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Abstract: With advances in nanotechnology, various new drug delivery systems (DDSs) have emerged
and played a key role in the diagnosis and treatment of cancers. Over the last two decades, gold
nanocages (AuNCs) have been attracting considerable attention because of their outstanding prop-
erties. This review summarizes current advancements in endogenous, exogenous, and dual/multi-
stimuli responsive AuNCs in drug delivery. This review focuses on the properties, clinical translation
potential, and limitations of stimuli-responsive AuNCs for cancer diagnosis and treatment.
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1. Introduction

Over the past decades, nanotechnology has been increasingly used in the diagnosis
and treatment of cancer. To date, several types of nanocarriers have been engineered for
drug delivery in oncology, including dendrimers, polymeric micelles, liposomes, metal
nanoparticles, and cell membrane-coated nanoparticles [1–3]. The unique physicochemical
characteristics of AuNCs, including adjustable particle size and pore volume, large specific
surface area, outstanding biocompatibility, and excellent drug-loading capacity, make them a
popular candidate for drug delivery [4–6]. As a result, various studies have exploited AuNCs
to create new stimuli-responsive nanocarriers (Scheme 1). To entrap cargo by blocking
the pores of AuNCs, a variety of biocompatible gatekeepers have already been used. The
existence of at least one stimulus causes cargo to be released. The drug-delivery aspect
of AuNCs has already been covered in a few reviews [7–12]. However, to the best of our
knowledge, none of them are specifically intended for stimuli-responsive AuNCs. This review
explores the chemistry underpinning the fabrication of stimuli-responsive AuNCs and their
role in controlled drug release in response to certain stimuli. The review also summarizes
obstacles in the way of AuNC-based stimuli-responsive DDSs and broadens the scope by
discussing the current advancements in the field and various stimuli-responsive mechanisms.
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biodistribution and drug release of nanocarriers [13–19]. This section focuses on AuNC-
based DDSs triggered by endogenous stimuli. Because they do not need external triggers 
to activate the drug release, endogenous stimuli-responsive AuNCs avoid any invasive 
procedures. In the ideal case of cancer treatment, internal stimuli for drug release are 
superior to external stimuli. Firstly, stimuli at specific pathological target sites tend to 
result in precise drug release at the correct location, whereas external stimuli may affect 
larger physiological volumes and thus lack site specificity. Secondly, internal stimuli-
responsive DDSs do not require specialized types of equipment to generate stimulation, 
thus reducing treatment costs. 
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Enzymes function as biocatalysts in metabolic processes [20]. Cancers are associated 

with abnormal or dysregulated expressions of enzymes, e.g., esterases, glycosidases, or 
proteases are often expressed at higher levels in tumor cells than in normal cells [21]. 
Abnormal enzyme content or activity can be used in the diagnosis of some diseases 
[22,23]. In addition, stimuli-responsive drug carriers can be prepared by utilizing high 
concentrations of enzymes in many target tissues [24,25]. Enzyme-responsive 
nanocarriers possess specific molecules that can be identified and degraded by 
overexpression of enzymes in the extracellular or intracellular environments of tumors 
[26]; Cathepsin B [27], hyaluronidase (HAase) [28], and matrix metalloproteinases 
(MMPs) [29] are enzymes frequently used as triggers. MMPs are enzymes related to 
invasion and metastasis of cancer cells. As shown in Figure 1, Xia et al. [30] modified the 
surface of AuNCs with an FITC-labeled peptide (fluorescein isothiocyanate-
GKGPLGVRGC-NH2) that can be cleaved by MMP. In the absence of MMP-2 protease, the 
fluorescence of the FITC was quenched. However, in the presence of MMP-2, the peptide 
was cleaved and the dye molecule was released from the surface of the AuNCs, re-
emitting fluorescence. If the localized surface plasmon resonance (LSPR) peak of the 
AuNCs is far away from the emission peak of the dye, the fluorescence emitted by the 
released dye can be detected with high sensitivity. Fluorescence microscopy and 
spectroscopy studies revealed that the nanoprobe could respond to low enzyme 

Scheme 1. Schematic illustration of stimuli-responsive AuNCs.

2. Endogenous Stimuli-Responsive AuNCs

Various endogenous stimuli, such as low interstitial pH, high concentrations of glu-
tathione, or high levels of specific enzymes, have been utilized to control the biodistribution
and drug release of nanocarriers [13–19]. This section focuses on AuNC-based DDSs trig-
gered by endogenous stimuli. Because they do not need external triggers to activate the
drug release, endogenous stimuli-responsive AuNCs avoid any invasive procedures. In the
ideal case of cancer treatment, internal stimuli for drug release are superior to external stim-
uli. Firstly, stimuli at specific pathological target sites tend to result in precise drug release
at the correct location, whereas external stimuli may affect larger physiological volumes
and thus lack site specificity. Secondly, internal stimuli-responsive DDSs do not require
specialized types of equipment to generate stimulation, thus reducing treatment costs.

2.1. Enzyme-Responsive AuNCs

Enzymes function as biocatalysts in metabolic processes [20]. Cancers are associated
with abnormal or dysregulated expressions of enzymes, e.g., esterases, glycosidases, or
proteases are often expressed at higher levels in tumor cells than in normal cells [21]. Ab-
normal enzyme content or activity can be used in the diagnosis of some diseases [22,23]. In
addition, stimuli-responsive drug carriers can be prepared by utilizing high concentrations
of enzymes in many target tissues [24,25]. Enzyme-responsive nanocarriers possess spe-
cific molecules that can be identified and degraded by overexpression of enzymes in the
extracellular or intracellular environments of tumors [26]; Cathepsin B [27], hyaluronidase
(HAase) [28], and matrix metalloproteinases (MMPs) [29] are enzymes frequently used
as triggers. MMPs are enzymes related to invasion and metastasis of cancer cells. As
shown in Figure 1, Xia et al. [30] modified the surface of AuNCs with an FITC-labeled
peptide (fluorescein isothiocyanate-GKGPLGVRGC-NH2) that can be cleaved by MMP. In
the absence of MMP-2 protease, the fluorescence of the FITC was quenched. However,
in the presence of MMP-2, the peptide was cleaved and the dye molecule was released
from the surface of the AuNCs, re-emitting fluorescence. If the localized surface plasmon
resonance (LSPR) peak of the AuNCs is far away from the emission peak of the dye, the
fluorescence emitted by the released dye can be detected with high sensitivity. Fluorescence
microscopy and spectroscopy studies revealed that the nanoprobe could respond to low
enzyme concentrations and low enzymatic activity. Because the LSPR peaks of the AuNCs
can be continuously tuned in the near-infrared (NIR) range, different combinations of dyes
and AuNCs can be flexibly chosen to construct probes most suitable for in vivo imaging of
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cellular and enzymatic activities. This approach can potentially be used for the controlled
release of DDSs in response to MMP concentrations.
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Figure 1. Schematic illustration of enzyme-responsive AuNCs conjugated with FITC-labeled peptides.
Reprinted/adapted with permission from Ref. [30]. Copyright 2011, The Royal Society of Chemistry.

2.2. pH-Responsive AuNCs

It is well-known that the pH of most tumor tissues (~6.8) is more acidic than that of
normal tissues (~7.4). Additionally, endocytic vesicles have a pH of 5.5–6.0 in endosomes
and 4.5–5.0 in lysosomes [31,32]. Therefore, pH-responsive nanocarriers can be designed
by using pH differences to control drug release [33].

Hu et al. [34] fabricated a new type of double-walled Au/SiO2 nanoparticles by coating
the surface of AuNCs with SiO2. The porous SiO2 shell ensured the stability of the AuNCs
and enhanced the drug-loading capacity. The Tat peptide conjugated to the surface of
Au/SiO2 nanocomposites had positive potential and the internalization-assistance property,
which significantly improved the uptake efficiency of nanocomposites by MCF-7 cells,
allowing for the site-specific localization of therapeutic drugs. The Au/SiO2 nanoparticles
slowly released doxorubicin (DOX) under normal physiological conditions (PBS, pH = 7.4),
but DOX was released more rapidly in the simulated intracellular environment of cancer
cells (PBS, pH = 5.0) and the release trend was stable throughout the incubation time.
Consequently, after incubation for 22 h, a large amount of DOX (46.2%) was released.
Under acidic conditions, the relatively positive potential of DOX molecules weakened the
electrostatic adsorption force, which may be the reason for the increased drug-release rate.
Based on its ingenious design, this study increases our understanding of how to build
intelligent nanoparticles for better cancer treatments.

2.3. ATP-Responsive AuNCs

Adenosine triphosphate (ATP), one of the most important biological molecules, pro-
vides energy for most biological processes. Accumulating evidence has shown that ATP is
associated with various pathological processes, including uncontrolled tumor growth and
chemotherapy resistance, thus becoming an important marker to distinguish cancer cells
from normal cells [35–37]. Mainly due to the excessive glycolysis, tumor cells have high
concentrations of ATP (1–10 × 10−3 M) [38,39].

Wang et al. [40] fabricated a kind of ATP-responsive controlled-release drug delivery
system (DDS) based on AuNCs, which were functionalized with two types of thiol-modified
single-stranded oligonucleotides (SH-DNAs) via Au-thiolate bonds on the surface. The
bases of the two immobilized SH-DNA are somewhat complementary to the two ends of
the ATP aptamer. Therefore, the addition of ATP caused the removal of ATP aptamers
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from the surface of AuNCs, allowing the cargo molecule, Rhodamine B (RhB), to escape
through the pores of AuNCs (Figure 2a). The as-prepared nanodevice can be significantly
disassembled by ATP activation, enabling the controlled release of ATP-activated drugs
in cancer cells while reducing toxicity to normal cells. They further fabricated magnetic
nanoparticles combined with RhB-loaded aptamers-AuNCs (denoted Apt-AuNC-MNPs
sensing device). To examine the specificity of this sensing device, tests were conducted with
ATP and its analogs such as uridine triphosphate (UTP), guanosine triphosphate (GTP),
and cytosine triphosphate (CTP). Under the same test parameters, aqueous samples con-
taining 1.0 × 10−5 M ATP, UTP, GTP, and CTP were analyzed with the nanodevice, among
which, the presence of ATP resulted in the maximum release of fluorescent molecules,
demonstrating the excellent specificity of the sensing device.
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Figure 2. Schematic illustration of two kinds of ATP-responsive AuNCs for ATP detection. In the
presence of ATP, specific recognition reactions selectively triggered the release of the encapsulated RhB.
(a) ATP aptamers were capped on the surface of AuNCs via oligonucleotides; (b) ATP aptamers were
capped on the surface of AuNCs via electrostatic interactions. Reprinted/adapted with permission
from Refs. [40,41]. Copyright 2012 and 2015, respectively, The Royal Society of Chemistry.

In another study, Wang et al. [41] further developed a novel controlled-release sys-
tem based on positively charged AuNCs capped with molecular gates of bioresponsive
aptamers. The surfaces of AuNCs were modified with cationic poly(diallyl dimethylam-
monium) chloride to obtain positively charged AuNCs. Under electrostatic interaction,
aptamers formed molecular gates on the surface of AuNCs. Due to the specific recognition
response between ATP and ATP aptamers, after the target ATP is mixed with the capped
AuNCs, the ATP aptamers can be removed from the surface of the AuNCs, resulting in the
opening of the pores and the release of the cargo molecules (Figure 2b). In the presence of
specific targets, the aptamers assembled on the surface of AuNCs via electrostatic interac-
tion were removed more easily than those assembled via DNA hybridization. Thus, this
system was capable of detecting trace amounts of target molecules with high sensitivity
and selectivity.

2.4. MicroRNA-Responsive AuNCs

MicroRNAs (miRNAs) are small non-coding single-stranded RNA molecules involved
in the regulation of gene expression [42,43]. MiRNAs are often misregulated in tumor
tissues [44,45], so they can be used as biomarkers for the early diagnosis of tumors [46,47].
However, there are few studies on the use of miRNAs for tumor diagnosis and therapy.

Zhang et al. [48] developed an electrochemiluminescence (ECL) microscope with
diagnostic and therapeutic functions. In this study, DNA gate-2 was first modified on
the surface of AuNCs through gold–sulfur bonds, and then DNA gate-1 was partially
hybridized with DNA gate-2 to form a DNA gate, and phorbol 12-myristate 13-acetate
(PMA) was encapsulated in the cavities of AuNCs to obtain the AuNCs@PMA probe.
After the probe was endocytosed by HeLa cells, the miRNA-21 in HeLa cells was com-
pletely hybridized with DNA-1, making it detach from AuNCs, releasing PMA from the
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AuNCs@PMA probe, and inducing HeLa cells to produce reactive oxygen species (ROS).
In addition, ROS and the photothermal effect of AuNCs had a significant lethal effect on
HeLa cells. Moreover, the H2O2 component of ROS could react with luminol solution for
ECL imaging (Figure 3). However, in normal cells, the DNA gate could not be opened due
to the absence of miRNA-21, so the ECL signal was negative. The AuNCs@PMA probe is
anticipated to play an important role in future cancer diagnosis and treatment due to its
excellent performance.
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3. Exogenous Stimuli-Responsive AuNCs

Compared with AuNCs that respond to endogenous stimuli, exogenous stimulus-
responsive AuNCs have the potential to reduce interindividual variability because drug
release is regulated by external variables and can be precisely controlled in these systems.
These external stimuli include temperature, light, and ultrasound.

3.1. Temperature-Responsive AuNCs

Heating is the most straightforward method to achieve controlled release, and the
simplest method to evaluate the effect of controlled release. On the other hand, temperature
increases caused by pathological stimuli at the lesion site can also be used to trigger drug
release. Typically, solid tumors have a microenvironment that is 1–2 ◦C warmer than
that of healthy tissues [49,50]. Poly-N-isopropylacrylamide (PNIPAAm) and its deriva-
tives are among the most extensively used thermosensitive materials as they may change
their structure from contraction to expansion (and vice versa) in response to temperature
changes [51]. On the other hand, phase-change materials (PCMs) can be used as a new
class of thermosensitive materials for controlled drug release. At the phase-transition
temperatures, PCMs undergo reversible phase transitions. Therefore, PCMs can be used
as a multifunctional platform to encapsulate various therapeutic agents, which can be
released only when the PCMs melt. The encapsulation of PCM into AuNCs for controlled
drug release was first reported in 2011 [52]. In this study, Rhodamine 6G and methylene
blue were used as simulants of chemotherapeutic drugs, which were fully mixed with
molten 1-tetradecyl alcohol (1-TD, a kind of PCM with a melting point of 38–39 ◦C) and
diffused into the cavities of AuNCs. At temperatures below its melting point, 1-TD could
effectively encapsulate drug molecules within AuNCs; when the temperature was raised
above the melting point of 1-TD, these drug molecules could be released from AuNCs with
the melted 1-TD (Figure 4). In short, the drug-release process from nanosystems can be
controlled by this simple and universal method.
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However, it is difficult to accurately manage drug release by relying solely on changes
in internal temperature. Therefore, in most cases, a rapid increase in lesion temperature
caused by other indirect external stimuli (such as ultrasound and near-infrared light,
which will be discussed in depth in the following sections) is more effective in triggering
drug release.

3.2. Light-Responsive AuNCs

Among various external stimuli, light is often employed as a trigger for DDSs due
to its non-invasiveness, long-range responsiveness, and strong controllability [53,54]. In
recent years, a wide range of light-responsive nanoparticles have been developed to achieve
on-demand drug release in response to irradiation with different wavelength ranges (ul-
traviolet [55], visible [56], and near-infrared light [57]). However, ultraviolet and visible
light are considered unsuitable for therapy-related in vivo applications due to their poor
penetration, while NIR light is promising in achieving on-demand drug release because of
its safety and deeper tissue penetration [58–62].

AuNCs possess plasmonic properties and are very efficient at converting NIR light to
thermal energy, which can trigger AuNCs to release drugs (such as DOX [51], H2SeO3 [63],
Ca2+ [64], and radical source [65]) without adding NIR dyes, thus reducing the complexity
of the drug-release systems. Yu et al. [66] designed a NIR-triggered co-release system of
DOX and indocyanine green (ICG) by combining the photothermal capability of AuNCs
with the temperature-sensitive phase-transition feature of 1-TD. The DOX/ICG@biotin-
PEG-AuNC-PCM nanosystem was generated by filling the cavities of AuNCs with ICG,
DOX, and 1-TD, and then modifying the surface with biotinylated-polyethylene glycol
(biotin-PEG) via gold–sulfur bonds. At 40 ◦C or under 808 nm NIR irradiation of 2.5 W/cm2,
the co-release of DOX and ICG from nanosystems in PBS was significantly faster than at
37 ◦C (e.g., 67.27% or 80.31% vs. 5.57% of DOX, 76.08% vs. 3.83% of ICG for 20 min). Under
the irradiation of NIR light, the AuNCs generated heat, which triggered the simultaneous
release of ICG and DOX, and enhanced the distribution of DOX in the nuclei. The released
ICG acted as a photosensitizer to generate reactive oxygen species for photodynamic
therapy, showing the potential to enhance MDR cancer therapy through the synergistic
effect of photothermal therapy, chemotherapy, and photodynamic therapy (Figure 5).

By loading aluminum phthalocyanine (AlPcS) into AuNCs, Xu et al. [67] prepared
AlPcS–AuNC conjugates. After the conjugates entered target cells, they were subjected to a
femtosecond pulsed laser at 780 nm (100 fs, 80 MHz, 50 W/cm2, 20 s), which triggered the
explosion of the gold nanocages and decomposed them into fragments of different sizes,
thereby fully releasing aluminum phthalocyanine and exerting its effect of photodynamic
therapy (PDT). However, a 780 nm continuous-wave laser with the same power and
duration did not cause the gold nanocages to rupture. In addition, based on the difference
in transient life between free and conjugated forms of aluminum phthalocyanine, the drug-
release kinetics were studied by the real-time imaging function of time-resolved transient
absorption spectra. This study would also provide new references for related research in
nanodrug delivery.
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In 2020, Sun et al. [68] developed DOX-loaded erythrocyte-cancer cell hybrid membrane-
coated gold nanocages (CM-EM-GNCs@DOX) for combined photothermal/radiation/chem-
otherapy of breast cancer. The CM-EM-GNCs@DOX demonstrated excellent photothermal
transition efficiency and NIR-responsive drug-release properties (Figure 6). In the first 9 h,
up to about 80% of DOX was released from GNCs@DOX nanoparticles without CM-EM
coating. Within 24 h after CM-EM coating, the leakage of DOX was only less than 20%,
demonstrating that the cell membrane coating could successfully improve the stability of
DDSs in the physiological environment. Under the irradiation of NIR light at 808 nm and
50 mW/cm2, the outer cell membrane was disrupted by the photothermal effect and the
release of DOX from CM-EM-GNCs@DOX was significantly increased with a release rate
exceeding 80%. NIR light-induced drug release from CM-EM-GNCs@DOX nanoparticles
facilitates precision chemotherapy. Additionally, during in vitro and in vivo investigations,
CM-EM-GNCs@DOX demonstrated integrated photothermal/radio/chemotherapeutic
efficacy with low adverse effects. This nanoplatform introduces a novel concept and
strategy for cancer treatment.

In another study, He et al. [69] developed a novel nanosystem for NIR-triggered
drug release and combined chemo–photothermal therapy employing DOX-loaded and
thermosensitive liposome-coated AuNCs (Lipos-AuNC-DOX, LAD). Liposome coating
increased cellular uptake of LAD while preventing drug leakage in the blood circulation.
More notably, under NIR irradiation, LAD displayed controllable photothermal conversion
and generated mild heat. As a result, regulating thermogenesis could not only efficiently
initiate the phase transition of the lipid layer, resulting in the release of DOX, but also
promote the heat-stress injury of cancer cells.
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3.3. Ultrasound-Responsive AuNCs

Ultrasound, which has radiation force, and mechanical or thermal effects, can be
regulated in a remote, non-invasive and spatiotemporal way to control the release of
drugs [70–73].

In particular, high-intensity focused ultrasound (HIFU) has been found to be a promis-
ing trigger for controlling drug release due to its ultra-high energy and millimeter-scale
focusing ability [74–76]. In addition, HIFU can penetrate deeper into soft tissues than
NIR light, so it may be a more effective external trigger for rapid and on-demand drug
release [77]. Moon et al. [52] fabricated an HIFU-responsive drug delivery system by
encapsulating PCMs and biological or chemical effectors into the interior of AuNCs. When
exposed to HIFU, the PCM would melt and flow out through the pores of the AuNCs,
releasing the entrapped molecules. In addition, the release behavior could be adjusted by
altering the power or duration of HIFU. The new hybrid system, composed of AuNCs
and PCM, can also be endowed with the functions of molecular imaging, chemo-, and
photothermal therapy for the diagnosis and treatment of tumors.

Compared with HIFU, low-intensity focused ultrasound (LIFU) is considered as an ef-
fective tool for reducing damage to surrounding normal tissues. Unlike HIFU, the dominant
function of LIFU is its mechanical effect, in which bubbles in the sound field are induced to
vibrate, expand, and collapse. Based on these advantages, LIFU can be used as a switch to
modulate drug release [78,79]. Wang et al. [80] coupled Fe3O4 on the surfaces of AuNCs
to obtain AuNCs-Fe3O4 nanoparticles, in which muramyl dipeptide (MDP) and perfluo-
ropentane (PFP) were encapsulated to generate LIFU-responsive AuNCs-Fe3O4/MDP/PFP
nanocomposites for a combination of LIFU/immunotherapy and multimodal imaging
(photoacoustic imaging, ultrasound imaging, and magnetic resonance imaging) of cancers.
PFP underwent a liquid-to-gas phase change upon irradiation with LIFU to release MDPs,
which stimulated dendritic cells to detect and kill tumor cells. The drug-release rate of
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nanocomposites was very slow in the absence of LIFU, but increased rapidly under LIFU
irradiation (Figure 7). Furthermore, the larger bubbles induced by the phase transition
formed gaps between the AuNCs-Fe3O4 shells, enabling more efficient drug release from
the nanocomposites. The LIFU/immunosynergistic therapy was successful in reducing
tumor growth and preventing recurrence. Furthermore, the nanoplatform has been proven
to have great biosafety and biocompatibility in vitro and in vivo, so it has great potential
for translation to the clinic.
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Figure 7. (a) Fabrication process of AuNCs-Fe3O4/MDP/PFP; (b) schematic illustration of AuNC-
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of retinoblastoma. Reprinted/adapted with permission from Ref. [80]. Copyright 2020, American
Chemical Society.

4. Dual/Multi-Stimuli-Responsive AuNCs

In addition to single-stimulus-responsive AuNCs, other AuNC-based nanocarriers
have also been investigated, which can respond to dual or multiple stimuli in order to
better respond to the environment of cancer cells and achieve higher specificity and efficacy.
These stimuli can be endogenous, exogenous, or an integration of both.

4.1. pH- and Light-Responsive AuNCs

Dual stimuli of acidic pH and NIR light have been considerably explored to date.
Yang et al. [81] established an NIR-responsive controlled-release DDS (Au-
nanocage@mSiO2@PNIPAM nanocomposites) based on AuNCs with mesoporous silica
(mSiO2) shells as a carrier for enhanced drug loading, and poly(N-isopropylacrylamide)
(PNIPAM) as an NIR-responsive gatekeeper. Upon NIR light irradiation, the AuNC core
could efficiently convert photon energy into heat, which caused the thermally responsive
PNIPAM covering the exterior of mSiO2 to collapse, exposing the pores of the mSiO2
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shell and allowing the release of trapped DOX (Figure 8). Notably, the release of DOX
increased with decreasing pH under NIR light irradiation, due to the fact that positively
charged DOX molecules were loaded into the nanocomposites via electrostatic attraction
with negatively charged mSiO2 channels. The electrostatic interaction weakened with
decreasing pH, causing more DOX molecules to be released. Because tumor tissues have
lower pH values than normal tissues, such light- and pH-responsive releases are applicable
to cancer treatment.
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In another study, Zhang et al. [82] synthesized a multifunctional poly(3-caprolactone)-
gold nanocage/ferric hydroxide-poly(acrylic acid) (PCL-AuNC/Fe(OH)3-PAA) dual drug
delivery system (Figure 9). The hydrophobic AuNC side could be loaded with docetaxel
(Dtxl), while the negatively charged Fe(OH)3-PAA side could be loaded with positively
charged DOX. Because polyacrylic acid (PAA) is a pH-sensitive polymer and Fe(OH)3
nanoparticles are unstable in acidic media, DOX can be partially released from fragmented
Fe(OH)3 in response to acidic pH excitation. Under weak NIR light irradiation (0.5 W/cm2),
the internal heat generation of AuNCs was greater than that of Fe(OH)3-PAA, which leads
to the increased solubility of Dtxl in AuNCs, the accelerated discharge of Dtxl, and the
thiolated PCL can be isolated from the nanohybrid, but it had little effect on DOX release
from the Fe(OH)3-PAA sector. Under the irradiation of a higher-intensity NIR laser, AuNCs
and Fe(OH)3-PAA were stimulated to generate more heat, resulting in the simultaneous
release of Dtxl and DOX. Selective sequential release of Dtxl and DOX was achieved using
nanohybrids with independent pH and NIR sensitivity, and the synchronized release
of both drugs improved the therapeutic effects by 5%. Furthermore, the outstanding
computed X-ray tomography/magnetic resonance (CT/MR) imaging abilities of AuNCs
and Fe(OH)3 showed that the Janus nanoparticles (JNPs) might efficiently guide cancer
treatment. Additionally, under NIR light irradiation, mice administered with the dual
drug-preloaded PCL-AuNC/Fe(OH)3-PAA JNPs displayed improved tumor inhibition
compared to solo drug, cocktail, and dual drug treated mice, demonstrating the efficacy of
combined cancer treatment.

Acid-degradable inorganic materials can act as gatekeepers for controlled drug release,
providing an opportunity to design pH-responsive DDSs. Shi et al. [83] prepared a smart
therapeutic nanoplatform based on Fe3O4@CaP-capped AuNCs. After the nanoplatform
was internalized by cancer cells through endocytosis, CaP was degraded into the ionic state
(Ca2+, PO4

3−) in the acidic environment of endosomes and lysosomes, and the blocker
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Fe3O4@CaP was turned on to trigger drug release. In addition, upon NIR light irradiation,
the heat generated by AuNCs not only ablated cancer cells, but also promoted the release
of DOX, thus improving the therapeutic effect of chemotherapeutic drugs. Therefore,
the light- and pH-responsive therapeutic nanoplatform achieved the synergistic effect of
chemotherapy and photothermal therapy, showing better cell-killing efficacy.
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4.2. Boolean Logic Gate-Regulated Double Light-Responsive AuNCs

Boolean logic systems based on molecular gates are receiving increasing attention [84,85].
The molecular gates of these smart devices, similar to digital electronic logic gates on silicon
chips, can intelligently respond to various stimuli based on Boolean operations [86]. With their
intelligent judgment ability, computing systems can perform complex operations, accurately
process multiple data streams (inputs) from complex environments, and automatically
generate responses (outputs). These breakthroughs have accelerated the development
of more advanced controlled-release nanostructures [87,88]. Many research groups have
applied the concept of logic gates to the design of intelligent delivery systems [89,90].
Among them, Shi et al. [91] prepared AuNCs with LSPR peaks at 808 nm and 670 nm, both
enveloped by poly(N-isopropylacrylamide-co-acrylamide). The two AuNCs were loaded
with an enzyme (alkaline phosphatase) and its substrate, respectively. When simultaneously
illuminated by a matched laser beam as an input signal, both AuNCs generated heat to
open the pores, releasing the enzyme and substrate that can interact and output an “AND”
logic fluorescent signal. They also loaded isoenzyme or enzyme inhibitors into the AuNCs,
to realize “OR” or “INHIBIT” logic gates, respectively (Figure 10). These designs will
provide new insights into the development of other logic-controlled DDSs.

4.3. Light- and Glutathione-Responsive AuNCs

Glutathione (GSH) is a tripeptide whose content in the cytoplasm (about 2–10 mM) is
2–3 orders of magnitude higher than that in the extracellular fluids (about 2–20 µM) [92].
Therefore, GSH is considered to be an ideal endogenous stimulant, which can quickly
destabilize certain nanocarriers in cells, thus achieving effective intracellular drug re-
lease. This targeted intracellular drug release approach can significantly improve drug
efficacy and reduce side effects related to drugs and nanocarriers [93]. In one study,
Zhang et al. [94] developed a combination of light- and GSH-responsive strategies, wherein
AuNC@DBPP nanoparticles were successfully fabricated by filling the cavity of AuNCs
with DOX-containing 1-TD, followed by surface conjugation of polycurcumin (Figure 11).
At body temperature and at low concentrations of GSH (5 µM) in the blood, the nanosys-
tem released a small amount of drug. However, NIR light radiation at 5.0 W/cm2 and
a high concentration of GSH at 5 mM (intracellular level) induced the release of DOX.
Thus, this design successfully demonstrated dual-stimuli-responsive characteristics of the
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prepared nanodevices. Due to the NIR light and redox responsiveness of the nanosystem,
as well as the combined effect of DOX and Biotin-PEG-Poly(curcumin-dithiodipropionic
acid), (BPP, which acted as a chemosensitizer), AuNCs@DBPP showed good cytotoxicity
to MCF-7/ADR cells and significantly caused cell death under NIR light irradiation. This
controlled-release drug delivery system, triggered by both endogenous and exogenous
stimuli, can minimize the side effects caused by premature drug release and then maximize
the therapeutic effect.
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4.4. mRNA- and Light-Responsive AuNCs

Cancer is often accompanied by changes in messenger RNA (mRNA). The loss of
function of many tumor suppressors is caused by abnormal mRNA, so tumor-related
mRNA can be used to trigger the release of drugs from carriers [95]. For example, C-myc
mRNA, which exists in a variety of cancers, is particularly important in the development
and progression of breast cancer [96]; TK1 mRNA is related to cell division and has
been considered a tumor growth marker [97]; GalNAc-transferase mRNA (abbreviated as
GalNAc-T mRNA, or GT mRNA) is abundantly expressed in many cancer cells and plays a
vital role in the synthesis of gangliosides GM2/GD2 [98–100].
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Zhang et al. [101] loaded DOX into the cavities of AuNCs and modified the triple-
interlocked I-type DNA nanomodule on the surfaces of the AuNCs to achieve the closure of
the AuNCs’ holes. By simultaneously combining three kinds of tumor-associated mRNAs
(i.e., C-myc mRNA, TK1 mRNA, and GT mRNA) in breast cancer cells, the triple-interlocked
nanomodule could be unlocked for precise drug release. However, in other cells that do not
possess the three kinds of mRNA simultaneously, full-strand hybridization replacement
could not be carried out and the drug could not be released. Additionally, a thermal
effect was achieved when the NIR light was used to illuminate the AuNCs. The residual
medicines could be pushed out of the AuNCs by the heat generated by the NIR light
(Figure 12a). In addition to the dual-stimuli-regulated drug release, the DDS also suc-
cessfully exhibited accurate imaging and efficient photothermal therapy, making it a very
promising multifunctional nanoplatform for tumor diagnosis and treatment. Furthermore,
they conducted a negative control experiment in vivo, in which AuNCs were locked by
four kinds of random DNAs, to test the specificity of the triple-interlocked DDS. The
NIR fluorescence probe ICG was employed to substitute the DOX filled in the AuNCs in
order to analyze drug release in mice by in vivo fluorescence imaging. To evaluate the
controlled-release ability in vivo, they administered AuNCs into mice tumors and then
used a whole-body imaging system to detect the fluorescence of ICG four hours later. As
shown in Figure 12b, the fluorescence intensity of the ICG locked by the four kinds of
random DNAs was weaker than that of the ICG locked by the I-type DNAs employed in
this experiment. Since the four kinds of random DNAs could not be unlocked by the target



Pharmaceutics 2022, 14, 1321 14 of 22

mRNAs, ICG was rarely released from the random-DNA-locked AuNCs, indicating that
the triple-interlock device was effective in vivo. In addition, four hours after injection, they
detected faint ICG fluorescence in mice given AuNCs locked with I-type DNAs. Upon NIR
irradiation, the fluorescence intensity of ICG was enhanced. This also proved that the drug
release in vivo is not only controlled by mRNAs, but also driven by NIR laser-induced
photothermal effects.
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4.5. ATP- and Enzyme-Responsive AuNCs

Because both stimuli naturally exist in certain specific tumor sites, ATP and enzyme
dual-responsive AuNCs have been proposed and synthesized.

Employing AuNCs coated with DNA molecular gates, a new controlled-release biosen-
sor for ATP isothermal amplification detection was developed and tested in intracellular
ATP detecting. Two types of thiolated DNAs, S1 and S2, were modified on the AuNCs
surface via Au–S bonds. Each molecular gate was generated by hybridizing a long-stranded
DNA S3 with two fixed SH-DNAs. The molecular gates could prevent the discharge of
fluorescent molecules such as RhB filled in the cavities of AuNCs. The primer S4 was used
to serve as a recognition moiety. Due to the specific binding of ATP and ATP aptamers, the
primer S4 was liberated from the double-stranded hybridization with ATP aptamers. With
the intervention of DNA polymerase and nicking endonuclease, the liberated S4 will launch
the autonomous replication–scission–displacement pathway. To achieve cyclic enzymatic
amplification of the discharge of guest molecules from AuNCs, the DNA S3 was designed
to involve an Nb.Bpu10I nicking endonuclease recognition sequence as well as a sequence
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complementary to the primer S4. The constructed nanodevice was proved to be a reliable
biosensor for both qualitative and quantitative detecting of target molecules [102].

Wang et al. [103] designed an AuNC-based ATP and Exonuclease III (Exo III)-responsive
fluorescent biosensor. Gold nanoparticles were used as building blocks in the system to
cover the pores of RhB-loaded AuNCs via DNA hybridization. Under the stimulation of
ATP and Exo III, RhB molecules were finally released for detection (Figure 13). The biosensor
had a linear ATP detection range of 1.0 × 10−6 to 1.0 × 10−4 mM, with a detection limit
of 0.88 nM. It could also distinguish between ATP and ATP analogs such as guanosine
triphosphate, cytidine triphosphate, and uridine triphosphate because of its high selectivity
for ATP. The proposed strategy could be further extended to treatment systems with multiple
functions such as molecular imaging, chemotherapy, and photothermal therapy.
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4.6. pH-, Light-, and Enzyme-Responsive AuNCs

In addition to dual-responsive AuNCs, several multi-responsive AuNCs have been
developed recently. Zhan et al. [104] fabricated a triple-stimuli sensitive hybrid nanodrug
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(EA-AB, in which EA and AB represent erlotinib-loaded AuNCs and AuCluster@BSA,
respectively. BSA = bovine serum albumin) for controlled release of drugs, photothermal
therapy, and fluorescent and multispectral optoacoustic tomography imaging. For this
nanodrug (EA-AB), EA were capped and functionalized by AB via electrostatic interaction.
After cellular internalization, low-pH and lysosomal proteases induced the release of
erlotinib from EA-AB, allowing the AuCluster to restore its fluorescence for imaging. NIR
light irradiation further promoted drug release and exerted the effect of photothermal
therapy. To precisely release drugs in target cells, Wang et al. [105] prepared multi-stimuli-
responsive nanohybrids (AuNCs-HA) based on AuNCs and hyaluronic acid (HA). Through
CD44 receptor-mediated interactions, the nanohybrids could be effectively endocytosed.
Subsequently, the HA on the surfaces of nanohybrids could release the loaded DOX only
after being degraded by Hyal in cells (Figure 14). Simultaneously, acidic pH and NIR
stimulation might efficiently enhance DOX release, significantly enhancing the therapeutic
effect and reducing drug toxicity. Furthermore, the combination of chemotherapy and
photothermal therapy completely inhibited tumor development in vivo as compared to
the two therapies separately. Based on HA-modified AuNCs, our group further decorated
PEG [106], thermoresponsive copolymer P (NIPAM-co-Am) [107], and liver cancer-specific
adhesion peptide [108] on AuNCs, thus obtaining a variety of DDSs that simultaneously
respond to light, pH, and enzymes, allowing for the combined treatment of tumors. In
summary, these findings may promote the development of non-invasive and precise drug
delivery systems to reduce the nonspecific systemic diffusion of toxic drugs and maximize
tumor-targeted drug-delivery efficacy.
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5. Conclusions and Perspectives

With the rapid development and interpenetration of nanotechnology and biomedicine,
a variety of AuNC-based stimuli-responsive DDSs are being explored for the diagnosis
and treatment of cancers. In this review, we summarized the progress of AuNC-based
nanomaterials as stimuli-responsive controlled-release systems. AuNCs can be applied
in stimuli-responsive DDSs, mainly based on their adjustable particle size, large specific
surface area, excellent drug-loading capacity, good biocompatibility, and easy functional-
ization. Stimuli-responsive AuNCs are able to remain stable in the circulatory system and,
upon reaching the lesion site, release their payload in response to endogenous or exogenous
stimuli, thereby improving the therapeutic efficacy and reducing side effects. Among them,
dual/multi-stimuli-responsive AuNCs (e.g., pH and light dual-stimuli; light and GSH
dual-stimuli; pH, light, and enzyme multi-stimuli) can better respond to the environment of
cancer cells and achieve higher specificity and efficacy. Delivering combinations of multiple
therapeutic agents also makes sense because systems this can effectively provide multiple
treatments, can overcome multidrug resistance, and synergistically enhance therapeutic
efficacy. By combining imaging agents with nanoplatforms, key characteristics of tumors
can be visualized, thus helping to personalize cancer therapy. Nanosystems with imaging
capabilities can enhance the traceability of drug delivery systems in vivo, thereby facilitat-
ing understanding of their interactions with organisms and helping to optimize the design
of DDSs.

Nevertheless, most studies of stimuli-responsive AuNCs are still in the proof-of-
concept stage, far from clinical application. To translate the proof-of-concept studies into
approved DDSs, not only the specific problems for each type of stimulus mentioned above
need to be addressed, but also other common problems of DDSs need to be overcome.

Firstly, most proof-of-concept studies usually can not completely solve the problems
related to the feasibility of their clinical application. For instance, interindividual variation,
heterogeneity of tumors, and changes in metabolic levels may lead to fluctuations of
endogenous stimuli signals and the failure to release cargo on demand. As for the external
stimuli-responsive DDSs, issues such as whether the required penetration depth can be
achieved, whether the impact on surrounding normal tissues can be reduced, and whether
the exposure duration is safe need to be focused on. Furthermore, to our knowledge, no
AuNC-based DDSs have entered the clinical research stages. Even if DDSs show excellent
performances in animal trials, it is not sufficient to show that the systems will show superior
results to existing clinical therapies, as preclinical trials are typically carried out in solid
tumor models, but metastatic tumors are the main cause of cancer-related deaths. DDSs
with good effect in solid tumor models might be ineffective in the treatment of metastases.
In addition, tumor models established in rodents grow rapidly and have good EPR effects,
while tumors that grow naturally in patients have more significant heterogeneity and
weaker EPR effects.

Secondly, the design and preparation of stimuli-responsive nanocarriers are compli-
cated, which will lead to difficulties in large-scale manufacturing and limit their potential
for clinical translation. Compared with single-stimulus-responsive AuNCs, dual- and
multi-stimuli-responsive AuNCs have more fantastic performances. However, their more
complex design and preparation processes make them more challenging to enter the clinical
research phases, so their multifunctionality and complexity should be carefully weighed.

Thirdly, compared with ordinary AuNCs, the safety and efficacy of stimuli-responsive
ones are more likely to vary between individuals. Among the finite number of stimuli-
responsive AuNCs, the studies on their toxicity are very limited, so more systematic
toxicological studies (such as long-term toxicity, neurotoxicity, and genotoxicity) need to be
carried out.

In addition, economic efficiency, immunogenicity, and ways of elimination from the
body are issues that need attention in developing various DDSs, including AuNCs.

In summary, all of these issues pose challenges to the clinical translation of stimuli-
responsive AuNCs. These problems require continuous efforts, as well as close interdisci-
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plinary cooperation and industry-university-research cooperation, to ensure the clinical
transformation of these intelligent stimuli-responsive nanodevices in the future.
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