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Norepinephrine-functionalised 
nanoflower-like organic silica as a 
new adsorbent for effective Pb(II) 
removal from aqueous solutions
Junkai Gao, Xiuwang Guo, Wenwen Tao, Dian Chen, Jinshu Lu & Yan Chen

In order to remove Pb(II) ions efficiently from aqueous solutions, a new effective adsorbent of 
norepinephrine-functionalised nanoflower-like organic silica (NE-NFOS) was synthesised by a 
biomimetic method. Biomimetic functionalization with norepinephrine has the advantages of 
environment-friendly and easy operation. Characterization of the NE-NFOS using scanning electron 
microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, and Fourier-
transform infrared spectroscopy revealed that the NFOS was modified successfully by norepinephrine. 
Furthermore, the influences of different parameters including adsorption kinetics, solution pH, 
adsorption isotherms, concentrations of Na+, K+, Ca2+, and Mg2+, desorption and reusability were 
studied. The adsorption experiments showed that the capacity of NE-NFOS to adsorb Pb(II) ions 
improved greatly after functionalisation and adsorption equilibrium was attained within 90 min at a 
pH of 6.0. The Na+, K+, Ca2+, and Mg2+ concentrations had little influence on the adsorption, and after 
recycling for five times, the Pb(II) ion removal efficiency of the adsorbent was more than 79% of its 
initial value. Thus, it was demonstrated that the NE-NFOS with excellent adsorption performance could 
be a suitable adsorbent for Pb(II) ions removal in practical applications.

Lead(II) ions are among the most harmful and plentiful of heavy metal ions. Lead(II) ions and compounds find 
extensive usage in industrial activities such as steel making, chemical production, and metallurgical mining1–3. 
However, massive amounts of Pb(II) ions are inevitably discharged into aqueous solutions and cause pollution. 
Because of their potential non-biodegradability and bioaccumulation, Pb(II) ions pose a severe threat to the 
environment and human health4,5. Therefore, it is imperative that these heavy metal ions should be removed from 
water. Although several methods are used to remove Pb(II) ions, including catalytic reduction, adsorption, elec-
trochemical reduction, and ion-exchange6–9, adsorption is considered to be the most economical and promising 
approach because of availability of materials with high adsorption capacities, low cost, and ease of operation10. 
Activated carbon, silica, and polymer resins serve as adsorbent materials and are used in a wide range of appli-
cations11–13. Mesoporous silica has attracted remarkable attention as an adsorbent material owing to its simple 
synthetic process, large surface area and pore volume, and ease of surface modification14,15.

However, the application of mesoporous silica in the removal of heavy metal ions has been limited by its rel-
atively low adsorption capacity16–18. Some functional groups including thiol, amine and carboxyl can be grafted 
on the surface of mesoporous materials to improve their capacity to adsorb heavy metal ions. Shahbazi et al.16 
studied SBA-15 mesoporous silica functionalised with melamine-based dendrimer amines to remove heavy metal 
ions. The adsorption results indicated that the dendrimer amine ligands on the adsorbent’s surface enhanced 
its binding affinity with Pb(II), Cu(II), and Cd(II) ions. Yuan et al.17 synthesised a novel amino-functionalised 
microsphere, composed of a mesoporous silica shell and magnetic core, which could enhance its capacity to 
adsorb heavy metal ions such as Pb(II), Cu (II), and Cd(II). Zhang et al.18 researched amine-functionalised 
carbon nanotubes to remove Cu(II) ions. The amine groups on the surface of the adsorbent could form coor-
dination compounds with Cu(II) ions and thus improved the adsorption ability significantly. He et al.19 synthe-
sized mesoporous silica-calcium phosphate (MS-CP) hybrid nanoparticles as the adsorbent for Cd(II) removal 
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from aqueous solution. The maximum adsorption capacity of Cd(II) by MS-CP was above 153 mg/L, which was 
ascribed to the electrostatic interaction between the Cd(II) and silanol groups on the surface of MS-CP and 
ion-exchange between the Cd(II) and calcium in MS-CP.

However, traditional modification strategies have some shortcomings such as complex operation, high energy 
consumption, and complex involvement of hazardous reagents20. In recent years, biomimetic functionalization 
for mesoporous materials with dopamine have attracted extensive attention as they are inexpensive, adhesive, 
and possess excellent adsorption efficiencies21–24. Gao et al.21 synthesised graphene hydrogel functionalised 
with polydopamine for water purification. The presence of abundant functional groups of polydopamine and 
the high specific surface areas of graphene hydrogel contributed to high capacities for wastewater adsorption. 
Chen et al.22 prepared dopamine-functionalised meso-structured silica (MOS) to remove Cd(II) ions, and its 
adsorption capacity improved evidently over that of meso-structured silica. Gao et al.23 reported an effective 
approach for utilising dopamine-functionalised mesoporous silica nanoparticles (Dop-TMSNs) to remove Cu(II) 
ions; Dop-TMSNs exhibited high performance in the adsorption of Cu(II) ions. Zhu et al.24 synthesized a novel 
adsorbent through waste paper derived carbon that was coated with polydopamine, and its hierarchically inter-
connected porous structure and large specific surface area contributed to the excellent absorption capacity for 
uranium (VI) in simulated seawater.

The molecule of norepinephrine, which also contains the catechol and amino groups, is similar in structure 
to dopamine. This suggests that norepinephrine might also exhibit the ability of binding with heavy metal ions. 
Additionally, biomimetic functionalization with norepinephrine has the advantages of environment-friendly 
and easy operation25. However, norepinephrine has not been used to date as a surface functionalisa-
tion reagent in the adsorption of metal ions. Therefore, ongoing efforts are still required for the studies of 
norepinephrine-functionalised mesoporous silica as the adsorbent to remove heavy metal ions from aqueous 
solutions.

Nanoflower-like organic silica (NFOS) has attracted great attention in recent years owing to its high porous 
ratio, large specific surface area, and great mechanical strength26,27. Moreover, the NFOS has wrinkled chan-
nels, a structure that has the potential for preventing the leakage of modifier, and then the amount of modifier 
grafted on the surface of NFOS could be increased, which was beneficial for increasing its adsorption capacity for 
heavy metal ions. However, there are no reports thus far in the literature investigating the application of NFOS to 
remove metal ions.

In this study, norepinephrine-functionalised nanoflower-like organic silica (NE-NFOS) with a large 
surface-to-volume ratio was synthesised and firstly applied as an adsorbent to remove Pb(II) ions. The influence 
of different parameters including adsorption kinetics, solution pH, adsorption isotherms, concentrations of Na+, 
K+, Ca2+, and Mg2+, desorption, and reusability on the process of adsorption was studied, and the adsorption 
mechanism between the Pb(II) and the NE-NFOS was elucidated. Moreover, for the reason that the functional 
groups of phenolic and amino ligands in the molecules of norepinephrine have the ability of binding a range of 
metal ions28, the adsorption capacities of NE-NFOS for Cd(II) and Cu(II) ions were also evaluated.

Experimental section
Materials.  Norepinephrine was purchased from Kangbaotai Fine-chemicals Co., Ltd, China. Cetyltrimethyl 
ammonium bromide (CTAB) and 1,2-Bis(triethoxysilyl)ethane (BTSE) were purchased from Aldrich-Sigma and 
Shanghai Macklin Biochemical Co., Ltd, respectively. All other reagents, which were of analytical grade, were 
obtained from Sinopharm Chemical Reagent Co., Ltd, China. Lead nitrate (Pb(NO3)2) was used to prepare a 
standard stock solution of Pb(II) ions in deionised water. Then, the stock solution was then diluted to obtain 
Pb(II) ion concentration of 10~100 mg/L.

Preparation of nanoflower-like organic silica (NFOS).  The method for synthesising the NFOS was 
modified according to a previous study29. First, 1.25 g of CTAB, 1.25 g of n-butanol, and 5 g of cyclohexane were 
added to 100 g of 0.4 M aqueous urea solution, and the mixture was stirred for 30 min. Next, 0.875 g of tetraethyl 
orthosilicate and 0.375 g of BTSE were added together to the solution, and the resulting suspension was stirred for 
30 min at room temperature (25 ± 1 °C). Moreover, the solution was maintained at 70 °C for another 24 h, follow-
ing which the solid component was filtered out and washed thrice with ethanol and deionised water. Next, 250 mL 
of acetone was slowly added to the mixture and refluxed at 80 °C for 48 h to remove the template. The product was 
then washed with ethanol several times and dried at 45 °C for 24 h. The NFOS was thus obtained.

Preparation of norepinephrine-functionalised NFOS (NE-NFOS).  The NFOS was functionalised 
with norepinephrine by the post-grafting method. Specifically, 0.5 g of NFOS was added into 100 mL of 1 g/L 
norepinephrine solution freshly prepared in a phosphate buffer (pH 8.5), and the mixture was stirred for 3 h. 
Next, the solid product was filtered, washed with distilled water several times, and dried at 40 °C for 24 h. The 
NE-NFOS was thus obtained.

Batch adsorption experiments.  To determine the Pb(II) removal efficiency of the adsorbent, adsorption 
experiments were performed by adding NE-NFOS into 50 mL of Pb(NO3)2 solution, and the initial pH value was 
regulated at 6.0. The mechanical shaker containing the mixture was agitated at 200 rpm at 298 K. After the reac-
tion reached equilibrium, the solution was filtered and the Pb(II) ion concentration was measured using a visible 
light spectrophotometer (Model 723, Shanghai Jinghua Science & Technology Instrument Co., Ltd, China). The 
schematic illustration of NE-NFOS preparation and Pb(II) adsorption was shown in Fig. 1. Adsorption was car-
ried out twice, and the average of the two results was used in the discussion of the data. The adsorption capacity 
at time t, qt, can be determined by Equation (1), and the equilibrium adsorption capacity, qe, can be determined 
by Equation (2).
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where C0, Ct, and Ce refer to the concentration of Pb(II) ions at the beginning of the process, at time t, and at 
equilibrium, respectively, m represents the weight of the NE-NFOS, and V represents the volume of the Pb(II) 
ion solution.

Adsorption-desorption recycle experiments.  Five recycle experiments were conducted to determine 
whether the NE-NFOS can be recycled for the removal of Pb(II) ions. For this purpose, 12 mg of the adsorbent 
was mixed with 20 mL of 50 mg/L Pb(II) ion solution (pH 6.0) for adsorption, and the mixture was agitated at 
8000 rpm for 150 min at 298 K. The adsorbent was separated from the Pb(II) ion solution, following which 1.0 M 
HNO3 was used as the regenerant. Then 10 mL of the supernatant was extracted and shaken in a vibrator for 
60 min at 200 rpm, and the final Pb(II) ion concentration was determined. Meanwhile, the adsorbent was washed 
with deionised water for reuse in the subsequent adsorption-desorption cycle.

Characterization.  The morphology of the materials was examined by a FEG250 field-emission scan-
ning electron microscopy (SEM) from Quanta, America. Transmission electron microscopy (TEM) was car-
ried out using a JEM-2100F microscope from JEOL Ltd., Japan. The specific surface area was studied by the 
Brunauer-Emmett-Teller (BET) method, and the pore size distribution was obtained from the nitrogen 
adsorption-desorption isotherms using a NOVA 2000e analyser from Quantachrome Instruments, America. 
Fourier-transformed infrared (FT-IR) spectra were recorded using a VECTOR22 spectrometer from Bruker, 
Germany.

Results and discussion
Adsorbent characterization.  The SEM image in Fig. 2a indicated that the NE-NFOS had a uniform spheri-
cal shape and presented a nanoflower-like structure; its surface was rough and uneven, and the wrinkled channels 
could increase its surface area, which was beneficial for the adsorption of metal ions30,31. Figure 2b presents the 
TEM image of the NE-NFOS and it could be seen that there were pores in NE-NFOS, and the NE-NFOS was 
monodisperse particle.

Figure 2c shows the N2 adsorption-desorption isotherms of the NFOS and NE-NFOS. It was established that 
the BET isotherms of the NE-NFOS exhibited characteristic type-IV adsorption-desorption patterns32. While the 
pure NFOS had an average pore size of 3.44 nm and surface area of 236 m2/g, the NE-NFOS had a lower pore size 
of 3.08 nm and smaller surface area of 132 m2/g. The pore volume of the NE-NFOS was also reduced to 0.28 cm3/g 
from 0.47 cm3/g of the bare NFOS, and this might be attributed to the partial filling of the pores in the NFOS net-
work by the norepinephrine. This phenomenon revealed the success of the modification. Moreover, the large pore 
size and surface area of NE-NFOS were beneficial for the Pb(II) ions entering the internal pores of the adsorbent, 
and then improved its sorption capacity.

Figure 3 presents the FT-IR spectra of the NFOS and NE-NFOS. The absorption bands at 1167 cm−1 and 
917 cm−1 were attributed to the bending vibrations of the Si–O–Si bonds in all the samples25. The peaks located 
at 833 cm−1 and 694 cm−1 were associated with the symmetric stretching vibrations of the deformation of the 
Si–OH groups33,34. The bands at 3431 cm−1 and 1625 cm−1 were attributed to the presence of water molecules35. 
Compared to pure NFOS, the characteristic absorption band at around 1504 cm−1 was correlated with the ben-
zene ring groups of norepinephrine35, suggesting that norepinephrine was grafted on the surface of the NFOS.

Figure 1.  Schematic illustration of NE-NFOS preparation and Pb(II) adsorption.
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Adsorption kinetics.  The influence of contact time between the adsorbent and Pb(II) ions was studied to 
measure the adsorption kinetics. The adsorption experiments were carried out by adding the adsorbent into a 
lead solution (pH 6.0) with initial Pb(II) ion concentration of 100 mg/L. The results, presented in Fig. 4, estab-
lished that the adsorption capacity improved greatly with increase in contact time. The adsorption proceeded in 
three stages. In the first stage from 0 to 20 min, the adsorption proceeded rapidly, whereas in the second stage 
from 20 to 40 min, the process progressed gradually, and adsorption equilibrium was eventually attained. In the 
third stage from 40 to 120 min, the adsorption amount of Pb(II) on the NE-NFOS did not increased.

The initial rapid adsorption in the first stage was due to the fact that the adsorbent dispersed well and quickly 
in the aqueous solution, and the concentration gradient of Pb(II) ions was larger. Additionally, the surface adsorp-
tion sites of NE-NFOS were abundant, and they were occupied by Pb(II) ions rapidly. Subsequently, penetration 
resistance increased and more energy was required, and this led to a rapid decrease in the adsorption rate in the 
second stage of the process36. Adsorption equilibrium for Pb(II) ion removal was achieved in less than 40 min, 
and hence a duration of 90 min was selected to ensure complete removal of Pb(II) ions.

Adsorption isotherms.  Adsorption isotherms were used to inspect the detailed adsorption characteristics. 
The experiments were carried out with Pb(II) ion concentration in the range 20–300 mg/L; the NE-NFOS was 
added into the Pb(II) ion solution (pH 6.0) at 298 K. The results are presented in Fig. 5.

Figure 2.  (a) SEM image of NE-NFOS, (b) TEM image of NE-NFOS, and (c) N2 adsorption/desorption 
isotherms.

Figure 3.  FT-IR spectra of NFOS and NE-NFOS.



www.nature.com/scientificreports/

5Scientific ReporTs |           (2019) 9:293  | DOI:10.1038/s41598-018-36644-1

The adsorption capacity of the NE-NFOS improved with increase in Pb(II) ion equilibrium concentration. The 
maximum adsorption capacity was 160 mg/g, which was mainly attributed to the fact that the functional groups 
on the surface of the NE-NFOS had a favourable ability of chelation with Pb(II) ions after modification28. Because 
of Pb(II) belonging to borderline metal, which has ambivalent property, the amino groups in the molecules of 
norepinephrine have favourable affinity with Pb(II)22,23. Moreover, the phenolic groups in norepinephrine mole-
cules have favorable bidentate chelating ability with a variety of heavy metal ions37, hence, the two oxygen atoms 
in the phenolic groups could bound to a Pb(II) ion, and the adsorption capacity of NE-NFOS for Pb(II) ions was 
improved.

Additionally, the Langmuir and Freundlich adsorption isotherm equations were used to describe the adsorp-
tion characteristics of the NE-NFOS for Pb(II) ion removal38, and their linear equations are shown in Equations 
(3) and (4):
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Here, qe represents the adsorbent’s capacity for Pb(II) ion removal; Ce represents the solution concentration; qm 
refers to the maximum adsorption capacity of the NE-NFOS for Pb(II) ion removal; Kf and n are constants of the 
Freundlich model.

A comparison of the Langmuir and Freundlich isotherm parameters is shown in Table 1, while Fig. 6 presents 
the fitted curves of the two models. The correlation coefficients indicated that the adsorption was fitted better 
by the Freundlich model (R2 = 0.991) than the Langmuir model (R2 = 0.965), as shown in Fig. 6. Therefore, the 
process could be explained by multilayer adsorption and the heterogeneous system39.

Figure 4.  Influence of contact time on Pb(II) ion adsorption.

Figure 5.  Adsorption isotherms of Pb(II) ions adsorbed on to NE-NFOS and NFOS.
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Influence of pH.  Figure 7 presents the adsorption ability of the NE-NFOS for removing Pb(II) ions from 
aqueous solutions of different pH values40. The studies were conducted at 298 K, with pH in the range 2–6, and 
adsorbent dosage of 0.8 g/L. The pH values were adjusted with HNO3 or NaOH solution. The adsorption capacity 
was found to increase as pH rose from 2 to 6. At lower values of solution pH, the adsorption capacity was small, 
which could partly be attributed to competition between the Pb(II) and H+ ions for the adsorption sites on the 
mesoporous silica41. Another reason was that the surface of the adsorbent was positively charged and exhibited 
electrostatic repulsion towards the Pb(II) ions, resulting in few active sites being available for Pb(II) adsorp-
tion18,42. Hence, the efficiency of Pb(II) ion removal by the NE-NFOS was restricted. At higher values of solution 
pH, an increasing number of H+ ions left the surface of the adsorbent, making more adsorption sites available 
for the Pb(II) ions. Additionally, at higher solution pH, the NE-NFOS had a highly negative surface charge and 
exhibited stronger chelating ability for metal ions, which resulted in significant improvement in its adsorption 
capacity.

Effect of Na+, K+, Ca2+, and Mg2+ concentration on Pb(II) ion adsorption.  To investigate the com-
petitive adsorption of coexisting ions on to the binding sites, the adsorption experiments were carried out on 
solutions mixed with different metal ions, in the presence of KNO3, NaNO3, CaCl2, and MgCl2, respectively. 
The NE-NFOS was mixed with a Pb(II) ion solution with initial concentration of 103.6 mg/L at 298 K and pH of 
6.0. The concentration of the metal ions was in the range 0–0.5 mol/L, and the solutions were shaken for 90 min. 

Model 
Parameters

Langmuir Freundlich

KL qm (mg/g) R2 KF qm (mg/g) R2

Value 0.004 294 0.965 2.620 186 0.991

Table 1.  Adsorption isotherm parameters for Pb(II) ion removal.

Figure 6.  Linearised (a) Langmuir model plot (Eq. (3)) and, (b) Freundlich model plot (Eq. (4)) for Pb(II) 
adsorption by the NE-NFOS.
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The results, shown in Fig. 8, revealed that the concentrations of Na+, K+, Ca2+, and Mg2+ had a slight effect on 
the adsorption of Pb(II) ions. This could be attributed to the fact that the functional groups on the surface of the 
NE-NFOS had more powerful chelation capability than did the Na+, K+, Ca2+ and Mg2+ ions. Moreover, the 
slight decline in the Pb(II) ion adsorption capacity was likely a result of competition between the Pb(II) and other 
metal ions43.

Desorption and reusability.  To investigate the desorption and reusability of the NE-NFOS for Pb(II) 
ion removal, five adsorption-desorption cycles were conducted. These were carried out by adding 60 mg of the 
NE-NFOS into 50 mL of Pb(II) ion solution with initial concentration of 50 mg/L and pH of 6.0 at 298 K. The mix-
ture was then shaken for 90 min. The results are listed in Fig. 9. It was evident that after five adsorption-desorption 
cycles, the adsorption capacity of the NE-NFOS exceeded 79% of its initial value, indicating that the NE-NFOS 
had favourable reusability. Therefore, the NE-NFOS could not only be used as a recyclable adsorbent for the 
removal of Pb(II) ions from aqueous solutions, but also the Pb(II) ions could be recovered as precious resources. 
Hence, we envision that this efficient and recyclable adsorbent of NE-NFOS had great potential for the practical 
applications in the removal and recovery of Pb(II) ions from waste water.

Adsorption of Cu(II), Cd(II) and Pb(II) ion on NE-NFOS.  The phenolic groups and amino groups in the 
molecules of norepinephrine have favourable affinity with a variety of heavy metal ions37, therefore, it was antic-
ipated that the NE-NFOS could exhibit high performance in the adsorption of other heavy metal ions. Hence, 
the adsorption capacities of Cu(II) and Cd(II) ions on NE-NFOS were studied, and the experiments were car-
ried out by adding 60 mg of the NE-NFOS into 50 mL of Cu(II) or Cd(II) ions solution with initial concentra-
tion of 200 mg/L and pH of 6.0 at 298 K, respectively. For comparison, the adsorption experiments of Cd(II) by 
NE-NFOS were carried out at the same conditions, and the results are shown in Fig. 10. According to the results, 
the adsorption amounts of Cd(II), Cu(II) and Pb(II) on the NE-NFOS were 124 mg/g, 71 mg/g and 140 mg/g, 
respectively, which demonstrated that the NE-NFOS possessed great potential in purifying a variety of heavy 
metal ions from waste water.

Figure 7.  Effect of solution pH on Pb(II) ion removal.

Figure 8.  Effect of Na+, K+, Ca2+ and Mg2+ concentrations on Pb(II) ion adsorption.
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Conclusions.  Norepinephrine-functionalised mesoporous adsorbent was developed for the removal of Pb(II) 
ions from aqueous solutions. Characterization of the NE-NFOS using techniques including SEM, TEM, BET, and 
FT-IR indicated that norepinephrine had successfully modified the surface of the NFOS. The adsorption capac-
ity of the NE-NFOS for Pb(II) ions removal reached as high as 160 mg/g and the adsorption process could be 
described by the Freundlich adsorption equation. Additionally, the presence of Na+, K+, Ca2+ and Mg2+ ions had 
a very weak influence on the removal of Pb(II) ions by the NE-NFOS. The adsorption-desorption cycle experi-
ments indicated that the NE-NFOS could retain 79% of its initial adsorption capacity even after it was recycled 
five times. Moreover, the NE-NFOS exhibited favourable adsorption capacity for the Cd(II) and Cu(II) ions. Thus, 
it could be concluded that the NE-NFOS had great potential as an effective adsorbent to remove heavy metal ions 
from aqueous solutions.
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