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Glioma is one of the most fatal primary brain tumors, and it is well-known for its difficulty in
diagnosis and management. Medical imaging techniques such as magnetic resonance
imaging (MRI), positron emission tomography (PET), and spectral imaging can efficiently
aid physicians in diagnosing, treating, and evaluating patients with gliomas. With the
increasing clinical records and digital images, the application of artificial intelligence (AI)
based on medical imaging has reduced the burden on physicians treating gliomas even
further. This review will classify AI technologies and procedures used in medical imaging
analysis. Additionally, we will discuss the applications of AI in glioma, including tumor
segmentation and classification, prediction of genetic markers, and prediction of
treatment response and prognosis, using MRI, PET, and spectral imaging. Despite the
benefits of AI in clinical applications, several issues such as data management,
incomprehension, safety, clinical efficacy evaluation, and ethical or legal considerations,
remain to be solved. In the future, doctors and researchers should collaborate to solve
these issues, with a particular emphasis on interdisciplinary teamwork.

Keywords: artificial intelligence, medical imaging, neural tumors, glioma, radiomics, machine learning,
deep learning
INTRODUCTION

Glioma is the most common histological type of primary central nervous system cancer, accounting
for 81% of all malignant brain tumors (1). Astrocytomas, oligodendrogliomas, oligoastrocytomas,
and ependymomas are all types of gliomas. TheWorld Health Organization (WHO) defines gliomas
into four categories; the first two grades and the last two grades are further classified as low-grade
glioma (LGG) and high-grade glioma (HGG). The poor 5-year overall survival (OS) rate for WHO
grade IV glioma patients are 6.8% (2, 3). Glioblastoma (GBM) is the most aggressive kind of grade
IV astrocytoma, accounting for 45% of gliomas and the 5-year OS rate of GBM patients is 5%.
Treatment for gliomas generally comprises surgical excision, radiation, and temozolomide
chemotherapy. Previous randomized clinical studies indicated that the addition of tumor-treating
fields to routine treatment increased life expectancy by 4 months (4, 5).
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Glioma diagnosis and treatment mostly involve imaging,
segmentation and localization, grading, pathology, gene
acquisition, and post-treatment recurrence monitoring (6, 7).
Tumor treatment and decision-making are difficult due to the
heterogeneity of tumors. Therefore, the rise of artificial
intelligence (AI) has significantly alleviated doctors’ loads
(8, 9). AI enables physicians to examine therapeutically
important material that is buried inside massive volumes of
data (10). Precision medicine is based on artificial intelligence, a
relatively new technique to diagnose and treat a disease that
considers various factors such as genetics, environment, and
lifestyle. Magnetic resonance imaging (MRI), positron emission
tomography (PET), and spectral imaging of the brain all contain
a wealth of structural and functional information that can be
analyzed by AI algorithms for glioma patient management and
decision-making (11). However, neurologists should be aware of
its limitations, since the use of algorithms raises concerns
regarding transparency, privacy, data encryption, and licensing
(12). Additionally, doctors and scientists must bridge gaps in one
another’s subject expertise (13).

The purpose of this review is to (1) provide an overview of AI
technology and its applications in medical imaging analysis; (2)
summarize the application and performance of AI-based on
MRI, PET, and spectral images in glioma; and (3) discuss
future challenges and directions for AI applications in the field
of neural tumors.
Abbreviations: WHO, World Health Organization; LGG, low-grade glioma;
HGG, high-grade glioma; OS, overall survival; GBM, glioblastoma; AI, artificial
intelligence; MRI, magnetic resonance imaging; PET, positron emission
tomography; ML, machine learning; SVM, support vector machine; LR, logistic
regression; RF, random forest; DL, deep learning; ANN, artificial neural network;
CNN, convolutional neural network; DNN, deep neural network; RNN, recurrent
neural network; DA, deep auto-encoder; DBN, deep belief network; DBM, deep
Boltzmann machine; GAN, generative adversarial network; VAE, variation auto-
encoder; VGG, Visual Geometry Group; TL, transfer learning; CT, computed
tomography; ROI, region-of-interest; AUC, area under the receiver operating
characteristic curve; DSC, dice similarity coefficient; T1, T1-weighted; FLAIR,
fluid-attenuated inversion recovery; T2, T2-weighted; DWI, diffusion weighted
imaging; DTI, diffusion tensor imaging; DKI, diffusional kurtosis imaging; PWI,
perfusion weighted imaging; ASL, arterial spin labeling; DCE, dynamic contrast-
enhanced; MRS, magnetic resonance spectroscopy; BraTS, Brain Tumor
Segmentation; T1c, T1-weighted contrast-enhanced; XGBoost, eXtreme
Gradient Boosting; IDH, isocitrate dehydrogenase; MGMT, methylation of O6-
Methylguanine-DNA methyltransferase; EGFR, epidermal growth factor receptor;
TERT, telomerase reverse transcriptase promoter; CDKN, cyclin-dependent
kinase inhibitor; ATRX, alpha thalassemia/mental retardation syndrome X-
linked; TP53, tumor protein 53; LASSO, least absolute shrinkage and selection
operator; MPRAGE, Magnetization Prepared Rapid Gradient Echo; RTKII,
receptor tyrosine kinase II; VEGF, vascular endothelial growth factor; PsP,
pseudoprogression; TTP, true tumor progression; TCIA, imaging archive; IVIM,
intravoxel incoherent motion; 18F-FDG, [18F]-fluorodeoxyglucose; 11C-MET,
[11C]-methyl-L-methionine; 18F-FET, [18F]-fluoro-ethyl-tyrosine; 18F-FDOPA,
[18F]-fluoro-L-phenylalanine; AA-PET, amino acid PET; RANO, response
assessment in neuro-oncology; TBR, tumor-brain ratio; TTP, time-to-peak;
PCNSL, primary central nervous system lymphoma; LOOCV, leave-one-out
cross-validation; IS, infrared spectroscopy; RS, Raman spectroscopy; FS,
fluorescence spectroscopy; HI, hyperspectral imaging; MRSI, agnetic resonance
spectroscopy imaging.
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1 ARTIFICIAL INTELLIGENCE

AI broadly refers to the capacity of computers to emulate
intelligent tasks, such as explicit rule-based systems and
computer algorithms that do not require hard-coded rules
(14). It was first proposed by an American computer scientist
John McCarthy in 1956 (15). Subsequently, machine learning
(ML), which falls under the umbrella of AI, has emerged and
been applied in various fields. In the past decade, deep learning
(DL), a new model of ML, has shown great potential for
applications in a broader range of domains, leading to the
third AI boom (16, 17) (Figure 1).

1.1 Machine Learning
ML is a subfield of AI that integrates algorithms and statistical
models trained on sample data, allowing computers to learn from
previously-stored “training” data without explicit ly
programming to anticipate new data points (18). ML can be
classified as supervised, unsupervised, semi-supervised, and
reinforcement learning. To forecast a regression or
classification, supervised learning algorithms must be trained
on a labeled dataset (19). The most often used supervised
approaches include support vector machine (SVM), linear and
logistic regression (LR), random forest (RF), decision trees, and
Bayesian networks (20). Unsupervised learning algorithms can
discover patterns by grouping unlabeled datasets or reducing
data. Gaussian mixture modeling, affinity propagation, mean
shift, K-mean clustering, and hierarchical clustering are all
frequently used techniques. Semi-supervised learning is a
technique that combines labeled and unlabeled data. It is a
hybrid of supervised and unsupervised learning. Reinforcement
learning is a machine learning-enhanced decision-making
technique that develops algorithms for a specific task and
learns from future errors and successes to reinforce learning (21).

Since the 1980s, ML has been used to create accurate
predictions and classifications based on input data in different
disciplines, including military research, life science, and clinical
practice. This substantially contributed to the advancement of
several fields and allowed AI development to again reach its
pinnacle after the 1950s (22). However, the construction of every
ML model requires intricate feature engineering, resulting in a
convoluted workflow. Besides, the accuracy of ML is not
satisfactory. Thus, the breadth and extent of ML applications
are restricted, leading to the creation of DL (16, 23).

1.2 Deep Learning
Since the 2010s, the advent of DL has fundamentally altered the
traditional model, in response to the past two AI booms (16). DL
is a subset of ML that derives its technology from the artificial
neural network (ANN) (24). In comparison to ML approaches,
DL algorithms can identify underlying patterns in data without
the requirement to extract individual features. The layer-by-layer
updating of DL weights aids in the training of DL systems, while
the ML weights are updated concurrently. The primary DL-
based networks include a convolutional neural network (CNN),
deep neural network (DNN), recurrent neural network (RNN),
deep auto-encoder (DA), deep belief network (DBN), and deep
July 2022 | Volume 12 | Article 892056
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Boltzmann machine (DBM). Apart from these, generative
adversarial network (GAN) and variation auto-encoder (VAE)
are two recent approaches for generative and unsupervised
learning (25). CNN performs exceptionally well in picture
identification; convolutional and pool layers extract obvious
information, while fully connected layers conduct final
classification. For comparison, CNN’s approach encompasses
all current ImageNet Classification Challenge winners, with a
category mistake rate of 3.6% to date. The development of deep
learning models has increased the number of layer designs and
the number of model architectures, loss functions, and
optimizers available for network construction. Due to the
unlimited range of potential computational networks, a
significant number of designs have been suggested (for
example, AlexNet, ZeNet, Visual Geometry Group (VGG) Net,
GoogLeNet, ResNet, DenseNet, Super Resolution CNN, and U-
net, among others). Transfer learning (TL) is a subset of DL, and
because the weights generated from these networks trained on
ImageNet can be applied to different tasks, such as medical
pictures, this AI can significantly cut training time (26).

In conclusion, constructing DL models is more time-efficient,
simpler, and can achieve greater performance compared to ML.
Moreover, DL is readily adaptable to various domains and
applications due to TL. Although the DL establishment
procedure is straightforward, it requires huge data sets and
expensive hardware equipment, therefore ML remains a viable
option for smaller data sets (27). Additionally, on a task-specific
basis, a tailored image-naive architecture may outperform a DL
architecture (16).
Frontiers in Oncology | www.frontiersin.org 3
2 AI IN MEDICAL IMAGING

Over the past few decades, medical imaging techniques including
computed tomography (CT), MRI, PET, and ultrasound have
been used for early detection, diagnosis, and treatment of
diseases (28). In clinical settings, the majority of medical image
interpretation has been performed by human specialists such as
radiologists and physicians (27). Due to the varying levels of
expertise among physicians and the possible exhaustion of
human specialists, clinical application of medical imaging has
not yielded flawless outcomes. The situation has been improved
by the use of AI (29). Following the progression of AI
development, ML was initially applied to analyze medical
imaging. However, developing ML models necessitates those
medical specialists to give well-described regularities or
patterns inherent in data, which is a challenge for non-experts
in computer science to apply ML to investigate their studies (30).
Consequently, DL has been developed and widely used in
medical imaging in recent years. Instead of manually extracting
features, DL can autonomously find meaningful and useful
features in datasets allowing nonexperts in AI to effectively use
DL for their research. Besides, with sufficient training data, DL
models can achieve greater accuracy (31).

As different forms of AI techniques continue to be applied to
medical imaging, radiomics has arisen. Radiomics is the
application of computer image processing to transform region-
of-interest (ROI) image data into mineable high-dimensional
feature data. AI models are constructed based on the extracted
feature data to make disease-related diagnoses and predictions
FIGURE 1 | Artificial intelligence methods and timeline. Machine learning is a form of artificial intelligence that could be classified as supervised learning, unsupervisd
learning, semisupervised learning, and reinforcement learning. Deep learning is a form of machine learning. AI: artificial intelligence; ML: machine learning; DL: deep
learning.
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(32). This AI-assisted technology is of great interest to doctors
and is widely used in clinical research. Radiomics can elicit
measurable objective data that has previously been unavailable
and establish its relationship to underlying biological
processes (33). Radiomics may be mainly classified into two
types: feature-based and deep learning-based radiomics (34). The
workflow for feature-based radiomics consists primarily of
picture preprocessing, tumor segmentation, feature extraction,
and feature selection, followed by the establishment and
evaluation of a mathematical model (35). By utilizing various
network topologies, deep learning-based radiomics procedures
discover and detect classification-related patterns in picture data
(36). The feature structure is then merged to form higher-level
abstraction features. Finally, the retrieved features can be
evaluated further by the network or subjected to a model-
building process that is used in feature-based radiomics
(Figure 2). To assess the AI technique, the model may be
tested either internally (through cross-validation or
bootstrapping) or externally (by supervised learning). After
training and testing the model, it is desirable to apply it to a
third dataset, referred known as the external validation dataset.
External validation datasets serve as the gold standard for
assessing the performance, robustness, and dependability of AI
models. Statistical metrics like as accuracy, area under the
receiver operating characteristic curve (AUC), sensitivity,
specificity, positive/negative predictive values, and dice
Frontiers in Oncology | www.frontiersin.org 4
similarity coefficient (DSC) or dice score can be used to
evaluate the effectiveness of AI systems (37).
3 APPLICATIONS OF AI-BASED ON
MEDICAL IMAGING IN GLIOMA

Neuroimaging techniques, such as contrast-enhanced CT, MRI,
PET, and spectral imaging, have been widely applied for the
detection, treatment, and prognostic prediction of glioma.
However, the numerous amounts of data generated by these
techniques and the heterogeneity of tumors are miserable for
physicians. AI-based medical imaging could help to release
physicians from these large amounts of data by integrating the
similarity of these figures and providing directions. This section
will mainly demonstrate the strengths and shortages of the
application of AI-based MRI, PET, and spectral imaging
in glioma.

3.1 Magnetic Resonance Imaging
MRI reflects the tumor pathophysiological environment at the
voxel level by utilizing geometric, histogram, and texture analysis
methods for quantification and prediction of image-based
biomarkers via radiomics. Compared to biopsy, MRI is a non-
invasive method, which could provide relatively comprehensive
information on tumors. Whereas MRI can help to get rid of
FIGURE 2 | The workflow of radiomics. Radiomics may be divided into two categories: feature-based radiomics and deep learning-based radiomics. The workflow
for feature-based radiomics begins with image preprocessing, tumor segmentation, feature extraction, and feature selection, and concludes with the construction
and assessment of a mathematical model. In deep learning-based radiomics, different network architectures are used to find the most relevant features from the
input data. Finally, the retrieved features can be processed further by the network for analysis and classification, or they can leave the network and used to generate
models in a manner similar to the feature-based radiomics technique by employing different classifiers. ML, machine learning; DL, deep learning.
July 2022 | Volume 12 | Article 892056
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ionizing radiation and interference from bone artifacts when
compared to contrast-enhanced CT. Besides, multiple sequences
such as T1-weighted (T1) and T2-weighted (T2) MRI can be
applied, which means more information can be obtained through
MRI. Among these sequences, T1 images often depict the glioma
boundaries, and fluid-attenuated inversion recovery (FLAIR)
and T2 images more clearly depict the tumor core (38). The
integrity of the blood-brain barrier (BBB) is disrupted in almost
all high-grade gliomas, which means that the gadolinium-based
contrast agents (GBCA) injected from the vein can successfully
enter the extravascular extracellular space of the brain,
manifesting as contrast-enhancing hyperintense regions on T1
sequences (39). Along with the T1 and T2 sequences, several
other sequences have also been used to comprehensively evaluate
the state of glioma (40). In detail, diffusion-weighted imaging
(DWI), diffusion tensor imaging (DTI), and diffusional kurtosis
imaging (DKI) can indicate changes in cell density, membrane
permeability, and tissue microstructure; perfusion-weighted
imaging (PWI) can detect changes in the microcirculation and
cell proliferation (41); magnetic resonance spectroscopy (MRS)
can reveal the metabolic status of malignancies directly, which is
most closely connected to gene expression regulation, suggesting
the combination of these two methods (42). Herein, we will
discuss the application of AI-based MRI in glioma from the
following four aspects: tumor segmentation and classification,
molecular marker prediction, molecular marker prediction, and
tumor cell analysis (Supplementary Table 1).
3.1.1 Tumor Segmentation and Classification
Glioma is classified into four subtypes: enhanced area, non-
enhanced region, necrosis area, and edema area. Several
algorithms have been used to segment glioma. Among them,
the outstanding performance of CNN has been well known in
glioma segmentation, with an accuracy greater than 80-90%.
Fu et al. (43) evaluated their multipath denseNet architecture
based on 3D CNNs using the Brain Tumor Segmentation
(BraTS) 2019 dataset and obtained a DSC of 0.922. Along with
the CNN model mentioned above, other AI methodologies have
also been applied in glioma segmentation. Another study
combined Superpixel fuzzy clustering with the lattice
Boltzmann technique can reach a disc of 0.93 (BraTS 2017)
(44), demonstrating that the approach is resistant to noise,
initialization, and strength inhomogeneity. Besides, Amin et al.
(45) proposed a technique merging Local Binary Pattern and
Gabor Wavelet Transform features, and generated dices of 0.96
(BraTS 2013), 0.98 (BraTS 2015), and 0.95 (local dataset). In
summary, segmentation of glioma is a time-consuming and
subjective task through the current manual ways. Through AI-
based MRI, these shortages can be largely overcome, and
subsequently, radiomics can be performed. Despite this, the
large heterogeneity of HGG and the low proliferative state of
LGG still bring a huge challenge to this task (71, 72). Besides, the
various outcomes in the same datasets caused by different ML
methodologies are a major concern for the application of ML in
clinical. For instance, the results generated by a two-stage
cascaded U-Net (73) and an RDAU-Net (74) using the BraTS
Frontiers in Oncology | www.frontiersin.org 5
2019 training dataset which comprises 259 cases of HGG and 76
cases of LGG are various.

Additionally, the value of MRI in the grading and
categorization of glioma has also been assessed according to its
pathophysiology, molecular composition, and transcriptional
activity. DL-based MRI, particularly CNN, performed well in a
study of glioma classification and grading. For instance, Quon
et al. created a modified ResNeXt-50-32x4d architecture to detect
and classify gliomas into distinct pathological sub-types using T2
images (46), and this model demonstrated an AUC of 99% for
tumor detection and 92% for glioma classification. In 2020,
Basha et al. proposed a novel Harris Hawks optimization
algorithm for evolving CNN architecture and investigated the
classification and grading of brain tumors using two datasets; the
former contains 8.000 brain tumors with four grades and 8.000
healthy MRI images, while the latter contains 4.908 MRI images
with glioma, pituitary, and meningioma; the accuracy was
greater than 95% in all experiments. Luo and colleagues (47)
examined the utility of high-throughput network characteristics
derived from the 3D U-net for histological and molecular
subtype prediction in three cohorts of 655 glioma patients
using conventional MRI. For histological diagnosis and
molecular subtyping, the novel picture signature-based
radiomics model achieved accuracies of 89.8% and 86.1% in
the cross-validation cohort and 83.9% and 80.4% in the
independent testing cohort. Overall, these studies indicated the
high accuracy generated by DL in the grading of glioma.

Besides DL, other AI technologies also performed well in
glioma classification. For example, Le et al. (48) identified
transcriptome subgroups in GBM patients using conventional
MRI in two cohorts of 120 patients. Model generation was
performed using an eXtreme Gradient Boosting (XGBoost)
machine classifier, and the model was constructed using 13
radiomics features selected from 704 handcrafted radiomics
features achieved 70.9%, 73.3%, 88.4%, and 88.4% accuracy in
predicting classical, mesenchymal, neural, and proneural
subtypes, respectively. Lu and co-workers (49) achieved an
accuracy of 81.8% after fivefold cross-validation using an SVM
classifier based on radiomics features from multimodal MRI in
456 glioma patients for the classification of five molecular
subtypes; this accuracy was increased to 89.2% when combined
with histological diagnosis and MR radiomics.

In general, many AI systems can accurately detect and grade
gliomas using picture data. However, because various studies use
different data and defining criteria, it’s impossible to compare
them, and it’s unclear which algorithm is the most effective.

3.1.2 Molecular Marker Prediction
WHO included molecular and histological characteristics in the
classification of brain cancers for the first time in 2016, and in
2021, WHO made significant revisions to the categorization of
tumors, emphasizing the importance of molecular detection (75).
The updated WHO 2016 classification of central nervous system
malignancies stresses the prognostic significance of molecular
characteristics such as the isocitrate dehydrogenase (IDH)
genotype or the 1p/19q chromosomal arm heterozygous
deletion (3). 2021 WHO classification approves methylome
July 2022 | Volume 12 | Article 892056
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classifiers for a variety of CNS tumor types and subtypes and
promoter methy la t ion of O6-Methy lguanine-DNA
methyltransferase (MGMT) is related to an improved response
to temozolomide therapy and a longer OS. Numerous studies
have also demonstrated the predictive abilities of certain
molecules. For example, research suggests that grade II or III
IDH wild-type astrocytomas may harbor chromosomal +7/-10,
epidermal growth factor receptor (EGFR) amplification, and/or
telomerase reverse transcriptase promoter (TERT) alterations,
with the same prognosis as GBMs (76). The detection of
homozygous cyclin-dependent kinase inhibitor (CDKN) 2A/B
deletion is critical for properly diagnosing and prognosing
patients with diffuse astrocytomas caused by IDH mutations.
In diffuse astrocytomas, IDH mutations are related to alpha
thalassemia/intellectual disability syndrome X-linked (ATRX)
and tumor protein 53 (TP53) functional loss mutations (77).
ATRX mutations are mutually exclusive with co-deletion of 1p/
19q and are associated with oligodendrocytes (78). TERT and
ATRX are telomere maintenance proteins (79, 80).

Recent years have seen a surge in interest in radiogenomics.
Radiogenomics needs the establishment of correlations between
quantitative or qualitative imaging aspects and genomic data
derived from tissue analysis and other clinical data in order to
enable the development of imaging alternatives to genetic testing
(81, 82). Radiomics can help to distinguish IDH-mutant co-
deleted 1p/19q tumors (oligodendrogliomas) from IDH-mutant
non-co-deleted 1p/19q tumors (astrocytomas). Researchers
reported that the combination of a near-complete or complete
hyperintense signal on a T2 sequence and a hypointense signal
on a FLAIR (except a potential hyperintense peripheral rim)
possesses a 100% predictive value of IDH-mutant astrocytomas,
which was termed as T2-FLAIR mismatch (83). Researchers
further verified the specificity of this mismatch for anaplastic
astrocytomas and diffuse through a retrospective study
containing patients with diffuse oligodendroglioma (IDH-
mutant 1p/19q co-deleted), diffuse astrocytoma (IDH-mutant),
anaplastic oligodendroglioma (IDH-mutant 1p/19q co-deleted),
anaplastic astrocytoma (IDH-mutant), and IDH-WT
(Glioblastoma-like) (84). It was revealed that the T2-FLAIR
mismatch is present in four of five anaplastic astrocytoma
tumors, 34 of 70 diffuse astrocytoma tumors, and 0 of 79 other
three types of tumors, confirming the 100% specificity
differentiating astrocytomas from other LGGs, which has been
further verified in other two studies (85, 86). In addition to the
T2-FLAIR mismatch, researchers created a model consisting of
T1, T2-weighted FLAIR, and an apparent diffusion coefficient
(ADC), and reported that the model can differentiate MGMT
methylated tumors from non-methylated tumors with an AUC
of 0.925 and 0,902 in the training and validation cohort,
respectively. This indicated the efficiency of MRI in the
prediction of molecular markers. Employing AI-based MRI can
help clinicians to clear changes in molecular markers easily (87,
88). In general, the majority of research employed MRI to predict
glioma gene mutations with DL (particularly CNN), RF, least
absolute shrinkage and selection operator (LASSO), and SVM
technologies to obtain strong predictive performance with an
Frontiers in Oncology | www.frontiersin.org 6
accuracy of greater than 80 - 90%. For example, Choi et al. (57)
predicted the IDH genotype with an accuracy of 92.8% and
91.7% in the validation and test sets, respectively, using an RNN
application based on dynamic susceptibility contrast MRP from
463 patients with gliomas. The H3- -K27M mutation status
prediction model based on CNN features and the SVM
classifier was tested by Liu et al. in a group of 55 patients with
preoperative T1-magnetization prepared rapid gradient echo
(MPRAGE) images MRI, and the results indicated an accuracy
of 95% upon fivefold cross-validation (60). For the prediction of
deletion of Chromosomal Arms 1p/19q, Akkus and co-workers
(62) used a multi-scale CNN based on T1c and T2 pictures from
159 LGGs. Using TL and previously trained 3D-dense-UNets on
T2 images, Yogananda and colleagues (58) were able to
accurately predict the MGMT promoter methylation status in
247 individuals. Similarly, several studies used CNN and/or RF
models to predict molecular markers (such as TERT (61), 7/10
aneuploidies, CDKN2 family mutations (66), receptor tyrosine
kinase II (RTKII) (67), and tumor proliferation marker (Ki-67)
(63) in glioma patients’ MRI and reached a high degree of
accuracy. Additionally, LASSO regression and/or SVM models
based on MRI correctly predicted additional molecular
indicators such as ATRX mutation (59), TP53 status (64), and
vascular endothelial growth factor (VEGF) expression (65).

3.1.3 Response Assessment and Prognosis
Prediction
AI has been used in MR imaging sequences to assess response
and predict survival in gliomas, excluding the prediction of
molecular markers. A significant challenge following
chemoradiotherapy is the presence of radiation-induced side
effects such as pseudoprogression (PsP), a late benign
therapeutic effect that mimics true tumor progression (TTP) at
the tumor site or resection margin, which occurs in
approximately one-third of GBMs and is usually stable without
further treatment (89). Clinicians face significant hurdles because
of this discrepancy between PsP and TTP.

SVM has been successfully used to measure response and
predict survival in gliomas. Li and co-workers (51) demonstrated
a 92% accuracy in differentiating between PsP and TTP after
tenfold cross-validation using an SVM classifier based on deep
convolutional generative adversarial networks and AlexNet
radiomics feature learning from DTI. Conventional MRI data
from two institutions, comprising 105 GBMs, was utilized by
Ismail and colleagues (52) to distinguish between PsP and TTP.
An SVM classifier was utilized to evaluate the test cohort after
extracting 30 shape features, and the training and test cohorts
had accuracy rates of 91.5% and 90.2%, respectively.

Moreover, some studies have reported the accuracy of AI in
predicting glioma prognosis. The cancer imaging archive (TCIA)
and local test cohorts were used by Pan et al. to predict the OS
using ML techniques with C-indexes of 0.70 and 0.76,
respectively, for multiparameter MRI of 152 GBMs (53). When
radiomic characteristics were paired with preoperative clinical
risk factors (C-index = 0.76 in the TCIA and test cohort), the
impact of OS prediction was substantially enhanced. Sanghani
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and colleagues (56) found that an SVM classifier based on
textural characteristics, tumor shape, and volumetric data from
conventional MRI was able to accurately predict OS in two- and
three-class survival groups following a 5-fold cross-validation.
Similarly, Chang and colleagues (55) predicted OS with good
accuracy using an RF MRI feature selector and a kernel SVM or
neural network classifier. Furthermore, another study
demonstrated significant accuracy in identifying survival-
relevant high-risk subregions in MRIs from GBMs using the
K-means clustering methodology (54).

In summary, ML algorithms are more than 80% accurate in
predicting glioma outcomes via imaging. One way to improve
the efficiency of AI-based MRI in Response assessment and
prognosis prediction is to overcome the limitations of MRI.
The major disadvantage is that the treatment-related changes can
affect MRI results, regardless of the time of evaluation. In this
situation, some entities such as radiation necrosis (RN),
pseudoprogression (PSP), and pseudoresponse can be
introduced (90). Notably, oedema and necrosis caused by
postoperative reaction and radio- or chemotherapy could be
misinterpreted as disease progression due to the increase in T2/
FLAIR signal (91). Therefore, it is suggested to introduce a
reliable imaging technique to increase the accuracy of MRI.

3.1.4 Tumor Cell Analysis
Non-enhanced aggressive tumors are difficult to detect with MR
enhancement but can be aided by assessing a variety of
biophysical characteristics. Hu and colleagues (68) trained a TL
model using dynamic susceptibility contrast MR imaging and
DTI data from 18 GBMs from a single clinical institution and on
82 image-recorded biopsy samples. With a Pearson correlation
value of 0.88 and a mean absolute error of 5.66 percent, the
tumor cell density could be predicted. In another study, images
from High-Resolution Magic Angle Spinning Nuclear MRS of
glioma and control samples were analyzed using an RF model
with AUCs of 85.6% and 87.1% to differentiate tumor cells and
benign samples from controls and malignant samples (69).
Similarly, Fathi Kazerooni and colleagues (70) differentiated
subregions of brain gliomas in Fifty-one tissue specimens from
10 patients using conventional MRI, DWI, DTI, intravoxel
incoherent motion (IVIM), and dynamic susceptibility contrast
MRI. An SVM classifier was used to generate models, and a
model based on 15 MRI-based parameters had an AUC of
greater than 0.90 for identifying the three subregions (active
tumor, infiltrative edema, and normal tissue).

Tumor cell analysis enables the direction of postoperative
targeted therapy and the assessment of tumor margins
intraoperatively. At the moment, artificial intelligence is still in
its infancy. Due to financing and data issues, there are still very
few relevant studies available now. Future studies can be
conducted to improve the use of AI and the verification of
cell analysis.

In general, AI has been extensively applied in glioma MRI,
including tumor segmentation and classification, molecular
marker prediction, and tumor cell analysis. With the rapid
advancement of AI, deep learning in image analysis
demonstrates both its advantages and limits. AI will eventually
Frontiers in Oncology | www.frontiersin.org 7
assist in the integration of data from disparate sources (clinical
examination, other medical imaging, and pathology) to guide
therapy and prognosis.

3.2 Positron Emission Tomography
As described above, the application of AI-based MRI shows
excellent outcomes in glioma. However, MRI may not always be
able to answer three essential questions: evaluation of the initial
characterization of the brain lesion, monitoring of therapies to
clear changes induced by recurrence/progression and treatment,
and evaluation of treatment efficacy (92). Furthermore, one of
the main advantages of PET is that the radiotracers used for PET
are in most cases independent of disruption of the blood-brain
barrier (BBB) as opposed to MRI, which is especially useful in
LDH (92, 93). Overall, PET provides insights into glioma that
exceed MRI and that can be applied for noninvasive grading,
differential diagnosis, mapping the extent of tumor involvement,
designing surgery and radiotherapy methods , and
prognostic prediction.

PET mainly uses [18F]-fluorodeoxyglucose (18F-FDG) and
radioactively labeled amino acids as radioactive tracers.
Compared with 18F-FDG, the radioactive labeled amino acid,
such as [11C]-methyl-L-methionine (11C-MET), [18F]-fluoro-
ethyl-tyrosine (18F-FET), 3,4-dihydroxy-6-[18F]-fluoro-L-
phenylalanine (18F-FDOPA) show higher contrast in tumor
tissues and normal brain tissues (94). Further, the amino acid
PET (AA-PET) can provide additional information on the
metabolic characteristics of glioma. These two advantages
make the United Cooperative produce guidelines encouraging
the use of AA-PET for tumor diagnosis and treatment (95, 96),
and the response assessment in neuro-oncology (RANO) group
made evidence-based recommendations for the use of PET
imaging in the planning and monitoring of radiation therapy
for glioma patients (97–99). While the tumor-brain ratio (TBR)
is currently the gold standard for estimating neoplastic uptake
relative to healthy brain tissue in the majority of centers, tracer
uptake dynamics, such as slope and time-to-peak, have been
shown to increase diagnostic accuracy (100). Dynamic factors
were found to be linked with tumor grade, tumor progression,
molecular indicators such as IDH gene alterations, and
separating patients with actual and false tumor progression in
patients with gliomas (3, 101, 102). The following is a summary
of recent AI-based PET studies on glioma diagnosis, treatment,
and prognosis (Table 1).

3.2.1 Applications for Diagnosis
Glioma misdiagnosis as another lesion can have a significant
impact on patient survival, and although MRI is frequently
utilized for the first screening, radiological separation of
glioma, primary central nervous system lymphoma (PCNSL),
and multiple sclerosis remain challenging. PET is an alternative
form of imaging that has been used to assess central nervous
system disorders (117). As a result, an increasing number of
studies have used AI-based PET to aid in the detection and
diagnosis of glioma. For example, 18F-FET-PET imaging may
differentiate between multiple sclerosis and WHO grade II-IV
glioma with a 91% accuracy by using an SVM classifier,
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TABLE 1 | Summary of major studies on AI-assisted PET in Glioma.

Purpose Ref. Design
ofstudy

Database Sample size Performingalgorithm Modality Feature Outcomes (%)

Accuracy Sensitivity/
Specificity

Detection and
segmentation

Blanc-
Durand
et al,
2018
(134)

Retrospective Internal 37 glioma patients 18F-FET PET CNN Feature 3D U-net
CNN

Detection:
100;
Segmentation:
DSC: 82.31

Detection:
100/100;
Segmentation:
88/99

Classification Kebir et
al, 2021
(135)

Retrospective Internal 7 multiple sclerosis
and 34 glioma
patients

18F-FET PET TBR SVM 91; AUC:94 89/100

Classification Kong et
al, 2019
(136)

Retrospective Internal 24 lymphoma
patients and 53
GBMs

18F-FDG PET SUV
map

Decision
tree

90.9-97.4;
AUC:97.1-
99.8

90.6-98.1/
87.5-100

Classification
(3-group
molecular
subtypes)

Matsui et
al, 2020
(137)

Retrospective Internal 217 LGGs
49/58/100 (IDH-
wildtype diffuse
astrocytoma/IDH-
mutant difuse
astrocytoma/
oligodendroglioma)

MRI, PET, and CT Image and
clinical features

residual
network

96.6/68.7
(training/
testing)

NA

Discrimination
between PsP
and TTP

Lohmann
et al,
2020
(138)

Retrospective Internal 34 glioma patients 18F-FET-PET First-order
statistics, shape,
and texture,
Laplacian-of-
Gaussian filtered,
wavelet-
transformed
features

RF Training/
testing:
86/70;
AUC:74/74

82/90
(training);
100/40
(testing)

Discrimination
between PsP
and TTP

Kebir et
al, 2020
(139)

Retrospective Internal 44 glioma patients 18F-FET-PET TBR and time-
to-peak

Linear
discriminant
analysis

AUC:93 100/80

Discrimination
between PsP
and TTP

Imani et
al, 2014
(140)

Retrospective Internal 12 grade 2 and 3
gliomas

18F-FDG PET and
MRS

Maximal SUV
and multiple 2D
maps of choline,
creatine

SVM 92 80/100

Discrimination
between PsP
and TTP

Kebir et
al, 2017
(141)

Retrospective Internal 14 HGGs 18F-FET-PET Textural and
conventional
features

Clustering
based
classifier

Positive
predictive
value: 90

90/75

OS prediction Papp et
al, 2018
(142)

Retrospective Internal 70 patients with a
treatment naive
glioma

11C-MET PET General and
higher-order
textural features,
in vivo, ex vivo,
and clinical
patient
information

K-nearest
neighbor
classifier

90; AUC: 91 88/95

IDH mutation
prediction

Li et all,
2019
(143)

Retrospective Internal 127 consecutive
gliomas

18F-FDG PET Clinical
characteristics
and the radiomic
signature

SVM and
multivariate
LR

Training/
testing:
79.8/83.7;
AUC: 91.1/90

78.9/80.4
(training);
92.3/80
(validation)

IDH status
prediction

Tatekawa
et al,
2021
(144)

Retrospective Internal 62 treatment-naive
glioma patients

Multiparametric MRI
and 18F-FDOPA PET

Voxel-wise
feature

Two-level
clustering
and SVM

76; AUC:81 NA

Classification
(HGG and
LGG) and IDH
status
prediction

Kebir et
al, 2019
(145)

Retrospective Internal 39 gliomas 11C-MET PET/MRI TBR SVM
classifier
with a linear
kernel

Classification:
AUC:62;
Prediction:
AUC:79

NA

MGMT status
prediction

Qian et
al, 2020
(146)

Prospective Internal 86 GBMs 18F-FDOPA PET Shape, tumor
intensity
and tumor
texture features

RF 80 100/33

(Continued)
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according to a study by Kebir et al. (104) In an attempt to identify
PCNSL from GBM, Kong et al. (105) used 107 radiomic
characteristics from 18F-FDG PET in 77 individuals (24 with
lymphoma and 53 with GBM). The decision tree approach
algorithm demonstrated great diagnostic performance,
according to this study’s findings (accuracy 90.9%-97.4%, AUC
97.1%-99.8%). LGG may be classified into three molecular
subtypes based on the WHO’s 2016 categorization of central
nervous system malignancies. The mainstay of care for patients
with LGG is surgical excision of the tumor followed by
postoperative chemoradiotherapy. Their effectiveness, however,
is dependent on the tumor’s molecular subtype. Matsui et al.
(106) utilized residual networks to predict LGG molecular
subtypes using multimodal data from a glioma database,
including MRI, PET, and CT, and achieved an overall accuracy
of 68.7% for the test dataset.

The above evidence has exhibited the strength of PET in the
diagnosis of glioma. However, about 5% of HGG do not show
amino-acid tracer uptake (118, 119) and some non-neoplastic
lesions, such as vascular malformations, hematomas,
inflammatory lesions, and ischemic lesions, can also exhibit
unspecific amino-acid uptake (120, 121). Besides, although
static 18F-FDG PET has been used for the differentiation of
LGG and HGG, overlap can be seen, which may interfere with
the judgement (122). Also, static 18F-FDG PET has only a
specificity of 56-85% and a sensitivity of 71-80% for the
differentiation between LGG and HGG, suggesting the
employment of dynamic 18F-FDG PET which can improve the
accuracy (95, 123). Therefore, although the application of PET
enhances the interpretation of lesions determined by MRI,
histological diagnosis and the molecular signature cannot
be neglected.

3.2.2 Applications for Treatment
Segmentation is a frequently performed operation in medical
imaging; automated segmentation significantly reduces the time
required for human segmentation. Segmentation objectives such
as radiotherapy plans that define the total or biological tumor
volume, and surgical plans that quantify the three-dimensional
volume of enhancing tumor and surrounding edema are
necessary for accurate assessment and monitoring of tumor
response and have also demonstrated some independent
Frontiers in Oncology | www.frontiersin.org 9
prognostic value. A 3D U-Net CNN was employed in 37
glioma patients to detect and segment gliomas using 18F-FET
PET with 100% detection accuracy and 82.31% DSC
(segmentation) (103).

Although PsP is most frequently noticed within the first 12
weeks following the cessation of radiation and chemotherapy
(124), it can develop later (125). Detecting PsP in GBMs
continues to be an important clinical problem in radiology
since it is necessary to avoid continuing ineffective therapy and
discontinuation of beneficial treatment. Kebir et al. (108)
developed a model for identifying PsP using 18F-FET PET
scans from 44 glioma patients and a linear discriminant
analysis model with an AUC of 0.93 was utilized. Lohmann
et al. (107) used a model for discriminating PsP from TTP by
analyzing 18F-FET PET scans from 34 glioma patients. The
patient group was separated into a training and a test cohort. The
final model used an RF classifier and attained accuracies of 86%
and 70% in the training and test data, respectively. In another
study, an SVM classifier was developed on twelve post-therapy
patients who underwent 18F-FDG PET and MRS to identify
brain glioma progression. The classifier’s sensitivity and
specificity for detecting glioma progression were 80% and
100%, respectively, with an accuracy of 0.92 (109).

3.2.3 Applications for Prognosis
PET imaging using radiolabeled amino acid tracers such as 11C-
MET and 18F-DOPA is regarded as a potential diagnostic tool
for tumor characterization and longitudinal therapy monitoring
due to its excellent sensitivity and specificity. Papp et al. (111)
assessed the possibility for survival prediction using 11C-MET
PET radiomics and clinical patient information in 70 patients
with a treatment-naive glioblastoma. The final model
incorporated in vivo, ex vivo, and clinical patient data and had
an AUC of 0.90. Similarly, another study (114) showed a good
AUC for IDH status prediction using an SVM classifier while
assessing 11C-MET PET scans from glioma patients. Based on
18F-DOPA PET images, RF and SVMmodels correctly predicted
MGMT status (115) and tumor proliferation marker (Ki-67)
(116). Additionally, several studies employ a combination of
multimodal imaging and machine learning methods to predict
tumor genetic markers. For example, Tatekawa et al. (113)
performed a radiomics analysis based on multiparametric MRI
TABLE 1 | Continued

Purpose Ref. Design
ofstudy

Database Sample size Performingalgorithm Modality Feature Outcomes (%)

Accuracy Sensitivity/
Specificity

Ki-67
prediction

Kong et
al, 2019
(147)

Retrospective Internal 123 glioma
patients
82/41 (training/
testing)

18F-FDG PET Shape and size,
first-order,
texture, wavelet,
and alternative
filtered features

SVM Training/
validation:
81.7/73.2;
AUC:88/76

95.6/64.9
(training);
92/43.8
(validation)
July 202
2 | Volume 12 |
AI, artificial intelligence; PET, positron emission tomography; Internal, subjects were recruited from insitutional and/or public through media channels; 18F-FET, [18F]-fluoro-ethyl-tyrosine;
CNN, convolutional neural network; DSC, dice similarity coefficient; TBR, tumor-brain ratio; SVM, support vector machine; AUC, area under the receiver operating characteristic curve;
18F-FDG, [18F]-fluorodeoxyglucose; SUV, standardized uptake value; IDH, isocitrate dehydrogenase; MRI, magnetic resonance imaging; CT, computed tomography; NA, not available;
PsP, pseudoprogression; TTP, true tumor progression; RF, random forest; 2D, two-dimensional; HGG, high-grade glioma; OS, overall survival; 11C-MET, [11C]-methyl-L-methionine; LR,
logistic regression; 18F-FDOPA, [18F]-fluoro-L-phenylalanine; LGG, low-grade glioma; MGMT, methylation of O6-Methylguanine-DNA methyltransferase; GBM, glioblastoma.
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and 18F-DOPA PET images for the prediction of the IDH status
in 62 treatment-naïve glioma patients, a SVMmodel achieved an
AUC of 81% after leave-one-out cross-validation (LOOCV).

Taken together, feature-based PET radiomics has shown
promise in the field of neuro-oncology, allowing for the
evaluation of more data at a reasonable cost. However, the
majority of existing research is retrospective in nature, with
insufficient sample sizes and no available database. ML is a
technique for fitting statistical models, and its outcomes are
sample size-dependent.

3.3 Spectral Imaging
Glioma is defined by its proclivity for metastasis and
heterogeneity. Due to the lack of specificity of early clinical
signs, the majority of glioma patients are frequently overlooked,
resulting in patients missing the best treatment window.
Histopathology has evolved into the gold standard for
classification and diagnosis, whereas molecular pathology has
gained increasing attention in the diagnosis and classification of
glioma. With the advancement of molecular biology and
molecular pathology in 2016, the WHO categorization of
recombinant central nervous system malignancies is beneficial
for early detection and accurate therapy (3). Spectral imaging is a
potential tool for assisting in the histopathological study of
cancer samples that contain molecular information. Imaging
can be employed for real-time intraoperative evaluation,
allowing for earlier detection and more precise intraoperative
resection, which is critical for patient survival (126).
3.3.1 Infrared spectroscopy
Infrared spectroscopy (IS) is a non-invasive and quick measuring
technique used to characterize biological samples and their
constituents qualitatively and quantitatively by quantitative
detection of molecule internal vibration patterns (127, 128).
Several studies have coupled human serum IS with ML
methods to identify glioma (129–131). Hands et al. (131)
extracted 130 features from Fourier-transform IS pictures of
blood samples from 433 individuals with or without glioma. The
final SVM classifier model has a sensitivity and specificity of
91.5% and 83.0%, respectively, for detecting glioma. In this test,
SVM and RF outperformed other classifiers. Another model was
constructed using partial least squares discriminant analysis and
synthetic minority over-sampling to classify GBM multiforme
and lymphoma from 765 serum samples. The result has a
sensitivity of 90.1% and a specificity of 86.3%, respectively (132).

Furthermore, the combination of IS with a microscope
enables the spatial distribution of proteins, lipids, nucleic acids,
and other compounds in tissue samples to be examined. Peng
et al. (133) used Fourier transform infrared microscopy to study
9360 spectra from the tissue of 77 glioma patients. This study
employed artificial neural networks to categorize gliomas (HGG
and LGG) with higher than 98% accuracy, specificity, and
sensitivity. For estimating the secondary structure of proteins,
Surowka et al. (134) employed infrared micro-spectroscopy
spectral range. ANNs were employed to generate the models,
and the accuracy was improved to less than 5%.
Frontiers in Oncology | www.frontiersin.org 10
3.3.2 Raman Spectroscopy
RS is a label-free method that generates spectra by detecting and
measuring Raman scattering using narrow-band laser excitation
and sensitive spectrometers. For stereotactic brain tumor biopsy,
in vivo tumor infi ltration detection, intra-operative
histopathology diagnosis, and molecular categorization, it gives
quantitative biochemical information regarding the molecular
composition (135–138).

For the creation of a model to grade glioma, Zhou et al. (139)
employed label-free visible resonance RS spectra from 125
histologically normal human brain tissues and glioma tissues.
The SVM model was able to discriminate normal, LGGs, and
HGGs 75.1% of the time. Besides, Pekmezci and coworkers (140)
used RS spectral data to differentiate the phenotypes of T-cells
and monocytes following incubation with a medium conditioned
by GBM stem cells with a variety of genetic backgrounds in three
human GBM cell lines. The linear discriminant analysis model
was generated using 67% of the dataset (training set) and then
verified against 33% of the dataset (test set). The SVM produced
sensitivities and specificities of greater than 70% and 67% in the
validation and independent test sets, respectively.

3.3.3 Fluorescence Spectroscopy
FS offers a comprehensive array of detection tools and
procedures for high-grade gliomas that accumulate the
endogenous biomarker protoporphyrin IX following exogenous
treatment of 5-aminolevulproic acid, boosting tumor tissue
fluorescence and directing surgical intervention (141, 142). In
ten glioma patients, Valdés and colleagues (143) assessed the
possibility of combined FS and reflectance spectroscopy in vivo
optical data for diagnostic performance during surgery. The
SVM model attained an accuracy of 94%. Leclerc et al. (144)
used spectral characteristics analysis based on FS to identify
healthy tissue from margin tissue in 50 samples from ten
patients. A completely automated clustering technique
obtained a diagnostic accuracy of 77% in predicting healthy
tissues from margin tissues.

3.3.4 Hyperspectral Imaging
HI measures the diffuse reflectance of tissue surfaces to generate
spectral characteristics that contain both spatial and spectral
information (145). Recently, HI has been utilized to identify and
diagnose illnesses characterized by alterations in cellular
biochemical pathways (146). Urbanos et al. (147) classified
tumor tissue in a set of 12 HGGs using thirteen in-vivo
hyperspectral photos (healthy tissue, tumor, venous blood
vessel, arterial blood vessel, and dura mater). Overall
accuracies for the three models (RF, SVM, and CNN) ranged
from 60% to 95% depending on the training settings. Similarly,
Manni and coworkers (148) classified tumor tissue (tumor,
healthy tissue, and blood vessels) in 16 tumor patients using 26
in-vivo hyperspectral pictures. The hybrid 3D-2D CNN models
achieved an overall accuracy of 80%. Ortega et al. (149)
employed 527 high-resolution pictures to detect GBM in non-
tumor brains and GBM samples from 13 individuals. The CNN
models had an average sensitivity and specificity of 88% and
77%, respectively.
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In conclusion, these investigations demonstrate that spectral
image-based AI is beneficial for diagnosing and applying glioma
tissue samples intraoperatively. Due to spectrum imaging’s
unpopularity, there are few studies and their sample sizes are
modest. As a potential intraoperative quick diagnostic method,
more research may be directed toward developing applicable
AI software.

3.3.5 Magnetic Resonance Spectroscopy Imaging
MRSI is a non-invasive technique for evaluating the spatial
distribution of metabolic changes in the brain (150, 151). It
can provide information on neuron integrity, neurotransmitter
levels, and specific biological information like as cell membrane
turnover, cell density, and cell proliferation, complementing the
structural pictures of conventional MRI. The measured brain
MRSI includes complicated signals corresponding to several
overlapping peaks of various metabolites, baselines from
various macromolecules and lipids, as well as noise and
distortion (152). By measuring the concentration levels of
specific metabolites, in vivo and in vitro MRSI studies (153,
154) of the brain can indicate tumor kind, grade, or invasion and
distinguish tumor growth from post-radiation necrosis.

In one work, the SVM classifier and the minimum redundancy
maximum relevance algorithm were used to predict glioma grade
based on twenty-six metabolic characteristics from the
preoperative MRSI. This model attained AUCs of 0.825% in the
training set and 0.820% in the validation set (50). In another study,
the dictionary pair learning approach was designed to evaluate
glioma based on 150 spectra; its overall accuracy was 0.9778 (155).
For glioma treatment response, in a research of 29 control mice
and 34 TMZ-treated mice, the performance of an SVM classifier
with a linear kernel over the number of sources picked for the
MRS image data was able to identify between treated and
untreated mice with GBM with an accuracy of over 80% (156).
4 LIMITATIONS AND FUTURE
CONSIDERATIONS

Simultaneous advancements in image processing technology
(MRI, PET, and spectral imaging) and AI, particularly in
machine learning and deep learning, have enabled these data-
rich patterns to provide diagnostic and guidance information for
glioma patients in a non-destructive manner. The majority of
these technologies have demonstrated a moderate to a high
degree of accuracy. However, some constraints must be solved
before these novel predictive analytics algorithms can become
widely used in glioma diagnosis and therapy.

Initially, the use of AI in glioma is still in its infancy, with the
majority of research being retrospective with limited sample size.
It is difficult to validate the safety and reliability of these models
in clinical practice. The present medical scientific environment
requires data sharing, data management, data standards, and
interoperability. Additionally, as machine learning continues to
change the area of healthcare, it has posed a variety of
challenging ethical problems. If misdiagnosis happens in the
Frontiers in Oncology | www.frontiersin.org 11
use of AI, issues of moral and legal accountability must be
addressed (157). Another difficulty is the “black box” aspect of
AI technology, which leaves developers and consumers in the
dark about how a computer generates its results and lacks
interpretability and transparency (158). Radiomics is an AI-
assisted technique that will confront the same challenge in the
diagnosis and treatment of glioma, which may restrict clinical
application (159). However, there are several directions to
modify this problem. Applications of radiomics in glioma
belong to more deterministic domains. The AI-calculated
result assigns the images a relevant annotation (such as a
certain gene mutation, the prognosis of the disease is good or
bad). Using other patient samples, medical specialists can
objectively validate the tags assigned to the images (17, 160),
which could reduce the impact of the “black box”. Besides, a new
generation of AI which has better reliability, interpretability,
accountability, and transparency than black-box AI is worth
investing in to overcome the “black box” dilemma. For example,
Jia et al. created visualizing surrogate decision trees of
convolutional neural networks with python (161).

Notable also is the fact that the research described above
consists of analyses of a single type of data, a technique known
as single-omics analysis (radiomics). However, single-omics data
analysis has limits, and it is not apparent which data types should
be used to reflect clinical characteristics. A qualified physician
should evaluate not only the type of tumor when diagnosing and
treating patients, but also the pathology, genes, medical imaging of
the tumor, and clinical aspects of the patients. Along with
radiomics, genomics, transcriptomics, and high-throughput
proteomics are all examples of “omics” techniques that provide
data for the examination of molecular constituents. In a general
sense, the multi-omics analysis consists of three components: input
data, technique, and output data (162). Multiple omics analysis is
crucial in neuro-oncology research with limited sample sizes.While
the multi-omics analysis may analyze several types of data in
parallel for humans, human-dependent multi-omics analysis is
not repeatable or interpretable. This challenge can be tackled by
integratingmachine learning techniques (163) such as multi-modal
learning, multi-task learning, representational learning, semi-
supervised learning, and automated feature acquisition. Recently,
radiomics and radiogenomics (81, 82, 164) have received
considerable interest, as have various studies that analyze both
radiographic and histological pictures (165). The multi-omics
analysis enables us to acquire a more complete knowledge of the
illness to improve clinical applications such as determining therapy
efficacy, predicting prognosis, and identifying the optimal
treatment (Figure 3).

In general, AI will show its superiority and larger-scale
research will be carried out. Clinicians need to increase
interaction with engineers to complement knowledge gaps in
both fields. In the future, multidisciplinary collaboration remains
a crucial aspect. Researchers will be able to combine multi-omics
data to discover drugs and assess treatment effects, predict
prognosis, and discover the best treatment for each patient.
Finally, while AI has played a huge role in the medical field, AI
still can’t replace doctors.
July 2022 | Volume 12 | Article 892056

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. AI Medical Imaging in Glioma
5 CONCLUSION

This review retrospectively summarizes some sample studies on
the applications of AI in the diagnosis and treatment of glioma
using MRI, PET, and spectral imaging. AI is advancing at a
breakneck pace and is emerging as a viable tool for medical
picture analysis. However, we should be mindful that the
implementation of AI in clinical practice is not without flaws.
While we are continually working to improve the accuracy of AI,
we should not rely excessively on it, as it cannot replace
the clinician.
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