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Abstract

Objectives: There is compelling evidence that aged,

immunosuppressed, and chronically ill patients are a

high-risk group for increased mortality upon infection

with the new severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2). This study investigated the

contribution of morbidities and related prescribed medi-

cations to COVID-19 associated mortality.

Methods: Based on the various recently reported clinical

scenarios a theoretical framework was designed to shed

light on the mode of infection of the central nervous

system by SARS-CoV-2 and possible management

options.

Results: Dopamine-release mechanisms in the central

nervous system may play a major role in the entry and

propagation of coronaviruses.

Conclusion: This study emphasizes the need for a thor-

ough and urgent investigation of the dopamine-release

pathways in the central nervous system. These efforts

will help find a definitive cure for the pandemic corona-

virus disease (COVID-19).
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Introduction

The new severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is an interesting virus that, without doubt,
has changed the entire globe. Governments and organisa-
tions all over the world are trying to fight it by every possible

means, yet no definitive treatment was reported. Several
studies are currently addressing the potential neurological
impact of SARS-CoV-2 upon clinical reports of neural

manifestations associated with the coronavirus disease 2019
(COVID-19). Of note, patients with severe COVID-19 can
also experience cytokine storm syndrome, which is an
important sign of breakdown of the bloodebrain-barrier.

These neurological manifestations are considered rare in
usual viral infections. Nevertheless, the link between coro-
navirus invasion and neural manifestations remains un-

clear1e3.
This study aimed to identify alternative binding mecha-

nisms of SARS-CoV-2 in the human body. Besides the

common angiotensin-converting enzyme 2 (ACE2) receptor,
other cellular receptors should be investigated as new coro-
naviruses may exploit other alternative pathways. The first
suspected receptor or co-receptor is dopamine. To date, no

investigation has explored the potential role of dopamine and
dopaminergic receptors on SARS-CoV-2 infection and
COVID-19. Nevertheless, dopamine may downregulate the
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immune response during infection, thereby enhancing the life
cycle of SARS-CoV-2, which may be particularly relevant in

patients receiving medications containing dopamine agonists.
The mortality rate among the aged population with

COVID-19 increases when systemic conditions are present,

such as diabetes and dementia, or in immunosuppressed
patients, who usually use dopamine-agonist-containing
medicines. Hence, SARS-CoV-2 may exploit dopamine as

an entry pathway in the body, with dopamine receptors
supporting the virus pathogenicity.

Dopamine and viruses

It is known that dopaminergic receptors are involved in
the entry of various virus.4,5 For example, elevated dopamine

can significantly enhance the onset of the human
immunodeficiency virus (HIV) and related central nervous
system (CNS) infections by up-regulating the expression of

HIV entry co-receptors and enabling the virus to evade
macrophages during early infection stages. Surprisingly,
dopamine-antagonists can inhibit this mechanism.6 The
Japanese encephalitis virus (JEV) can disrupt the bloode
brain-barrier and cause viral encephalitis. JEV exploits
dopamine signalling to facilitate the infectious process by
significantly increasing dopamine levels this increase might

be implicated in the susceptibility of neighbouring cells to
JEV through the stimulation of dopamine receptor D2
(D2DR).4
Figure 1: A. Entry phase of the virus: it is possible that after the initial

of the virus binds to dopaminergic receptors of neighbouring cells. T

regulatory role in local immunity (e.g. lymphocytes, cytokines). Cytok

the immune systems. In addition, dopamine at certain concentrations

causes further decrease in both the innate and adaptive immunity

manifestations, such as encephalopathy, fatigue, dizziness, unconscio

(D1) results in increased expression of cAMP, which causes a decrease i

receptors (D2) results in a cytokine storm that leads to a reduction of
Based on these findings, SARS-CoV-2 may mimic the
behavioural CNS pathogenic mechanism of JEV and HIV

during the early stages of COVID-19.

Assumptions

1 SARS-CoV-2 may exploit dopaminergic receptors to

improve its life-cycle, increasing viral entry chances.
2 Dopamine-agonist drugs may disrupt the respiratory sys-
tem by affecting the carotid body chemosensitivity,

resulting in decreased oxygen levels and worsen ventilation
response.

3 SARS-CoV-2 hinders the innate and adaptive immune
responses via dopamine-mediated disruption of intracel-

lular biosynthesis (see Figure 1).

Several clinical observations support this hypothesis.
First, the neurological manifestations often appear after the
diagnosis of the COVID-19, similar to some neurotropic

microbial infections.9,10 Dopaminergic receptors can
enhance the chance of binding of some viruses to the CNS
to initiate viral encephalitis in the early stages of viral
infection. An example of this mechanism is D2DR in cases

of HIV and JEV encephalopathy.4,5 Moreover, the viral
life-cycle of SARS-CoV-2 may be enhanced in the presence
of high levels of catecholamine, possibly by binding to

dopaminergic receptors and increasing the chance of viral
entry.
binding of SARS-CoV-2 to ACE2 receptors, the Spike-like protein

he presence of dopamine receptors in the brain plays an integral

ines or neurokines have a regulatory function in both nervous and

can inhibit the lymphocytic function.7 B. The influx of dopamine

that helps increasing the viral load. This leads to more neural

usness, among others. Increased production of D1-like receptors

n the innate immune response; whereas high expression of D2-Like

the adaptive immune response.8
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Second, increased dopamine reduces oxygen levels, espe-
cially when considering the “Happy’ Hypoxaemia” associated

with COVID-19.11,12 This happens as dopamine has a known
ability to blunt the ventilatory response of the human basal
carotid body activity to hypoxia.13 Therefore, SARS-CoV-2

and dopamine could share the responsibility for impaired
ventilation. Some drugs (e.g. haloperidol) block the response
to exogenous dopamine, but do not alter ventilation response

during normoxia or hypoxia, suggesting that either the
endogenous dopamine does not plays a role in determining
the steady-state chemoreceptor discharge or the endoge-
nously released dopamine may have access to receptors that

are relatively inaccessibly to exogenous blockers.13,14

Third, dopamine is a regulator of immune function. The
virus may manipulate the immune system by increasing the

levels of dopamine to increase the possibility of viral entry.
Increased D1-like receptor agonists, such as dopamine, can
stimulate cAMP production,15 which generally suppresses

innate immune functions.16 On the other hand, increasing
D2-like receptors results in the inhibition of the adaptive
immune response.5 A possible explanation is the
exacerbation of pro-inflammatory responses that will

worsen the pathogenic condition.17 Here, the exhaustion of
T-cells could have led to the progression of the COVID-19.
Therefore, in both innate and adaptive responses, the pres-

ence of SARS-CoV-2 infection will result in high interleukin
(IL)-6 levels.10 In keratinocytes, “dopamine stimulated the
production of IL-6 and IL-8 in a concentration-dependent

manner”.17 Thus, these findings suggest that dopamine
plays a primary role in reducing the host immunity and
increasing the chance for severe complications.

Lastly, a recent study discussed different drugs interacting
with SARS-CoV-2. We found that the top three medications
among the 10 tested drugs had a direct influence on dopa-
mine secretion. One of these drugs was identified in a very

recent Chinese study as having the most beneficial outcome
after testing more than 2,000 drugs in vitro. All drugs that act
as dopamine antagonists showed greater potential to interact

with SARS-CoV-2.18,19

In conclusion, a review of the composition of drugs used
for chronic illnesses must be undertaken urgently to avoid

severe complications accompanying COVID-19. Based on
our assumptions, there is a strong link between the amount
of dopamine controlled by these drugs and the severity of

COVID-19 complications.
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