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Child undernutrition increases the risk of neonatal and child mortality 
and future maternal reproductive outcomes1–3. Child growth failure 
(CGF) is the specific subset of child undernutrition, excluding micro-
nutrient deficiencies, that is characterized by the relationship between 
insufficient height and weight at a given age, and this subset is most uni-
versally described in terms of univariate ‘growth standards’, for which 
age-specific heights and weights are compared to healthy reference pop-
ulations4,5. In aggregate, univariate assessments of stunting, wasting 
and underweight (Extended Data Fig. 1) can serve as a comprehensive 
assessment of CGF. Prevalence of moderate and severe stunting, wast-
ing and underweight among children aged 0–59 months is defined 
as the proportion of children with a height-for-age, weight-for-height 
or weight-for-age z score that is more than two standard deviations 
below the 2006 WHO (World Health Organization) growth reference 
population, respectively4.

The Millennium Development Goals (MDG) had a single nutrition 
target: a 50% reduction in prevalence of underweight in children under 
five between 1990 and 2015. In 2012, WHO member states endorsed 
a broader agenda to improve nutrition by 2025: the Global Nutrition 
Targets (WHO GNT), including stunting, wasting, low birth weight 
and overweight6 in children under five (see Extended Data Fig. 1). 
Sustainable Development Goal (SDG) 2.2 is even more aspirational, 
calling for an end to all forms of malnutrition by 2030, progress towards 
which can be seen as inseparable from many of the other SDG child 
health ambitions7–9.

Quantitative assessments of levels and trends in CGF indicators serve 
as key input to discussions of progress and areas for improvement1,10–14. 

According to findings from the Global Burden of Diseases, Injuries, 
and Risk Factors Study 2016 (GBD 2016), an estimated 36.6% of chil-
dren under five were stunted, 8.6% wasted and 19.5% underweight in 
sub-Saharan Africa (SSA) in 20151. Furthermore, CGF was the second 
 leading risk factor for child mortality in SSA, accounting for more than 
23% of deaths of children under five in this region1.

Precision public health and child growth failure
Although country-level estimates are useful for international compar-
isons and benchmarking, they mask disparities in CGF at the lower 
administrative levels at which most health and nutrition policy plan-
ning and implementation occur. The value of precision public health 
in this context—the use of more spatially resolved data to guide effi-
cient targeting of interventions to those populations with the greatest 
need—is increasingly recognized by the global health community15. 
This approach enables quantification of inequalities and identification 
of successes and failures of programmes and policies at the local level. 
Similar efforts that mapped subnational malaria prevalence, incidence, 
and mortality16,17 have, when overlaid with interventions, shown where 
use of insecticide-treated nets or access to treatment is lacking, pin-
pointing where remedial actions are needed. Without comparable, 
robust subnational information on stunting, wasting and underweight, 
health authorities face sizeable challenges to precisely target and thus 
optimally fund relevant CGF interventions.

Subnational assessments of CGF have been conducted in select 
countries in Africa, including states in Nigeria18, regions in Uganda19, 
 governorates in Egypt20 and districts in Ethiopia21, Malawi22,23, 
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Tanzania23 and Zambia23, as well as the Demographic and Health 
Surveys, which report at the first administrative subdivision in  
39 countries24. Although this initial work has unveiled coarse sub-
national disparities in CGF, it provides an incomplete picture, with 
heterogeneity remaining within administrative units. Model-based 
geostatistics, a set of statistical techniques developed to make infer-
ences from spatially correlated phenomena, have produced high-
spatial- resolution estimates of nutrition indicators in Burkina Faso25, 
Ghana25, Kenya26, Mali25, Nigeria26, Tanzania26 and Somalia27. These 
studies demonstrate that geo-referenced anthropometric survey data, 
if properly harnessed with spatially and temporally explicit models 
and appropriate covariates, can allow for the synthesis of these data 
into gridded maps. However, a sizable geographical knowledge gap 
remains, as the combined analyses of previous studies are not compre-
hensive or generalizable. Furthermore, advances in data sharing and 
computational statistics enable high-resolution estimates to be made 
over continental and global scales16,17.

Here we provide a comprehensive geospatial analysis of CGF in  
51 African countries from 2000 to 2015, offering highly relevant sub-
national information on key nutrition indicators for policymakers  
and health practitioners at all administrative subdivisions. We used 
Bayesian model-based geostatistics, which uses geo-referenced 
child anthropometry survey data and gridded covariates over space 
and time, in an ensemble modelling framework based on stacked 
 generalizations28 and spatial validation processes, to produce 5 ×  5 km 
gridded estimates of stunting, wasting, and underweight for children 
under five. To ensure comparability with national estimates and to 
 facilitate benchmarking, we calibrated pixel-level estimates to those 
produced by GBD 20161 and subsequently aggregated 5 ×  5 km 
 estimates to multiple administrative subdivisions in each country. 
We compared the annualized rate of change (AROC) for each CGF 
measure during the MDG era (2000 to 2015) relative to the AROC 
required between 2015 and 2025 to meet the WHO GNT (Figs 1g, 2g, 
Extended Data Fig. 2g), and the acceleration in the pace of progress 
required between 2015 and 2025 to achieve the WHO GNT (Figs 1i, 
2i, Extended Data Fig. 2i).

Disparate progress in reducing child growth failure
Between 2000 and 2015, nearly all African countries showed a  reduction 
in the absolute levels of stunting, wasting and underweight in children 
under five, but observed rates of change varied markedly1,2,10,29. If cur-
rent rates of progress continue, many countries are on track to meet the 
relevant WHO GNT6 at the national level. This includes most of eastern 
and southern SSA and the coastal sections of western SSA at more local 
scales. However, our results also show particularly high levels of CGF, 
with little evidence of improvement, across the Sahel.

Stunting (Extended Data Fig. 1a) was the most prevalent form of 
CGF across all years, and its change in prevalence across time was 
 visually striking (Fig. 1a–c). While large areas of Algeria, Mozambique, 
Burkina Faso and Ghana showed a reduction in the prevalence of 
 stunting from 2000 to 2015, progress in other countries was more 
spatially heterogeneous. Progress occurred between 2005 and 2015 in 
many areas, as illustrated by the Imo state in Nigeria, in which the mean 
estimated stunting prevalence was nearly halved (46.2% reduction; 95% 
uncertainty interval, 38.7–54.9%) from 31.5% (28.1–35.5%) in 2005 
to 16.9% (14.7–19.2%) in 2015. By 2015, lower levels were found in 
coastal central Africa, particularly in areas within Ghana, Gabon and 
Equatorial Guinea. By contrast, northern Nigeria, southern Niger, 
Democratic Republic of the Congo (DRC), Zimbabwe and northern 
Mozambique all had areas with a prevalence of stunting near or above 
40% in 2000, which was as high as 64.9% (59.3–70.8) in the Lubango 
municipality within Huila province, Angola. Although many of these 
regions showed improvement (the prevalence rate in Lubango dropped 
to 31.5% (27.2–35.9%) in 2015), some areas, such as regions of the 
Northern Province of Zambia, northern Nigeria, and southern Niger, 
had the highest prevalence rates in both 2000 and 2015.

Wasting (Extended Data Fig. 1b) is a short-term phenomenon that 
encompasses both moderate acute malnutrition and severe acute 
malnutrition4. Wasting is more sensitive to external environmental  
fluctuations, such as crop yields and food availability30, and is most 
likely to affect children over the course of months, rather than 
years. These shorter-term events drive uneven temporal patterns of 
decline compared to the more consistent decreases seen in stunting 
and  underweight. As such, some areas in northern Kenya, eastern 
Ethiopia, northern Nigeria and Madagascar show temporal variation 
and increases across the study years (Fig. 2a–c). The Afar region in 
Ethiopia, for example, had a high prevalence in both 2000 (16.7% 
(14.5–19.4%)) and 2015 (21.7% (18.9–24.7%)). While the estimated 
prevalence in regions of Madagascar also increased, these estimates 
were relatively uncertain (Fig. 2f). High prevalence of wasting appears 
in a band across the continent, with concentrations in Niger (19.9% 
(18.9–20.9%)), South Sudan (21.0% (18.0–24.2%)) and Burkina Faso 
(18.9% (17.9–19.9%)) in 2000. Foci of higher prevalence remain even in 
countries with low rates nationally. Kenya, for example, had a national 
prevalence of 5.7% (5.2–6.2%) in 2015, although rates as high as 28.2% 
(24.8–31.8%) were found in areas within the Rift Valley province. 
Prevalence of wasting in southern Africa, by contrast, remained con-
sistently low across the study period. Some countries, including the 
DRC, experienced sizeable progress both nationally and subnationally, 
dropping from 14.6% (13.9–15.4%) in 2000, with rates as high as 18.4% 
(16.7–20.2%) in the Équateur province, to 8.7% (8.2–9.2%) in 2015, 
with a decrease in Équateur to 9.8% (8.7–11.0%), lessening the gap 
between national and subnational prevalence.

Of particular note when comparing the prevalence of underweight 
(Extended Data Fig. 1c) across time and space, is the persistent band 
of high prevalence across the Sahel, stretching from southern Mali in 
the west to the Horn of Africa in the east (Extended Data Fig. 2a–c). By 
contrast, for the northern coast of Africa, in countries near the Gulf of 
Guinea, and in southern Africa, prevalence remained low throughout 
the study period, achieving rates such as 3.8% (2.7–5.2%) in the Litoral 
province of Equatorial Guinea by 2015. Patterns of change in central 
Africa were highly spatially heterogeneous in countries, such as Nigeria, 
which achieved rates below 10% in some regions, and in excess of 30% 
in northern areas by 2015. Marked progress was seen in central Africa, 
with Rwanda reducing national prevalence from 22.3% (20.7–23.8%) 
in 2000 to 8.7% (7.8–9.6%) in 2015. Although Angola and the DRC 
have experienced substantial improvement, hot spots remain, such as 
the Kasai-Occidental province in the DRC, in which prevalence was 
25.3% (22.9–27.9%) in 2015.

For each CGF metric, Figures 1e, 2e and Extended Data Figure 2e 
show estimates of the population-weighted highest and lowest 10% of 
pixels across the continent in 2000 and 2015, as well as their overlap. 
Overlaid stippling across the continent represents areas in the estimated 
maps that experienced the 10% lowest and highest rates of decline for 
the 16 years that were modelled. Areas in Angola (Fig. 1e) experienced 
some of the highest rates of stunting in 2000, but also some of the high-
est annualized rates of decline; by 2015, pixels in that same area were 
no longer in the worst 10%. Conversely, as demonstrated for southern 
Niger and northern Zambia, where some of the highest stunting rates 
in both 2000 and 2015 occurred, these maps can elucidate places and 
populations left behind as the continent progresses towards the WHO 
GNT.

Figures 1f, 2f and Extended Data Fig. 2f show our estimates con-
trasted with their respective certainty for each 5 ×  5-km area in 2015. 
These maps more intuitively highlight areas for which our estimates are 
less uncertain, and the corresponding relative prevalence of the CGF 
indicator. For example, much of Zimbabwe had a low prevalence of 
wasting (3.8% (3.4–4.1%)) at the national level and had low uncertain-
ties relative to other areas. Areas in Chad (such as the Kanem region, 
with a prevalence of stunting of 50.0% (47.0–52.9%)) had a high prev-
alence and were relatively certain. By contrast, the Melaky region of 
Madagascar experienced a high prevalence of wasting, but estimates in 
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those areas were relatively uncertain (42.2% (28.3–58.0%)). For more 
detail, see Supplementary Figs 13–15.

The predicted space–time models of CGF prevalence closely matched 
the observed national survey data, and we used 5-fold cross-validation 
strategies to assess the fit of our models. The full array of validation metrics 

by indicator and country are provided in the Supplementary Information 
(Supplementary Tables 8–19 and Supplementary Figs 16–36).

Given the continental scope and fine spatial scale of this work, addi-
tional results are provided in the Supplementary Information and 
all outputs of these analyses at the first administrative subdivision  
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Figure 1 | Prevalence of stunting (2000–2015) in children under five 
and progress towards 2025. a–c, Prevalence of moderate and severe 
stunting (MSS) at the 5 ×  5-km resolution in 2000 (a), 2010 (b) and 2015 
(c). d, Prevalence of stunting at the first administrative subdivision in 
2015. e, Overlapping population-weighted lowest and highest 10% of 
pixels and AROC in stunting from 2000 to 2015 across the continent. 
f, Overlapping population-weighted quartiles of stunting and relative 95% 
uncertainty in 2015. g, Annualized decrease (AD) in stunting prevalence 
from 2000 to 2015 relative to rates needed during 2015–2025 to meet the 
WHO GNT. 100% indicates the annualized decrease from 2000 to 2015 
equivalent to the pace of progress required during 2015–2025 to meet 
the WHO GNT by 2025 (40% decrease in stunting, relative to 2010). 

Blue pixels exceeded this pace; green to yellow pixels proceeded at a slower 
rate than required; orange pixels were non-decreasing; and purple pixels 
were estimated to have met the target by 2015 (‘Met GNT’). h, Pixel-
level prevalence of stunting was predicted for 2025 on the basis of the 
annualized decrease achieved from 2000 to 2015 and projected from 2015. 
i, Acceleration in the annualized decrease in stunting required to meet the 
WHO GNT by 2025. Purple pixels were either non-decreasing or must 
accelerate their rate of decline by more than 400% over 2000–2015 rates 
during 2015–2025 to achieve the target; white pixels require no increase. 
Maps reflect administrative boundaries, land cover, lakes and population; 
pixels with fewer than ten people per 1 ×  1 km and classified as ‘barren or 
sparsely vegetated’ are coloured in grey44–49.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



4 4  |  N a T U r E  |  V O L  5 5 5  |  1  m a r c h  2 0 1 8

ArticlereSeArcH

(for example, state), second administrative subdivision (for example, 
district), and 5 ×  5-km  levels are publicly available in the Global Health 
Data Exchange (http://ghdx.healthdata.org/record/africa-child-
growth-failure-geo spatial-estimates-2000-2015) and via bespoke 
data visualization tools (https://vizhub.healthdata.org/lbd/cgf).

Outlook for the 2025 GNT
Progress towards the WHO GNT has been uneven (Figs 1g, 2g and 
Extended Data Fig. 2g). The AROC between 2000 and 2015 relative to 
the pace required to meet the WHO GNT by 2025 clearly shows that 
some areas are on track or exceeding the pace required to achieve the 
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Figure 2 | Wasting prevalence (2000–2015) in children under five and 
progress towards 2025. a–c, Prevalence of moderate and severe wasting 
(MSW) at the 5 ×  5-km resolution in 2000 (a), 2010 (b) and 2015 (c).  
d, Prevalence of wasting at the first administrative subdivision in 2015.  
e, Overlapping population-weighted lowest and highest 10% of pixels and 
AROC in wasting from 2000 to 2015 across the continent. f, Overlapping 
population-weighted quartiles of wasting and relative 95% uncertainty 
in 2015. g, Annualized decrease in wasting prevalence from 2000 to 2015 
relative to rates needed during 2015–2025 to meet the WHO GNT. 100% 
indicates the annualized decrease from 2000 to 2015 equivalent to the pace 
of progress required during 2015–2025 to meet the WHO GNT by 2025 
(wasting less than 5%). Blue pixels exceeded this pace; green to yellow 

pixels proceeded at a slower rate than required; orange pixels were non-
decreasing; and purple pixels were estimated to have met the target by 
2015. h, Pixel-level prevalence of wasting was predicted for 2025 on the 
basis of the annualized decrease achieved from 2000 to 2015 and projected 
from 2015. i, Acceleration in annualized decrease required to meet the 
WHO GNT by 2025. Purple pixels were either non-decreasing or must 
accelerate their rate of decline by more than 400% over 2000–2015 rates 
during 2015–2025 to achieve the target; white pixels require no increase. 
Maps reflect administrative boundaries, land cover, lakes and population; 
pixels with fewer than ten people per 1 ×  1 km and classified as ‘barren or 
sparsely vegetated’ are coloured in grey44–49.
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targets and other locations appear to have already met the goal. Yet 
there are still vast expanses of the continent that must increase their 
rate of progress two-, three-, and even fourfold to achieve the WHO 
GNT by 2025 (Figs 1i, 2i and Extended Data Fig. 2i). Inland areas of 
central Africa and the Sahel will require the most marked improvement, 
with many areas requiring at least two- to fourfold increases in their 
annual rates of decrease across CGF indicators. Stunting targets—40% 
reduction by 2025—are unlikely to be met in many areas of central 
Africa without an accelerated rate of decline, while some areas, such 
as southern and western coastal Africa, are on target to meet the WHO 
GNT. The reduction and maintenance of child wasting to less than 5% 
is likely to be met in most countries in southeastern Africa based on 
current trajectories, but much of central SSA and the entire Sahel will 
require pronounced improvements in order to meet 2025 targets.

The likelihood of areas meeting the WHO GNT is sensitive to the 
spatial scale used to measure achievement. In Fig. 3, the probability 
that regions have reached the WHO GNT in 2015 is estimated at the 
first administrative subdivision, as well as at the 5 ×  5-km pixel level, 
 showing the increased nuance in the results gained at finer  spatial 
scales. For example, the administrative boundaries of Kenya are aligned 
in a north–south orientation, cutting across areas of low and high prev-
alence, which generates population-weighted probabilities of having 
met the stunting target between 0% and 50% for much of eastern Kenya 
(Fig. 3a). Viewing the same results at a 5 ×  5-km resolution (Fig. 3b) 
shows that pockets within Kenya had a much higher (over 95% in some 
places) probability of meeting the target in 2015.

Discussion
Our study provides a quantification of CGF in 51 African countries 
at a 5 ×  5 km spatial resolution, highlighting a mixture of impressive 
gains and enduring disparities in CGF within countries and across the 
 continent. By 2015, nearly all locations showed decreases in the rates of 
stunting, wasting and underweight compared to 2000, with noticeable 
tracts of the DRC, Mozambique, Angola and Burkina Faso showing 
considerable reductions in multiple CGF indicators, despite room 
for improvement within these locales (Figs 1g, 2g and Extended Data  
Figs 2g, 3, 4). Conversely, some countries are performing poorly 
across wide areas in all CGF indicators: South Sudan, Chad, Ethiopia, 
Madagascar, Sudan and northern Nigeria had some of the highest rates 
of CGF based on multiple metrics in 2015 (Extended Data Fig. 4). We 
also provide a baseline assessment of the WHO GNT for CGF at the 
local level for 2015 (Fig. 3), to guide policy and precision public health 
interventions to improve outcomes by 2025. Although policies are often 
set at administrative levels, implementation happens locally, such as 
within districts or cities, particularly when targeting specific at-risk 
populations or studying responses to interventions over time. Our 
analysis at the 5 ×  5-km level enables the identification of programme 
and policy successes and failures at the local level and quantification of 
inequalities to guide efficient targeting of resources and interventions 
to those populations with the greatest need.

Differences between alternative sets of international nutrition targets 
must be acknowledged, along with the fact that even in high-income 
nations, malnutrition has not been entirely eliminated. MDG 1.C 

a c e

b d f

M
S

S
 p

ro
b

ab
ili

ty
 (%

)

50

>95

<5 M
S

W
 p

ro
b

ab
ili

ty
 (%

)

50

>95

<5

M
S

W
 p

ro
b

ab
ili

ty
 (%

)

50

>95

<5

M
S

U
 p

ro
b

ab
ili

ty
 (%

)

50

>95

<5

M
S

U
 p

ro
b

ab
ili

ty
 (%

)

50

>95

<5M
S

S
 p

ro
b

ab
ili

ty
 (%

)

50

>95

<5

Figure 3 | Probability that the WHO GNT has been achieved in 2015 
at the first administrative subdivision and 5 × 5-km pixel level for 
stunting, wasting and underweight. a–f, Probability of WHO GNT 
achievement in 2015 at the first administrative subdivision and 5 ×  5-km 
level for moderate and severe stunting (a, b), moderate and severe wasting 
(c, d) and moderate and severe underweight (e, f). The probability that 
dark-blue pixels have met the WHO GNT in 2015 is greater than 95%,  

and less than 5% for dark-red pixels. Estimates for 2015 at the 5 ×  5-km 
level have been calculated using population-weighting based on the 
population of children under five and probabilities that the WHO GNT 
were met in 2015. Maps reflect administrative boundaries, land cover, 
lakes and population; pixels with fewer than ten people per 1 ×  1 km and 
classified as ‘barren or sparsely vegetated’ are coloured in grey44–49.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



4 6  |  N a T U r E  |  V O L  5 5 5  |  1  m a r c h  2 0 1 8

ArticlereSeArcH

called for a 50% reduction in underweight prevalence between 1990 
and 2015. On the basis of national-level GBD results, 21 African coun-
tries achieved MDG 1.C and an additional 16 surpassed the achieve-
ment rate from 2000 to 20151. The mapping of 5 ×  5 km levels and 
trends in underweight has revealed substantial further geographical 
heterogeneity during the MDG period (Extended Data Fig. 2h), with 
almost every country having areas in which improvements were con-
sistent with achieving MDG 1.C, and every country having areas in 
which improvement lagged behind the national rate. The WHO GNT 
were formulated by analysing national CGF trends in Brazil, China, 
Bangladesh and Mexico, all of which made remarkable progress during 
the MDG period12. While most of Africa must accelerate reductions 
in CGF in children under 5 in order to meet the WHO GNT by 2025, 
these aspirational goals are anchored in examples of past achievement. 
By contrast, the current wording of SDG 2.2 calling to ‘end all forms 
of malnutrition’ is clinically vague and almost certainly unachievable. 
There is a need for more clearly defined SDG targets for malnutrition 
and CGF, formulated in terms of absolute, rather than relative change. 
Absolute targets would bring SDG 2.2 in line with the overall aim of 
the SDGs of achieving a ‘grand convergence’ in health31.

Most CGF improvements in Africa occurred after the year 2000, 
and were likely catalysed by large political, social and financial 
 investments32. A number of related factors are likely to have led to 
improvements in nutrition, CGF and child mortality4. These include 
general sociodemographic improvements9 and broad scaling up of 
interventions that focused on reducing childhood illness, such as 
malaria control, vaccination coverage, HIV prevention and treatment, 
and water, sanitation and hygiene facilities, which can break the cycle 
of metabolic compromise leading to CGF9,16,17,33–35. It is probably no 
coincidence that many of the nations and regions with slower gains, 
such as Central African Republic, Chad, Somalia and much of the 
Sahel, received less international assistance for newborn and child 
health26, had persistently low coverage of sentinel maternal and child 
health interventions36, experienced periods of pronounced conflict36,37, 
and showed no progress in their sociodemographic index status38. The 
finding of a continued high burden of wasting in arid sections of the 
Sahel, the Horn of Africa and sections of southern SSA is especially 
important given the implications of famine on potential for human 
health, geopolitical unrest and mass migration39,40. There is strong 
correspondence between the areas of high prevalence of wasting in 
2015 (Fig. 2c) and the nations (Nigeria, South Sudan, Somalia, and 
Yemen (not mapped here)) that were identified by the United Nations 
as collectively containing approximately 20 million people that are at 
imminent risk of famine41.

We estimate that no country in Africa is likely to achieve all of the 
WHO GNT in all of its territory if current trends continue, highlighting 
a widespread need to adopt evidence-based, precision public health 
programmes to track and improve progress. In an era of static develop-
ment assistance for health32 and in countries where financial resources 
are constrained, highly localized mapping of CGF may facilitate more 
efficient stewardship by providing a way to pair vulnerable communi-
ties with health and nutrition programmes, community support and 
knowledge that are more likely to meet their specific needs. Targeting 
precision health interventions to reduce the burden of CGF without 
considering key sociodemographic factors poses large risks to the sus-
tainability of intervention strategies, either directly through unrealistic 
assumptions about care-seeking behaviour and retention, or indirectly 
by not working in tandem to break cycles of poverty and mitigate CGF 
risk for future generations. Geospatial estimates of average, communi-
ty-level human capital, such as those provided in the complementary 
mapping of educational attainment in Africa42, should be considered 
when striving to make policy decisions at a local level. The exact com-
bination of intervention packages required for remedial action to com-
bat CGF was not directly addressed in this study. Further context on 
the diverse range of instruments and interventions to address CGF is  
provided in the Supplementary Discussion.

Future work and caveats
Our present study offers the analytic framework from which we aim 
to extend geospatial modelling of CGF to all low- and middle-income 
countries, with a heightened focus on the modelling of holistic meas-
ures of CGF, such as the composite index of anthropometric failure43. 
These more integrated measures would take into consideration the 
overlapping and longitudinal influences of being born early, born small 
and having an early childhood characterized by inadequate height or 
weight gain. To provide a complete baseline and assessment of  progress 
towards all six WHO GNT, we plan to expand our analysis to include 
mapping of low birth weight, childhood overweight, anaemia in women 
of reproductive age, and exclusive breastfeeding in the first six months 
of life.

The accuracy of this work is primarily determined by the volume and 
fidelity of nationally representative surveys, regardless of the sophis-
tication of the models used. The limitations of these data, including 
collection biases in anthropometric measurement and non-existent 
data on deceased children, underscore the need for future refinement 
and improved data collection. Furthermore, the statistical model does 
not yet incorporate child-level covariates, which may mask sub-pixel 
heterogeneity across sex, age and socio-economic factors (see Methods 
for additional detail on methodological limitations).

National improvements in CGF across Africa may mask large sub-
national and acute 5 ×  5-km grid-level variation, such that no  country 
in SSA has reached the relevant WHO GNT or SDG targets in all of its 
territory, or is projected to do so by 2025 or 2030, respectively, under 
current rates of improvement. As researchers, policymakers and 
 programme implementers continue to determine the optimal mix of 
interventions to alleviate CGF, they now have at their disposal a preci-
sion public health tool to monitor subnational inequalities and target 
interventions to those populations with the greatest need.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MEthOdS
Overview. Our study follows the Guidelines for Accurate and Transparent Health 
Estimates Reporting (GATHER). Our analysis provides estimates of the preva-
lence of stunting, wasting and underweight in children under 5 (Extended Data 
Fig. 1) based on univariate growth standards for which age-specific height and 
weight are benchmarked against children of the same age from healthy reference 
 populations4,5. Stunting, wasting and underweight are defined as z scores that are 
two or more standard deviations below the reference median for height-for-age 
(HAZ), weight-for-height (WHZ) and weight-for-age (WAZ), respectively. Our 
primary goal is to provide prevalence predictions across the African continent 
at a high resolution and we have used methods to provide the best out-of-sample 
predictive performance at the expense of inferential understanding. We modelled 
prevalence of each indicator on a 5 ×  5-km grid over 51 countries in Africa at an 
annual resolution from 2000 to 2015. This includes all 48 countries in mainland 
Africa, as well as islands for which we had survey data, including Madagascar, 
Comoros, and São Tomé and Príncipe. We do not estimate for island nations for 
which no available survey data could be sourced, including Mauritius, Seychelles 
and Cape Verde. After harmonizing the data, we implemented an ensemble 
 modelling framework that feeds into a Bayesian generalized linear model with a 
correlated space–time error. We took 1,000 draws from the fitted posterior distri-
bution and we combined and processed the draws into 1,000 candidate 5 ×  5-km 
resolution maps that were used to generate all of our final results. The analytical 
steps and their limitations are described in detail below and additional detail can 
be found in the Supplementary Information.
Data. We extracted individual-level height, weight and age data for children under 
5 from household survey series, including the Demographic and Health Surveys 
(DHS), Multiple Indicator Cluster Surveys (MICS), Living Standards Measurement 
Study and Core Welfare Indicators Questionnaire (CWIQ), among other country- 
specific child health and nutrition surveys24,50–52. Each individual record is associ-
ated with a cluster, a group of neighbouring households or a ‘village’ that acts as a 
primary sampling unit. Some surveys include geographical coordinates or precise 
place names for each cluster within that survey (50,142 clusters for stunting, 49,564 
for wasting and 50,078 for underweight). In the absence of geographical coordi-
nates; coordinates for each cluster, we assigned data to the smallest available admin-
istrative areal unit in the survey while correcting for the survey sample design53,54. 
Boundary information for these administrative units was obtained as shape-
files either directly from the surveys or by matching to shapefiles in the Global 
Administrative Unit Layers44 database or the Database of Global Administrative 
Areas55. For select cases, shapefiles provided by the survey administrator were 
used or custom shapefiles were created on the basis of the survey documentation. 
These areal data were resampled to 10,000 coordinate locations per areal obser-
vation using a  population-weighted sampling scheme over the relevant area49. 
k-means clustering on the sampled locations reduces the sampled points to a set 
of k-means centroids acting as proxies for community locations, and the number 
of points in each  cluster informs the weighting given to the point. These centroids 
are taken to be the geolocations for the observation, and the pseudo-observations 
are down-weighted in the likelihood evaluation to account for our uncertainty in 
the precise location of the observation. Weighting by sample size, GPS-located 
clusters contributed at least 47.4% of the total data per indicator, and resampled 
areal data contributed the remainder. Extended Data Figures 5, 6 show stunting 
data availability by type and country from 2000 to 2015. Wasting and underweight 
data availability can be found in Supplementary Figs 2, 3.
Child anthropometry data. Using the height, weight and age data for each 
individual, HAZ, WHZ and WAZ were calculated using the age-, sex- and 
 indicator-specific LMS values from the 2006 WHO Child Growth Standards, which 
takes into account distributional skew using the lambda parameter, the centre of the 
distribution using the mu parameter, and the spread of the distribution using the 
sigma parameter4,5. The LMS methodology allows for Gaussian z score  calculations 
and comparisons to be applied to skewed, non-Gaussian  distributions56. These 
microdata were then collapsed to cluster-level or areal-level prevalence of mod-
erate stunting, wasting and underweight (HAZ <  − 2s.d., WHZ <  − 2s.d. and 
WAZ <  − 2s.d. below the reference median, respectively). Data from the Somalia 
Food Security and Nutrition Analysis Unit were provided as already collapsed to 
cluster-level prevalences (using the WHO 2006 standards).
Data exclusion criteria. Select data sources were excluded for the following reasons: 
missing survey weights for areal data, missing gender variables, insufficient age 
granularity (in months) for HAZ and WAZ calculation in children aged 0–2 years, 
incomplete sampling (for example, only children aged 0–3 years measured), or 
untrustworthy data (as determined by the survey administrator or by user inspec-
tion). Within each source, polygon survey clusters with a sample size of one were 
excluded. Untrustworthy data refer specifically to the exclusion of six surveys for 
the reasons described here. Two datasets, the 2009–2010 Ghana Socioeconomic 
Panel Survey and the 2005 Burkina Faso CWIQ, were excluded because the 

national prevalence values reported for one or more indicators were determined 
to be implausibly high based on the country-level trend seen in the seven other 
Ghana and six other Burkina Faso sources. In addition, the data were only resolved 
to the first administrative subdivision. This combined with the very coarse spatial 
resolution makes the data of minor use for our geospatial purposes. Two addi-
tional sources, the 2014 MICS Kenya Kakamega and Bungoma surveys, were 
excluded because, according to the survey documentation, the ‘anthropometric  
data suffered from digit preference for both weight and height’, meaning the 
measurements were rounded with preference for certain numbers in a way that 
introduced considerable bias. The 2015 Ethiopia Living Standards Measurement 
Study–Integrated Surveys on Agriculture was excluded, because the low prevalence 
of child growth failure in the Ogaden region was determined to be unrealistic by 
specialists in the field of child nutrition. Lastly, the 2015 Egypt Special DHS was 
excluded because of the non-proportional sample allocation that was designed to 
estimate the prevalence of hepatitis and certain other non-communicable disease 
risk factors such that the survey sampling was not equivalent to the rest of the surveys.
Temporal resolution. We estimated prevalence of stunting, wasting and underweight 
annually from 2000 to 2015 using a model that allows us to account for data points 
that were continuously measured over time. As such, the model would also allow 
us to predict at monthly or finer temporal resolutions. However, we are computa-
tionally limited by the temporal resolution of our space–time covariates. In order 
to account for seasonality within each year of observations, periodic splines were 
fitted to the data by regions defined by GBD57 (Extended Data Fig. 2).
Seasonality adjustment. Owing to the acute nature of wasting and its relative 
temporal transience, wasting data were pre-processed to account for seasonality 
within each year of observation. Generalized additive models (GAMs) were fitted 
to wasting data across time using the month of interview and a country-level fixed 
effect as the explanatory variables and WHZ as the response. A 12-month periodic 
spline for the interview month was used, as well as a spline that smoothed across 
the whole duration of the dataset and country-level random effects. The GAMs 
were fitted to the data by regions defined by GBD57 (Extended Data Fig. 7) in 
order to allow for different seasonality adjustments across the continent57. Once 
the models were fitted, individual WHZ observations were adjusted, using only 
the fit from the periodic spline, so that each measurement was consistent with a 
day that represented a mean day in the periodic spline. The seasonality adjustment 
introduced relatively little change to the raw data. This analysis could not be run 
on sources missing interview dates, which were excluded from the wasting data. 
See Supplementary Information for more detail and the adjustment is shown in 
Supplementary Figs 5, 6.
Spatial covariates. In order to leverage strength from locations with observations 
to the entire spatiotemporal domain, we compiled several 5 ×  5-km raster layers 
of possible socio-economic and environmental correlates of CGF in Africa (see 
Supplementary Table 3 and Supplementary Fig. 4). These covariates were selected 
on the basis of their potential to be predictive for the set of CGF indicators, after 
reviewing literature on evidence and plausible hypotheses as to their influence. 
Acquisition of temporally dynamic datasets, where possible, was prioritized in 
order to best match our observations and thus predict the changing dynamics of 
the CGF indicators. Of the 37 covariates included, 23 were temporally dynamic 
and were reformatted as a synoptic mean over each estimation period or as a 
mid-period year estimate. The remaining 14 covariate layers were static, and were 
applied uniformly across all modelling years. Furthermore, we also used a number 
of covariates that are constant within each country and year: the percentage of pop-
ulation with access to improved toilet types, and per capita lag distributed income, 
as indicated as predictive of CGF in GBD 20161. Country-level age-standardized 
mortality rates due to famine as produced by GBD 2016 were also included in the 
model for wasting. More information, including plots of all covariates, can be found 
in the Supplementary Information.

An ensemble covariate modelling method was implemented in order to both 
select covariates and capture possible nonlinear effects and complex interactions 
between them28. For each region, three sub-models were fitted to our dataset, using 
all of our covariate data as explanatory predictors: GAMs, boosted regression trees 
and lasso regression. Each sub-model was fitted using fivefold cross-validation to 
avoid overfitting, and the out-of-sample predictions from across the five holdouts 
were compiled into a single comprehensive set of predictions from that model. 
Additionally, the same sub-models were also run using 100% of the data and a full 
set of in-sample predictions were created. The five sets of out-of-sample sub-model 
predictions were fed into the full geostatistical model as the explanatory covariates 
when performing the model fit. The in-sample predictions from the sub-models 
are used as the covariates when generating predictions using the fitted full geosta-
tistical model. A recent study has shown that this ensemble approach can improve 
predictive validity by up to 25% over an individual model28. More details on the 
ensemble covariate modelling can be found in the Supplementary Methods and 
example predictive rasters can be found in Supplementary Fig. 11.
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Analysis. Geostatistical model. Binomial count data are modelled within a Bayesian 
hierarchical modelling framework using a logit link function and a spatially and 
temporally explicit hierarchical generalized linear regression model to fit prev-
alence of each of our indicators in five regions of Africa as defined in GBD57 
(‘Northern’, ‘Western’, ‘Southern’, ‘Central’, and ‘Eastern’; see Extended Data Fig. 7).  
The GBD study design sought to create regions on the basis of two primary criteria: 
epidemiological homogeneity and geographic contiguity57 (see Extended Data 
Fig. 7). For each GBD region, we explicitly write the hierarchy that defines our 
Bayesian model as follows:
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For each indicator and region, we modelled the number of children at cluster i, 
among a sample size, Ni, who are subject to the indicator as binomial count data, Ci. 
We have suppressed the notation, but the counts (Ci), probabilities (pi), predictions 
from the three submodels (Xi) and residual terms ⁎ε  are all indexed at a space–time 
coordinate. The probabilities (pi) represent both the annual prevalence at the space–
time location and the probability that an individual child will be afflicted with the 
risk factor given that they live at that particular location. The logit of annual preva-
lence (pi) of our indicators was modelled as a linear combination of the three 
sub-models (GAM, boosted regression trees and lasso regression), Xi, a correlated 
spatiotemporal error term (ε iGP ) and an independent nugget effect, εi. Coefficients 
(β) on the sub-models represent their respective predictive weighting in the mean 
logit link and are constrained to sum to 1. In order for this constraint to make any 
sense, we ensure that the predictions from the sub-models entered into INLA (inte-
grated nested Laplace approximation)28 in the link space (logit) without having been 
centre-scaled. The joint error term (εGP) accounts for residual spatiotemporal auto-
correlation between individual data points that remains after accounting for the 
predictive effect of the sub-model covariates, and the nugget (εi), which is an inde-
pendent error term for each data point, representing irreducible error for that obser-
vation. The residuals (εGP) are modelled as a three- dimensional Gaussian process in 
space–time centred at zero and with a covariance matrix constructed from a 
Kronecker product of spatial and temporal covariance kernels. The spatial covariance 
(Σspace) is modelled using an isotropic and stationary Matérn function58, and tem-
poral covariance (Σtime) as an annual autoregressive- order-1 function over the 16 
years that are represented in the model. This approach leveraged the residual corre-
lation structure of the data to more accurately predict prevalence estimates for loca-
tions with no data, while also propagating the dependence in the data through to 
uncertainty estimates59. The posterior distributions were fitted using computation-
ally efficient and accurate approximations in R INLA60,61 with the stochastic partial 
differential equations62 approximation to the Gaussian process residuals. Pixel-level 
uncertainty intervals were generated from 1,000 draws (that is, statistically plausible 
candidate maps)63 created from the posterior-estimated distributions of modelled 
parameters. Additional detail on the geostatistical model and estimation process can 
be found in the Supplementary Methods.

To transform pixel-level estimates into a range of information useful for a wide 
community of potential users, these estimates were aggregated from the 1,000 
candidate maps up to the second administrative subdivision, the first adminis-
trative subdivision and national levels using population weighted conditional 
 simulation64. This aggregation also enabled calibration of estimates to national 
GBD 20161 estimates for 2000, 2005, 2010 and 2015. More details on the calibration 
can be found in the ‘Post estimation’ section.

Although the model can predict all locations covered by available raster 
 covariates, all final model outputs for which land cover was classified as ‘barren 
or sparsely vegetated’ were masked on the basis of the most recently available 
MODIS satellite data (2013), as well as areas where the total population density 
was less than ten individuals per 1 ×  1-km pixel in 2015. This step has led to 

improved understanding of the maps when communicating with data specialists 
and policymakers.
Post estimation. To leverage national-level data included in GBD 2016, but outside 
the scope of our current geospatial modelling framework, and to ensure perfect 
calibration between these estimates and GBD 2016 national-level estimates, we 
performed a post hoc calibration to each of our 1,000 candidate maps1. For each 
posterior draw, we calculated population-weighted pixel aggregations to a national 
level and compared these country–year estimates to the analogous and available 
GBD 20161 country–year estimates (all countries for 2000, 2005, 2010 and 2016). To 
generate 2015 national-level estimates for use in calibrating our 2015 5 ×  5-km maps, 
we linearly interpolated between 2010 and 2016 estimates. We defined the raking 
factor to be the ratio between the GBD 20161 estimate and our current estimates and 
linearly interpolated raking factors in a country between the available years yielding 
raking factors for all country–year pairs. Finally, we multiplied each of our pixels in 
a country–year pair by its associated raking factor. This ensures perfect calibration 
between our geospatial estimates and GBD 20161 national-level estimates, while 
preserving our estimated within-country geospatial and temporal variation.

The median for the raking factor ratios across all three indicators was 0.999 
(interquartile range, 0.920–1.096), indicating a very close agreement with GBD 
20161 estimates. Scatter plots comparing national-level estimates from this analysis 
with GBD 20161 estimates can be found in Supplementary Figs 40–42.
Model validation. Models were validated using spatially stratified fivefold out-of-
sample cross-validation. In order to offer a more stringent analysis by respecting 
some of the spatial correlation in the data, holdout sets were created by combining 
sets of spatially contiguous data at different spatial resolutions, for example, the first 
administrative subdivision. Validation was performed by calculating bias (mean 
error), total variance (root-mean-square error) and 95% data coverage within 
prediction intervals, and correlation between observed data and predictions. All 
validation metrics were calculated on the out-of-sample predictions from the five-
fold cross-validation. We compared five different model formulations (stacked 
ensemble with and without space–time error, raw satellite covariates with and 
without space–time error, and the Gaussian process space–time error without any 
covariates) using out-of-sample predictive metrics. The results are presented in the 
model validation section of the Supplementary Methods, in which we show that 
using the stacked ensemble covariates in conjunction with the space–time error 
consistently outperforms the other models across all three indicators.

Where possible, results from these models were compared against other  existing 
estimates, such as subnational DHS estimates as shown in Supplementary Fig. 43.  
Furthermore, measures of spatial and temporal autocorrelation pre- and post- 
modelling were examined to verify correct recognition, fitting and accounting 
for the complex spatiotemporal correlation structure in the data. We found 
our in-sample-size weighted Pearson’s correlation between our posterior mean 
 predictions at data observation locations and the observed prevalence proportions 
to be 0.70, 0.66 and 0.76 for stunting, wasting and underweight, respectively, at the 
pixel level, and 0.98, 0.96 and 0.99, respectively, at the national level. The equiva-
lent out-of-sample correlations were 0.63, 0.58 and 0.69 for stunting, wasting and 
underweight, respectively, at the pixel level, and 0.96, 0.95 and 0.98, respectively, at 
the national level. We also used various out-of-sample validation strategies to assess 
the fit of our models. For example, for stunting we demonstrate that our models, 
aggregated to the national level over five-year periods, have a small average root 
mean square error (0.020, ranging from 0.017 to 0.023), a small average mean error 
(0.0175, 0.001–0.012), a well-calibrated average 95% coverage (93.25%, ranging 
from 91.6% to 94.3%) and a high concordance with existing small area estimates 
(Supplementary Fig. 31). All model validation procedures and corresponding 
results are provided in the Supplementary Methods.
Projections. To compare our estimated rates of improvement in CGF prevalence 
over the last 15 years with the improvements needed between 2015 and 2025 to 
meet the WHO GNT, we performed a simple projection using estimated AROCs 
applied to the final year of our estimates. A full predictive forecast was not available 
due to a lack of available forecasts for many of our covariates.

For each CGF indicator i, we calculated log-additive annual rates of change at 
each pixel j, by logit-transforming our 16 years of posterior mean prevalence esti-
mates, previ j

l
, ,yr

, and calculating the annual rate of change between each pair of 
adjacent years starting with 2001:

= − −AROC prev previ j
l

i j
l

i j
l

, ,yr , ,yr , ,yr 1

We then calculated a weighted AROC for each indicator–pixel by taking a weighted 
average across the years, where more recent AROCs are given more weight in the 
average. We defined the weights to be:
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where γ may be chosen to give varying amounts of weight across the years. For this 
set of projections we selected γ =  1, resulting in a linear weighting scheme that 
has been tested and vetted for use in projecting the health-related SDGs9. For any 
indicator and for any pixel, we then calculated the average AROC to be:

∑= WAROC AROCi j i j
l

,
2001

2015

yr , ,yr

Finally, we calculated the projections by applying the ten years of the annual rates 
of change at each pixel in our mean 2015 mean prevalence estimates:

= + ×−Proj logit (prev AROC 10)i j i j
l

i j, ,2025
1

, ,2015 ,

This projection scheme is analogous to the methods used in the GBD 2016 
measurement of progress and projected attainment of health-related SDGs9. An 
 evaluation of the projection methodology and the implicit assumptions involved 
can be found in the Supplementary Methods.
Relative WHO GNT interpretation. The WHO GNT are composed of both 
relative (for example, 40% reduction in stunting relative to 2010) and fixed (for 
 example, less than 5% wasting) targets. In order to compare our modelled results 
to the relative WHO GNT, we computed the population-weighted aggregated 
 prevalence in 2010 from GBD 20161 results across all countries for which we made 
estimates. We then set a fixed target for every pixel in our modelled domain to 
be a reduction based on the 2010 continent-level aggregated prevalences. This 
interpretation of the WHO GNT was used to set a fixed target across space while 
ensuring that locations that were already performing favourably were not charac-
terized as being behind pace to reach the targets due to their early and continued 
low prevalences across time. This yielded a stunting prevalence target of 24.2%, 
and an underweight target prevalence of 13.5%.
Limitations. This work should be assessed in full acknowledgement of the data 
and methodological limitations. While our present study is informed by 209 
sources (totalling 1.29 million measured children), areas of greatest uncertainty 
(Figs 1f, 2f and Extended Data Fig. 2f) usually correspond to those in need of 
newer and/or updated information (Extended Data Figs 5, 6 and Supplementary  
Figs 2, 3). Expansion to additional countries and indicators underscores the need 
for enhanced data collection (and equally importantly, retrospective data retrieval) 
as we iteratively update the measurement of progress towards global targets. While 
not a focus of this study, a combination of the magnitude of CGF indicator prev-
alence (Figs 1c, 2c and Extended Data Fig. 2c), the uncertainty in its estimation 
(Figs 1f, 2f and Extended Data Fig. 2f), and our knowledge of national survey 
coverage (Extended Data Figs 5, 6 and Supplementary Figs 2, 3) can be used to 
help to identify countries and vulnerable sub-populations that would benefit from 
further survey enumeration.

There are limitations to the data used in this analysis and thus areas for future 
refinement. For example, the height or weight of children may have been  measured 
or recorded incorrectly due to equipment calibration or user error, or based on 
difficulties originating from measuring younger children lying down rather than 
standing up65. Levels of ‘missingness’ in these survey data may also be high due 
to recall error of a child’s birthday. Given that growth standards are age- and sex- 
specific, children without detailed age information were excluded from the analysis 
(see Supplementary Information). In addition, a child must have been present in 
the home in order for the survey taker to record measurements. Given that only 
children alive at the time of the survey could be counted, children under 5 who died 
due to undernourishment or other causes before the survey was taken would not 
have been measured. Conflict zones in select countries or regions may also have 
been excluded from surveying because of security and safety issues. The direction 
of all of these biases is towards an underestimation of CGF.

Moreover, our estimates are not stratified by sex, wealth or any other socio- 
economic indicators. This may mask higher rates of CGF present in sub- 
populations within the areas measured and while this work presents a very fine 
scale for comprehensive geospatial estimates of child growth failure, the 5 ×  5-km 
resolution is still too coarse to account for urban slums and other hyperspecific 
 spatial disparities. Similarly, relatively coarse AROCs taken across time may 
obscure higher-frequency changes within the time series, and more research in 
studying and summarizing spatially correlated temporal trends should be pursued. 
Although comprehensive, due to a lack of high-resolution spatial data, our set 

of included covariates does not cover all CGF drivers and confounders. On the 
modelling side, we have attempted to propagate as much uncertainty through the 
various modelling stages, but there are still some propagations, such as incorpo-
rating uncertainty from the child model ensemble fits, that proved computation-
ally infeasible. Future research is also ongoing to develop computational methods 
for better geostatistical integration of point and areal data to continental-scale 
 mapping studies for a variety of indicators. These geostatistical tools are driven pri-
marily by infrequently reported national survey data and are thus well- positioned 
for monitoring and evaluating progress across years, but are not suited for day-to-
day assessments of CGF vulnerability. We show, however, that there is considerable  
room for exciting harmonization with such efforts, for example, by focusing atten-
tion of early warning efforts on populations that are the most vulnerable and least 
resilient66.
Code availability. All code used for these analyses is publicly available online 
at http://ghdx.healthdata.org/record/africa-child-growth-failure-geospatial- 
estimates-2000-2015.
Data availability. The findings of this study are supported by data that are  available 
in public online repositories, data that are publicly available upon request from the 
data provider, and data that are not publicly available due to restrictions by the data 
provider, which were used under license for the current study, but may be available 
from the authors upon reasonable request and permission of the data provider. 
A detailed table of data sources and availability can be found in Supplementary 
Table 2.
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Extended Data Figure 1 | Measurement of child growth failure.  
a, Stunting is a manifestation of chronic malnutrition and is defined as a 
height-for-age z score (HAZ) that is two or more standard deviations (s.d.) 
below the reference median. b, Wasting is an emaciated state resulting 
from acute malnutrition and is defined a weight-for-height z score (WHZ) 
of < − 2. c, Underweight is a weight-for-age z score (WAZ) of < − 2 and is 
considered a marker of subacute malnutrition, but is nonspecific from  
an anthropometric standpoint, because it can indicate either low weight 

for height, low height for age or some combination of both. There are 
multiple permutations of child growth failure and the silhouettes are 
simply illustrative of what a stunted, wasted or underweight child may 
look like. The World Health Organization Global Targets 2025 to improve 
maternal, infant and young child nutrition call for a 40% reduction in 
stunting and a reduction and maintenance of child wasting to less than  
5% in children under five. While there is no target for child underweight,  
a reduction of 40% was used in this analysis.
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Extended Data Figure 2 | Underweight prevalence in children under 
five (2000–2015) and progress towards 2025. a–c, Moderate and 
severe underweight (MSU) prevalence at the 5 ×  5-km resolution in 
2000 (a), 2010 (b) and 2015 (c). d, Underweight prevalence at the first 
administrative subdivision in 2015. e, Overlapping population-weighted 
lowest and highest 10% of pixels and annualized rates of change in 
underweight from 2000 to 2015 across the continent. f, Overlapping 
population-weighted quartiles of underweight and relative 95% 
uncertainty in 2015. g, Annualized decrease in underweight prevalence 
from 2000 to 2015 relative to rates needed during 2015–2025 to meet 
the WHO GNT. 100% indicates the annualized decrease from 2000 to 
2015 equivalent to the pace of progress required during 2015–2025 to 
meet a 40% decrease in underweight by 2025, relative to 2010. Blue 
pixels exceeded this pace; green to yellow pixels proceeded at a slower 

rate than required; orange pixels were non-decreasing; and purple pixels 
were estimated to have met the target by 2015. This target was internally 
constructed, commensurate with the target for stunting, as there is no 
WHO GNT for underweight. h, Pixel-level underweight prevalence 
was predicted for 2025 on the basis of the annualized decrease achieved 
from 2000 to 2015 and projected from 2015 estimates. i, Acceleration in 
annualized decrease required to meet the WHO GNT by 2025. Purple 
pixels were either non-decreasing or must accelerate their rate of decline 
by more than 400% over 2000–2015 rates during 2015–2025 to achieve 
the target; white pixels require no increase. Maps reflect administrative 
boundaries, land cover, lakes and population; pixels with fewer than ten 
people per 1 ×  1 km and classified as ‘barren or sparsely vegetated’ are 
coloured in grey44–49.
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Extended Data Figure 3 | Low prevalence across stunting, wasting and 
underweight. Across the modelling regions and 5-year periods, these plots 
show locations where the prevalence of one, two or three of the indicators 
falls below a lower bound (10% for stunting (HAZ), 5% for wasting (WHZ) 
and 10% for underweight (WAZ), which correspond to the lower cut-offs 

used in Figs 1a, 2a, Extended Data Fig. 2a). Maps reflect administrative 
boundaries, land cover, lakes and population; pixels with fewer than ten 
people per 1 ×  1 km and classified as ‘barren or sparsely vegetated’ are 
coloured in grey44–49.
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Extended Data Figure 4 | High prevalence across stunting, wasting, 
and underweight. Across the modelling regions and 5-year periods, these 
plots show locations where the prevalence of one, two or three of the 
indicators falls above an upper bound (50% for stunting (HAZ), 25% for 
wasting (WHZ) and 30% for underweight (WAZ), which correspond to 

the upper cut-offs used in Figs 1a, 2a, Extended Data Fig. 2a). Maps reflect 
administrative boundaries, land cover, lakes and population; pixels with 
fewer than ten people per 1 ×  1 km and classified as ‘barren or sparsely 
vegetated’ are coloured in grey44–49.
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Extended Data Figure 5 | Stunting annual data availability by type 
and country for 2000–2015. All data are shown by country and year of 
survey. The total number of points and polygons (areal) for each country 
are plotted by data source, type and sample size. Sample size represents 

the number of individual microdata records for each survey. This database 
consists of 50,142 clusters and 4,253 polygons with a sample size totalling 
over 1.15 million children in Africa.
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Extended Data Figure 6 | Stunting data availability map for 2000–2015. 
All data are shown by country and year and mapped at their corresponding 
geopositioned coordinate or area. Mean stunting prevalence of the input 
coordinate or area is mapped. This database consists of 50,142 clusters 

and 4,253 polygons with a sample size totalling over 1.15 million children 
in Africa. Maps reflect administrative boundaries, land cover, lakes and 
population; pixels with fewer than ten people per 1 ×  1 km and classified 
as ‘barren or sparsely vegetated’ are coloured in grey44–49.
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Extended Data Figure 7 | Map of GBD regions. Modelling regions were 
defined as the five GBD regions of Central (central SSA), East (eastern 
SSA), North (North Africa and the Middle East), South (southern SSA) 
and West Africa (western SSA)57. As this study was limited to mainland 
Africa and African island nations, select countries were excluded from 

the North Africa and Middle East region (Afghanistan, Bahrain, Iran, 
Iraq, Jordan, Kuwait, Lebanon, Oman, Palestinian territories, Qatar, Saudi 
Arabia, Syria, Turkey, United Arab Emirates, and Yemen). Western Sahara 
was included as part of the North region.
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sampled children within the survey, after cleaning the data. The number of 
latitude-longitude referenced point data clusters, the number of areal polygons, 
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Supplementary Table 2.
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determined by the survey administrator or by inspection). Within each source, 
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This is an observational study using many years of survey data and could be 
replicated.
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The data in our study predominantly comes from surveys with randomized survey 
designs. As an observational mapping project, there were no experimental groups.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not relevant to this study, as it was an observational study using 
survey data. 
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A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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Describe the software used to analyze the data in this 
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The models were all fit using R version 3.3.2. The main statistical space-time 
Gaussian process regression models were fit using R-INLA version 0.0-1440400394.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used. 

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used. 

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used. 

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used. 

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used. 

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used. 
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants, as all data was obtained 
from secondary sources. 
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