). Overall,
protein levels were correlated somewhat more with age in
patients with FECD than in controls (R2=0.20 [FECD] and
0.06 [control]).

DISCUSSION
FECD causes progressive vision impairment and currently is
a leading indication for corneal transplantation [15].
Therefore, identification of targets for non-invasive therapy
that could slow or halt disease progression would benefit
many patients. In this study we sought to probe the AH
proteome for altered protein levels which correlate with end-
stage disease and could serve as novel therapeutic targets in
addition to providing insights into endothelial dysfunction
leading to FECD. AH samples provided by donor patients
with cataracts and patients with FECD and cataracts were
analyzed using a label-free quantitative mass spectrometric
approach. Protein identification was validated using Peptide-
and Protein Prophet to ensure that only high confidence
identifications were reported.

We identified several protein alterations in AH with
FECD which may have important implications in the disease
process. FECD patients exhibited a 2.2 fold decrease in
afamin, a vitamin E binding plasma glycoprotein in the
albumin super family. Afamin deficiency has been associated
with several other chronic disorders such as atherosclerosis,
ischemic heart disease, immune deficiency, certain cancers,
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and neurologic syndromes with an oxidative stress component
[16]. Heiser et al. [17] previously reported in an experimental
model that afamin was protective of cortical neuronal cells
under apoptotic conditions, and a separate group reported its
production by cerebrovascular endothelial cells suggesting a
possible source in the AH [18]. FECD is characterized by
accelerated endothelial cell loss, and several studies have
shown that apoptosis is increased in the corneal endothelial
cells (CEC) of patients with FECD [5,19,20]. Furthermore,
the guttae, which are characteristic of FECD, initiate in the
central cornea, the area most exposed to oxidative stress.
Therefore, it would be interesting to investigate whether
patients with FECD have significant decreases in afamin in
the AH early in the disease process and whether or not that
contributes to disease by loss of a protective effect on CECs.
Furthermore,. Heiser et al. [17] also noted that Vitamin E and
afamin synergistically enhance cell survival. So it would be
interesting to investigate whether a Vitamin E deficiency in
patients with FECD could be a contributing factor as well.

We also found a 2.2 fold decrease in histidine-rich
glycoprotein (HRG) in the AH of patients with FECD. HRG
is a serum protein previously identified in the AH and known
to be involved in protective processes such as clearance of
apoptotic cells [21]. A decrease in such a protective effect
could contribute to disease progression in FECD patients.
Furthermore, in FECD patients we observed a 2.6 fold
decrease in complement C3, another protein involved in
apoptotic cell clearance [22], providing another possible
insight into FECD pathogenic mechanisms involving
apoptosis. Complement C3 is also known to be a key
inflammatory protein activated in Alzheimer disease. In a
transgenic mouse model, it was shown that deficiency of
complement C3 leads to accelerated amyloid beta deposition
and neurodegeneration [23]. Therefore, it would be interesting
to determine if reduced complement C3 levels in the AH of
patients with FECD also plays a role in the FECD disease
process, in which the endothelium deposits excessive amounts
of basement membrane material of abnormal composition,
resulting in guttae formation [24].

Regarding alterations in the albumin-bound fraction, it is
interesting to note that the four proteins that were
differentially expressed were upregulated by 3–6 fold in
patients with FECD and are all common serum proteins. It is
also interesting to note that there was a 3.8 fold upregulation
of clusterin (CLU) in the albumin-bound fraction of AH in
patients with FECD (p=0.03), but there was no change in the
albumin-depleted fraction. CLU has been previously reported
as an albumin-bound protein in human plasma [25], and it is
thought to play a role in maintenance of cells at tissue-fluid
interfaces, inhibition of complement mediated cell lysis, and
protection from apoptosis [26]. Indeed, it was recently shown
that CLU attenuated oxidative stress induced apoptosis in
human CECs [27]. Jurkunas et al. [28] previously reported a
5.2 fold increase in presecretory CLU protein in CECs of

patients with FECD but no change in the mature modified
form for secretion [28]. Thus, it is possible that CLU is
upregulated in FECD CECs as a compensatory response to
cell loss due to apoptosis but the increased secreted protein is
being sequestered by albumin thus preventing the intended
protective effect.

FECD is a progressive disorder, so we used regression
analyses to see if any particular protein was associated with
age. We determined that retinol-binding protein 3 was
significantly associated with age in patients with FECD
whereas there were no positive correlations in the control
(cataract only group). Alpha-1B-glycoprotein was also highly
associated with age among patients with FECD (R2=0.46;
p=0.015), indicating possible candidates for markers of the
disease. It is also important to note that no differences were
detected in AH proteins between men and women in this study
suggesting that gender differences in severity of FECD are not
related to the AH proteome.

Conclusions: The past one hundred years of investigation
into Fuchs endothelial corneal dystrophy (FECD) has been
marked by a dramatic improvement in our understanding of
the underpinnings of the disease at the tissue, cellular, and
molecular level. Nevertheless, no known single causal factor
has been discovered, and it now appears that it is a
multifactorial disease. Consistent with this line of thought, we
present here for the first time several differences in protein
concentration that occur in the fluid that bathes the
dysfunctional tissue, all of which may be synergistically
contributing to the dysfunction. Several of these proteins may
be derived from serum and thus serve as a set of markers for
the disease and enable detection before a deficit in vision.
These patients could then be candidates for alternative
therapies that might obviate the need for surgery later in life.
In future work, we will confirm these differentially expressed
proteins in FECD patient AH as well as test plasma samples
using alternative protein quantitation strategies such as
western blotting. Also, to search for biomarkers of FECD, we
will perform regression analyses seeking AH proteins whose
levels correlate strongly with the extent of FECD.
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