
sensors

Article

Photovoltaic Panels Classification Using Isolated and Transfer
Learned Deep Neural Models Using Infrared
Thermographic Images

Waqas Ahmed 1 , Aamir Hanif 1, Karam Dad Kallu 2, Abbas Z. Kouzani 3 , Muhammad Umair Ali 4,*
and Amad Zafar 5,*

����������
�������

Citation: Ahmed, W.; Hanif, A.;

Kallu, K.D.; Kouzani, A.Z.; Ali, M.U.;

Zafar, A. Photovoltaic Panels

Classification Using Isolated and

Transfer Learned Deep Neural

Models Using Infrared

Thermographic Images. Sensors 2021,

21, 5668. https://doi.org/10.3390/

s21165668

Academic Editors: Spataru Sergiu,

Dezso Sera and Gisele Alves dos Reis

Benatto

Received: 8 June 2021

Accepted: 17 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, University of Wah, Wah Cantt 47040, Pakistan;
waqas.ahmed.ee@wecuw.edu.pk (W.A.); dr.aamirhanif@wecuw.edu.pk (A.H.)

2 Department of Robotics and Intelligent Machine Engineering (RIME), School of Mechanical and
Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) H-12,
Islamabad 44000, Pakistan; karamdad.kallu@smme.nust.edu.pk

3 School of Engineering, Deakin University, Geelong, VIC 3216, Australia; kouzani@deakin.edu.au
4 Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Korea
5 Department of Electrical Engineering, Islamabad Campus, University of Lahore, Islamabad 54590, Pakistan
* Correspondence: umair@sejong.ac.kr (M.U.A.); amad.zafar@ee.uol.edu.pk (A.Z.)

Abstract: Defective PV panels reduce the efficiency of the whole PV string, causing loss of investment by
decreasing its efficiency and lifetime. In this study, firstly, an isolated convolution neural model (ICNM)
was prepared from scratch to classify the infrared images of PV panels based on their health, i.e., healthy,
hotspot, and faulty. The ICNM occupies the least memory, and it also has the simplest architecture, lowest
execution time, and an accuracy of 96% compared to transfer learned pre-trained ShuffleNet, GoogleNet,
and SqueezeNet models. Afterward, ICNM, based on its advantages, is reused through transfer learning
to classify the defects of PV panels into five classes, i.e., bird drop, single, patchwork, horizontally aligned
string, and block with 97.62% testing accuracy. This proposed approach can identify and classify the PV
panels based on their health and defects faster with high accuracy and occupies the least amount of the
system’s memory, resulting in savings in the PV investment.

Keywords: deep convolution neural network; PV panels; infrared images; hotspots

1. Introduction

Electrical energy fulfils the human demand in every sector, i.e., industry, commercial,
agriculture, education, etc.; therefore, it has an ever-growing demand [1,2]. However, the
majority of the energy production sources across the globe are fossil fuel-based power
plants, even though fossil fuels are limited in nature [1–3]. For example, Pakistan is heavily
dependent upon conventional thermal power plants for its energy needs [3,4]. Moreover,
the burning of fossil fuels such as oil, gas, coal, etc., emits greenhouse gases such as
carbon dioxide, methane, nitrous oxide, water vapours, etc., which trap solar radiation in
the earth’s atmosphere and cause significant environmental degradation such as climate
change [2,3,5,6]. As per the literature, electrical energy generation and consumption
account for two-thirds of global stack emissions [7].

To achieve green energy sustainability, solar energy, a green, low carbon renewable
energy source, is one of the best energy production alternatives with 26–217 gCO2eq/kWh
emissions compared to the 530 gCO2eq/kWh emissions of thermal plants on a global
average [2]. As per the literature, solar photovoltaics (PV) along with wind energy sources
are expected to meet 88% of global energy demand by 2050 [1]. However, investment in a
PV system is high, and the payback time defines PV system economic viability, which is
highly dependent upon PV system performance and lifetime [3,8]. Therefore, PV system
manufacturers must guarantee their long-term performance and lifespan, which is reflected
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in the PV datasheet [9]. PV system performance suffers with time due to aging, which is a
loss process, or due to defects such as component breakdown, which has an immediate
impact [10]. Moreover, in the case of PV system defects, PV efficiency and output suffer
from a noticeable impact on payback time [3,8].

1.1. Losses in PV System

The power loss in a PV system arises due to different factors, including manufacturing
defects, transportation, installation, short circuit, open circuit, partial shading, shading,
line to line fault, arc fault, bird drops, dust accommodation, module mismatch, environ-
mental degradation, ageing, cell cracking due to mechanical stresses, etc., in real-time
operations [1,8,11–17]. Details on PV system defects are provided in Basnet et al. [18].
These defects may limit 50% of power output per module [11]. Generally, all defects
are treated as faults in the system. However, defects such as bird drops, shadows, dust
accommodation, etc., reduce the PV output by localised heating of the PV cell (hotspot
formation) due to the operation in the reverse region and dissipating healthy cell current
due to series connection [1,14,19]. If such issues remain undetected and persist on the
PV surface, these issues result in permanent failure/faults of PV panels [20]. Moreover,
defects/hotspots formation on PV panels’ occurrence frequency, duration of stay, and
intensity are unpredictable and are purely natural parameters [21]. In addition, only a few
defects are identifiable through naked eye/visual inspection, such as corrosion, burned and
broken cells, bubbles, etc. [19]. Therefore, a fast, low-storage, and accurate identification
system will ensure the safe operation of the PV system during its lifetime by the timely
identification of hotspots/defects/faults in the PV system during its normal operation [22].
However, it is important that if defects do not affect the output or system safety, the defect
is not treated as a failure [8].

1.2. Health Monitoring Approaches of PV System

To prolong the performance of PV panels, an accurate and efficient approach to
identify and classify PV panels because of defects is inevitable [1,11]. Generally, PV system
health and defects are identified using two broad approaches: through electrical signal
(voltage and current characteristics of PV panels) [16–18] and non-invasive image-based
approaches, such as electroluminescence (EL) images [23], infrared (IR) thermography
of PV panels [1,8,11,12,19], fluorescence images [24], photoluminescence images [25] etc.
However, IR thermography of PV panels is widely used in the literature due to its speed,
low cost, large-scale outdoor applications, user friendliness, and accuracy [8,11,12,19].

1.3. Non-Invasive Images-Based Classification of PV Panels’ Health and Defects:
Literature Review

Different image processing-based machine learning and deep learning approaches are
utilised to identify and classify the PV system defects based on images. Niazi et al. [26] used
the naïve-Bayes approach to classify PV panels into two classes, defective and non-defective,
with IR thermograph texture features with a 98.4% mean recognition rate. Meanwhile, Ali
et al. [1] used a support vector machine on IR images after extracting image features and
classified PV panels into three classes based on health with 92% accuracy. Naïve Bayes was
also used to classify PV panels into three categories (defective, non-defective with hotspots,
and non-defective without hotspots) using an IR thermograph dataset with a 94.1% mean
recognition rate [27].

However, in deep learning, i.e., using neural networks, Dunderdale et al. [11] used
IR images to classify PV panels into defective and non-defective with 91.2% accuracy and
defects (block, patchwork, single, and string) identification with 89.5% accuracy using
a scale-invariant feature transform feature descriptor, spatial pyramid matching, and
deep learning approaches. Akram et al. [12] developed an isolated light convolution
isolated neural network trained on PV system EL thermographs, and they used a transfer
learning approach on PV system IR thermography for defect detection with 99.23% accuracy.
Similarly, the isolated convolution neural networks to classify IR images based on dust



Sensors 2021, 21, 5668 3 of 14

and hotspots with 98% accuracy were proposed by Cipriani et al. [13]. Kurukuru et al. [28]
used IR thermographs of eight different panels (one healthy and seven faulty), extracted
texture features, and used a scaled conjugate gradient back propagation algorithm to
adjust the weight of the neural network classifier and achieved 91.7% testing accuracy.
Bommes et al. [29] used aerial IR videos of PV modules and a pre-trained convolutional
neural network, ResNet-50, to classify the 10 common module abnormalities with more
than 90% testing accuracy.

The PV systems have received worldwide acceptance as a green energy solution.
However, the defects/hotspots/faults in the PV systems that arise due to the environment,
manufacturing, transportation, operation, etc., greatly reduce their efficiency and perfor-
mance. In this study, an isolated convolution neural model (ICNM) was built from scratch
to classify PV panels based on their health into three categories—healthy, hotspot, and
faulty—using IR images. The hotspot PV class is the class suffering from dust, shadows,
bird drop issues, etc., and a timely solution to these issues may revert their state to first
class or healthy. Afterward, the results of the isolated model are compared with transfer
learned pre-trained networks such as ShuffleNet, GoogleNet, and SqueezeNet in terms
of storage space through their architecture complexity, fastness, true positive rates (TPR),
false negative rates (FNR), positive predictive values (PPV), false discovery rate (FDR),
and accuracy. Finally, ICNM advantages are utilised using the transfer learning approach
to classify five defects in PV panels—namely, bird drops, block, single, patchwork, and
horizontally aligned (HA) string—which arise due to different environmental issues and
were initially adjusted as two broad health classes, i.e., hotspot and faulty through neurons
weights.

The rest of the study is structured as follows. Section 2 explains the research approach.
Section 3 presents the results followed by discussion, Section 4 and finally, the study
conclusion is provided in Section 5.

2. Research Approach

This study utilises an IR image dataset of a 42.24 kW solar photovoltaic system
located in Lahore, Pakistan [27]. The acquired images are pre-processed for uniformity by
removing unwanted noise. Afterward, the dataset is first segregated into sub-classes, i.e.,
based on their health, i.e., healthy, hotspot, and faulty. Secondly, data of two classes, i.e.,
hotspot and faulty, are further segregated into five sub-classes of defects, i.e., bird drops,
single, block, patchwork, and HA string. After segregation, pre-processed images are
split into training data comprised of 80% randomly selected images and 20% testing data
comprised of the remaining images. Both training and testing datasets are created with an
equal proportion of images to train the networks properly. A validation dataset is a 20%
dataset created to test the models’ design to avoid over-fitting and a performance check of
models by further splitting the training dataset. Finally, a three-class ICNM is built, trained,
and validated against transfer-learned pre-trained networks, i.e., 50-layered ShuffleNet,
22-layered GoogleNet, and 18-layered SqueezeNet. Afterward, the advantages of ICNM,
fast response, simple architecture, and accuracy are used through a transfer learning
approach to classify the five different defects in PV panels. The proposed approach is
presented in Figure 1. The study was carried out on MATLAB 2020a with the following
system specifications: i5 7th generation, 16 GB DDR4 RAM with a 500 GB SSD hard disk,
2GB Ati Radeon Graphics Card, 64-bit operating system, and x64-based processor.
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Figure 1. Proposed approach.

2.1. PV System

PV system output and performance vary due to multiple parameters such as geo-
graphical parameters, i.e., ambient temperature, precipitation, daily solar radiation, etc.,
and orientation angles [2]. For this study, a previously published PV dataset [27], a PV
system installed in Lahore, Pakistan, was obtained and used to classify PV panels based
on health and defects to restrain power losses. The per annum average of geographical
parameters for Lahore city is provided in Table 1. The data is retrieved from the NASA
Meteorological Database using RETScreen Expert software [30].

Table 1. Geographical parameters of Lahore city, Pakistan.

Parameter Values

Geographical coordinates 31.5 N, 74.4 E
Air temperature 24.4 ◦C

Relative humidity 61.6%
Precipitation 551.78 mm

Daily solar radiation—horizontal 4.68 kWh/m2/d
Wind speed at 10 m 2.1 m/s

The literature suggests that bodies with a temperature above absolute zero, zero kelvin,
possess thermodynamic energy and emit electromagnetic radiation in the infrared region,
with a wavelength of 8 to 12 mm [1]. However, some literature suggests that wavelengths
are 700 nm to 1 mm with a 430 THz to 300 GHz frequency and 1.7 eV to 1.24 meV photonic
energy [31]. Infrared thermography was used to examine the PV system’s health, heat
dissipation, and defects based on the thermal properties. The infrared camera, PV system,
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and on-site geographical parameters are provided in Table 2. Details of the experimental
setup are provided in Niazi et al. [27].

Table 2. Details of experimental setup.

Parameter Values

PV system 42.24 kW
PV strings 8

PV modules per string 22
PV panel rating 240 W
Thermal camera FLIR VUE-Pro 640

Thermal camera position Handheld, horizontal aligned
Ambient temperature 32–40 ◦C

Wind speed 6.9 m/s
Irradiance level 700 W/m2

Thermal image- bit depth 8-bit
Spatial resolution 640 × 512/pixel

2.2. Pre-Processing

Raw infrared image datasets of 42.24 kW PV systems are pre-processed to increase
classification accuracy and reduce unwanted mismatches. Firstly, PV system datasets were
cleaned by removing unwanted background objects such as ground, trees, railings, etc.,
as much as possible. Afterward, images were resized to obtain uniformity. A dataset
of 315 infrared images based on PV system health was used. For each sub-class, data is
provided in Table 3 and images are reflected in Figure 2.

Table 3. Classification of IR images dataset based on health condition.

PV System Health Images Set

Healthy 32.38%
Hotspot 31.43%
Faulty 36.19%
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Moreover, different PV defects on inspection of a thermal image are easily identifi-
able [11]. However, it is not possible for a large-scale PV system scenario. However, in
defects, birds drop defects that have no specific shape and location, as they are highly
unpredictable. The single defect is identifiable as a small rectangular shape. A patchwork
defect consists of multiple single defects scattered on the PV surface. The HA string defect
is a single defect in a row. Moreover, block defects almost cover up to one-third of PV
panels. All these defects are visible due to hotter regions compared to the rest of the
PV panels, as shown in Figure 3. Extensive details are provided in [11,32]. A dataset of
213 infrared images for defects on PV panels is provided in Table 4.
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Table 4. Details of experimental setup.

PV System Health Images Set

Bird Drop 5.16%
Single 36.62%

Patchwork 5.16%
HA String 12.68%

Block 40.38%

2.3. Isolated and Trained Transfer Learning-Model-Based Classifiers

The classifiers are rule-based systems capable of data transfer with a parallel pro-
cessing pool. Classifiers continuously receive new information and process it based on
capabilities already learned [33]. In this era, deep neural network models are one of the
most powerful tools utilised for classification [23]. Based on deep neural network classifiers,
there are mainly two approaches: isolated neural network and transfer learning [12].

In an isolated neural network model, first, a new model is prepared and trained from
scratch without any previous knowledge, without adjusting the weights of its neurons to
any other problem [12]. In the transfer learning approach, a neural network model has
been trained on a base image dataset for a given problem; the model-learned knowledge,
i.e., neurons’ weight adjustment, layers, and connections (architecture) advantages, are
reutilized, or learning is transferred to a new and different image dataset. The architecture
of models concisely trained on different classification problems through transfer learning
is reused for new problem solutions [12]. The advantage transfer learning offers is that its
architecture, i.e., layers, connections, and weight adjustment, is reutilized for a new problem
solution rather than building a new model from scratch that is trained iteratively for the
desired performance, which results in fast convergence and less data for training. Two main
approaches to transfer learning are pre-trained model-based transfer learning and a model
that is built from scratch, trained, and afterwards utilize the transfer learning approach for
a new issue [12,34]. However, pre-trained deep networks are publicly available, such as
GoogleNet [35], SqueezeNet [36], Resnet50 [23,37], MobileNet v2 [11,23], Inception V3 [23],
ShuffleNet [38], etc., and are widely used for classification problems.

The generic architecture of an ICNM for features extraction and classification of input
images based on features is provided in Figure 4. In this study, IR images were used
to classify PV panels based on their health. For this purpose, different architectures of
ICNM are created from scratch, trained, and validated to avoid over-fitting. Secondly,
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pre-trained deep neural networks, i.e., SqueezeNet, GoogleNet, and ShuffleNet, after the
transfer learning approach, are utilised on the same dataset to validate the performance
of ICNMs in terms of storage space due to architecture complexity, TPR, FNR, PPV, FDR,
execution time, and accuracy. Finally, the best-isolated neural model is reutilised by the
transfer learning approach to re-adjust the neurons’ weights to classify the five different
defects of PV panels into their sub-classes, which were initially classified as hotspots or
faulty classes.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 15 
 

 

The generic architecture of an ICNM for features extraction and classification of input 
images based on features is provided in Figure 4. In this study, IR images were used to 
classify PV panels based on their health. For this purpose, different architectures of ICNM 
are created from scratch, trained, and validated to avoid over-fitting. Secondly, pre-
trained deep neural networks, i.e., SqueezeNet, GoogleNet, and ShuffleNet, after the 
transfer learning approach, are utilised on the same dataset to validate the performance 
of ICNMs in terms of storage space due to architecture complexity, TPR, FNR, PPV, FDR, 
execution time, and accuracy. Finally, the best-isolated neural model is reutilised by the 
transfer learning approach to re-adjust the neurons’ weights to classify the five different 
defects of PV panels into their sub-classes, which were initially classified as hotspots or 
faulty classes.  

 
Figure 4. Deep neural network generic architecture for PV classification. 

2.4. Training and Testing Dataset 
Pre-processed IR image datasets are divided into training and testing data. The train-

ing dataset is formed by randomly distributing 80% of the images, which are provided in 
Tables 3 and 4, into new datasets to train the deep neural networks. The remaining 20% 
of the image datasets are utilised to test the efficiency and accuracy of the models. More-
over, each dataset is split into both categories randomly and in equal proportion to ensure 
the proper training and testing of the deep neural network models.  

3. Results 
Training and validation parameters for all schemes were kept constant for compari-

son, provided in Table 5. 

Table 5. Training parameters used in deep convolution neural networks. 

Solver SGDM 
Initial learn rate 0.001 

Epochs 60 
Momentum 0.9 

Activation function ReLU 
Learn rate drop factor 0.0 
Learn rate drop period 0.0 

  

Figure 4. Deep neural network generic architecture for PV classification.

2.4. Training and Testing Dataset

Pre-processed IR image datasets are divided into training and testing data. The
training dataset is formed by randomly distributing 80% of the images, which are provided
in Tables 3 and 4, into new datasets to train the deep neural networks. The remaining
20% of the image datasets are utilised to test the efficiency and accuracy of the models.
Moreover, each dataset is split into both categories randomly and in equal proportion to
ensure the proper training and testing of the deep neural network models.

3. Results

Training and validation parameters for all schemes were kept constant for comparison,
provided in Table 5.

Table 5. Training parameters used in deep convolution neural networks.

Solver SGDM

Initial learn rate 0.001
Epochs 60

Momentum 0.9
Activation function ReLU

Learn rate drop factor 0.0
Learn rate drop period 0.0

3.1. Isolated Neural Network and Transfer Learned Pre-Trained Networks for PV Classification
Based on Health

Firstly, the classification of PV panels based on their health is conducted using ICNMs.
Different architectures of the ICNM were built by varying convolution layers, with batch
normalisation, with and without activation functions, etc. ICNM based on higher validation
accuracy, TPR, FNR, PPV, FDR, and validation loss is selected and compared with transfer
learned, SqueezeNet, GoogleNet, and ShuffleNet, pre-trained networks from open sources,
MathWorks. Detailed comparisons of models are provided based on training loss, training
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accuracy, validation loss, validation accuracy, execution time, and architecture complexity.
Table 6 provides the information of ICNMs, whereas Table 7 reports the information on the
pre-trained networks. All models were validated on the IR images dataset that was not
utilised in the training phase. Figures 5 and 6 show the training loss of different layer ICN
models and a pre-trained network for health classification of the PV system over 60 epochs,
respectively. Training loss is provided on the vertical axis, and the epochs/experience are
provided on horizontal axis. Training loss diagnoses the condition of model; for instance,
six and seven-layered ICNMs loss is minimising, which represents their good learning
compared to eight and nine-layered ICNMs and pre-trained networks. Moreover, seven-
layered ICNMs model training loss reaches stable points with the least variations, which
means good fit learning.

Table 6. Different layer ICN models.

Layers Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

Execution
Time

6 0 100% 0 96% 6 min 47 s
7 0 100% 0.2 96% 8 min 35 s
8 0.00033 100% 1.13 84% 17 min 18 s
9 0.18 97.66% 0.46 88% 35 min 34 s

Table 7. Pre-trained models.

Model Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

Execution
Time

SqueezeNet 0.043 99.22% 0.037 100% 12 min 45 s
GoogleNet 0.003 100% 0.06 98.41% 28 min 28 s
ShuffleNet 0.003 100% 0.08 100% 23 min 23 sSensors 2021, 21, x FOR PEER REVIEW 9 of 15 
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3.2. Transfer Learning on an Isolated Model for Defects Classification

The seven-layered ICN model initially trained on IR images to classify PV panels
into three classes based on health was re-utilised after the transfer learning approach to
classify PV panels defects among two health sub-classes, i.e., hotspot and faulty, due to
its training accuracy, training loss, validation loss, validation accuracy, execution time,
simple architecture, and lower storage requirement. The testing accuracy of the seven-
layered transfer learned model for five defects is provided in Table 8, while training loss
is illustrated in Figure 7. Pre-trained network results on five defects classification are
provided in Table 9. It is noted that TPR, FNR, PPV, and FDR are based on testing results
on trained networks.

Table 8. Defects classification using proposed seven-layered transfer learned ICNM.

Class TPR FNR PPV FDR Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

Testing
Accuracy

Execution
Time

Bird drop 100 0 100 0

0 100% 1.97 ×
10−5 100% 97.62% 8 min 10 s

Patchwork 50 50 100 0
Single 100 0 100 0
String 100 0 100 0
Block 100 0 94.4 5.6
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Table 9. Defects classification using pre-trained networks.

Network Class TPR FNR PPV FDR Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

Testing
Accuracy

Execution
Time

Squeeze
Net

Bird drop 100 0 100 0

0.009 100% 0.24 94.12% 100% 12 min
Patchwork 100 0 100 0

Single 100 0 100 0
String 100 0 100 0
Block 100 0 100 0

Google
Net

Bird drop 100 0 100 0

0.013 100% 0.07 97.62% 97.62% 28 min 21 s
Patchwork 50 50 100 0

Single 100 0 94.1 5.9
String 100 0 100 0
Block 100 0 100 0

Shuffle
Net

Bird drop 100 0 100 0

0.003 100% 0.2 94.12% 97.62% 21 min 38 s
Patchwork 100 0 100 0

Single 100 0 94.1 5.9
String 80 20 100 0
Block 100 0 100 0

3.3. Transfer Learning on Augmented Dataset

The defects-based dataset is imbalanced since defects occurrence and frequency is a
natural parameter [21]. A new balanced augmented dataset of defects based on 275 images
(with 20% of each class) is created using scaling and shifting (0–20◦) with noise [39].
Afterwards, data are split randomly in an 80:20 training and testing ratio but with equal
proportions, and models are trained. The training loss of the model with augmented
datasets of defects is provided in Figure 8, and detailed results of the models’ performance
are provided in Table 10. TPR, FNR, PPV, and FDR are based on testing accuracy. MATLAB
2020a with core™ i5, 8 GB Ram was used for this section.
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Table 10. Augmented data-based defects classification.

Network Class TPR FNR PPV FDR Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

Execution
Time

Seven-
layered
transfer
learned
model

Bird drop 100 0 100 0

7.02 ×
10−5 100% 1.06 93.3% 11 min 1 s

Patchwork 100 0 91.7 8.3
Single 100 0 91.7 8.3
String 90.9 9.1 100 0
Block 90.9 9.1 100 0

GoogleNet

Bird drop 90.9 9.1 100 0

0.017 99.22% 0.43 92.7% 40 min 20 s
Patchwork 100 0 100 0

Single 100 0 84.6 15.4
String 100 0 100 0
Block 90.9 9.1 100 0

ShuffleNet

Bird drop 100 0 100 0

0.0028 100% 0.27 91.1% 31 min 19 s
Patchwork 100 0 100 0

Single 100 0 91.7 8.3
String 100 0 100 0
Block 90.9 9.1 100 0

Squeeze
Net

Bird drop 100 0 100 0

0.00085 100% 1.17 89.9% 17 min 56 s
Patchwork 100 0 100 0

Single 100 0 73.3 26.7
String 90.9 9.1 100 0
Block 72.7 27.3 100 0Sensors 2021, 21, x FOR PEER REVIEW 12 of 15 
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4. Discussion

PV systems are widely used globally because of their green renewable energy nature,
while defects blocking the PV cell’s radiation absorption capability result in current dis-
sipation, localised heating, and in turn energy and investment loss. Defects that remain
undetected lead to the total faultiness of PV panels. Therefore, different methods are used
to monitor the condition of PV panels/modules for prediction-based maintenance. For
predicting maintenance, different approaches such as electroluminescence, thermographs,
UV-fluorescence, transmission methods, etc. are used [40]. Therefore, in this study, IR
thermographs are carried out for prediction-based maintenance.

In the literature, linear and nonlinear, feature-based, deep network-based classifiers,
etc. are extensively used for PV system classification [1,11–13,26–29]. Linear and feature-
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based classifiers such as SVM, naïve Bayes, etc., are used to differentiate PV panels based on
their health or defects into two and three categories. These classifiers have the advantage
of simple structure, less complexity, storage requirement, and execution time. Moreover,
their accuracy increases with the most appropriate feature selection in the dataset. In
contrast, nonlinear and deep network-based classifiers such as convolution neural networks
offer an advantage in terms of multi-classes-based classification because of their complex
architecture and nonlinearity, resulting in higher accuracy. These classifiers extract the most
relevant features from the dataset and adjust the neuron’s weight iteratively to classify
multiple defects.

However, linear and feature-based classifier accuracy suffers from increased output
classes because of their simple architecture. Moreover, their accuracy is highly dependent
upon the most relevant feature extraction. The image’s dataset in different environmental
conditions may require different features, resulting in further limitations of these classifiers.
On the other hand, nonlinear and deep network-based classifiers, due to their complex
architecture, need more storage and advanced computing systems for their long execution
time, even in fewer classes-based differentiation problems.

In this study, multi-classes-based classification with less execution time, high accuracy,
less architectural complexity, and storage requirements issues are addressed. Firstly, the IR
images dataset was split into three health-based categories using a simple seven-layered
ICNM with 96% accuracy. Afterward, isolated trained ICNM was re-utilised using the
transfer learning approach to classify the five defects of the PV system with 97.63% testing
accuracy in eight minutes. Moreover, a new augmented dataset of five-class defects was
created using scale and shift, with associated noise to balance the dataset. A seven-layer
transfer learned model and pre-trained networks were re-trained, validated, and tested
on an augmented images dataset. The seven-layered transfer learned model has the
highest validation accuracy, with a testing accuracy of 96.36% in the presence of a noisy
augmented dataset. The seven-layer transfer learned model has the advantage of the
least computational time requirement, storage requirement, architecture complexity, and
computing system requirements compared to pre-trained networks. It is important that
ICNM 7-layered includes input and output not only hidden layers.

Moreover, the direct classification of a PV system into six classes based on health
and five defects requires modifications in ICNM to extract its most relevant features,
which increases the complexity, storage requirement, and execution time. However, in
this approach, initially, three health-based classes adjusted the neurons’ weights in eight
minutes, and through transfer learning, a seven-layered ICNM trained model after neurons
weight re-adjustment classified five defects with higher accuracy in less time compared
to other pre-trained networks with no increase in architectural complexity and through a
simple computing system.

5. Conclusions

PV panels are widely used across the globe as a promising solution to global climate
change, introducing reliability, investment, and output loss in the system due to hotspots
and faultiness. The timely monitoring of PV panel health and defects can avoid their
permanent failure. In this paper, a fast, low-storage, and simple architecture of an isolated
deep convolution-based neural model was built and utilised with 96% accuracy to classify
PV panels into three categories based on health. Afterward, a transfer learning approach
was utilised on the same isolated built model to classify the PV panels’ defects, initially
placed in hotspot, and faulty with 97.62% testing accuracy on a new IR images dataset
not used in training and validation in eight minutes. However, an augmented images
dataset of defects resulted in 96.36% testing accuracy. The isolated neural network results
are validated against pre-trained high storage, complex architecture, and high execution
time neural networks. This approach can classify PV panels to restrain the power loss and
ensure the shortest payback time possible. Future work includes the testing of ICN models
on big datasets without the need of data augmentation.
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