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MHC-I genotype drives early immune selection of oncogenic mutations
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ABSTRACT
MHC-I exposes the intracellular contents to immune cells for surveillance of cellular health. Due to high
genomic variation, individuals’ immune systems differ in their ability to expose and eliminate cancer-
causing mutations. These personalized immune blind spots create specific oncogenic mutation
predispositions within patients and influence their prevalence across populations. KEYWORDS
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The Major Histocompatibility Complex Class I (MHC-I) is a
molecule that displays intracellular peptides on the cell surface
in all nucleated cells. It is now well established that MHC-I
presents cancer-associated neoantigens to T-cells, allowing
elimination of mature tumor cells through immune surveil-
lance unless the tumor cells can evade this process.1-3 The con-
cept of immunosurveillance dictates that tumor cells at early
stages of tumor development should also be susceptible to elim-
ination by the immune system.4 If the initiating cells success-
fully avoid elimination, they continue to evolve in an
environment of selective pressure imposed by the immune sys-
tem. Eventually the developing tumor will acquire mechanisms
to suppress or evade immune-selection leading to escape and
clinical presentation. In practice, it has not been possible to sys-
tematically study interactions between the immune system and
developing tumors prior to clinical diagnosis.

Clinical successes of checkpoint blockade inhibitors have
generated an enormous interest in understanding the charac-
teristics of neoantigens found in tumors that have evaded the
immune system. However the role of early interactions between
the immune system and nascent tumors is also very relevant
since it has the potential to determine patient susceptibilities to
specific oncogenic mutations. Recurrent mutations that are
enriched for early cancer driving events should be subject to
the strongest immune selection due to the inability of early neo-
plastic cells to suppress immune action. Importantly, this initial

immune-selection is completely dependent on MHC-I presen-
tation of common oncogenic events, which varies across indi-
viduals based on the set of six MHC-I alleles carried. Thus, we
hypothesized that patient-specific MHC-I variation would cre-
ate individual differences in which cancer-causing mutations
would be undetectable by the immune system and thus would
drive tumorigenesis to clinically diagnosed disease.5

To systematically evaluate this hypothesis, we established a
score representing a patient’s ability to expose a mutation on
the cell surface for recognition by the immune system. Existing
tools rank peptides based on their binding affinity to a single
MHC-I allele.6 We developed a Patient Harmonic-mean Best
Rank (PHBR) score from ranked peptide binding affinities that
accounts for the contribution of a patient’s six MHC-I alleles
and all possible peptides containing a specific residue, and vali-
dated it against mass spectrometry data for MHC-I alleles com-
plexed with peptides.5 Higher PHBR scores are interpreted as
poorer MHC-I presentation and lower PHBR scores are inter-
preted as better MHC-I presentation.

Next we collected a set of 1,018 mutations likely to represent
early drivers of cancer by selecting recurrent mutations in
known cancer genes,7 and procured genetic information from
9,176 cancer patients in The Cancer Genome Atlas. We typed
the human leukocyte antigen locus of each patient to determine
their MHC-I alleles.8-10 Finally, we calculated the PHBR scores
for each patient-mutation combination, creating a matrix
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(9,176 patients x 1018 mutations) representing the ability of
each patient to present each mutation in the driver space to the
immune system. We found extensive patient heterogeneity of
MHC-I presentation across the driver space.

Contrasting PHBR scores with the presence or absence of
mutations, we found an enrichment for observed mutations
at higher PHBR scores (poor MHC-I presentation) as com-
pared to unobserved mutations. Upon observing a linear cor-
relation between the logit mutation probability and the log-
PHBR score, we modeled the relationship using an additive
logistic regression model with non-linear effects to account
for variation in patient mutation rates. Across 30 tumor types,
each unit increase in log-PHBR lead to a 28% increase in odds
of a patient acquiring the mutation. For more high frequency
mutations, we observed the odds increased by 54.5%. Apply-
ing the model within specific tumor types found that over half
of the types had odds ratios significantly larger than 1, with
the largest effects observed in thyroid cancer where the odds
of mutation increased by 151% per unit increase in log-
PHBR. In contrast, MHC-I genotype did not increase the
odds of observing passenger mutations or common germline
polymorphisms.

After observing this early strong selection on oncogenic
mutations within specific patients, we further evaluated the
effect of MHC-I presentation on mutation frequencies across
cancer patients using the same set of cancer driving mutations.
We found a striking negative correlation, i.e. frequent onco-
genic mutations were generally more poorly presented by
MHC-I throughout the population. Relative to random muta-
tions and germline polymorphisms, human MHC-I alleles as a
whole presented a much smaller percentage of cancer driving

mutations and a much higher percentage of viral and bacterial
residues. Thus, oncogenic mutations are strongly biased to fall
in regions of the genome poorly presented by the human
MHC-I.

In conclusion, we report the first evidence that patient
MHC-I genotype contains predictive information about which
oncogenic mutations are more likely to occur in patient tumors.
Our results suggest that to exist at high frequencies in human
cancer, mutations must both provide a fitness advantage for
tumor cells and be poorly presented by most human MHC-I
alleles. Supporting this notion, passenger mutations, rather
than drivers, have been the predominant source of confirmed
neoantigens in human tumors. Immunogenic passengers are
likely to have been acquired after tumor escape from immune
surveillance. The relationship between MHC-I genotype and
mutation probability was detected despite limitations in current
state-of-the-art bioinformatic tools, suggesting that future
improvements in MHC-I affinity prediction and genotyping
are likely to boost the predictive power of MHC-I genotype. As
more data accumulates, we expect to gain a more complete pic-
ture of the role of MHC-I in individual cancer susceptibility
and predisposition.
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Figure 1. MHC-I genotype shapes the oncogenic landscape in tumors at the individual and population scale. Variation in MHC-I genotype amongst individuals results in
individual differences in immune presentation and mutation probability (left). MHC-I variation of a population leads to a relationship between population immune presen-
tation and population mutation frequency (right).
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