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Small heat shock proteins (sHsps) endow cells with stress tolerance. Of the

various sHsps in mammals, HspB1, also known as Hsp27, is the most ubiq-

uitous. To examine the structure and function of HspB1, we expressed, puri-

fied, and characterized HspB1 from Chinese hamster (Cricetulus griseus)

ovary cells (CgHspB1). CgHspB1 forms a large oligomeric structure. We

observed a monodisperse 16-mer with an elongated sphere, but this is

affected by changes in various conditions, including temperature. Under

dilute conditions, CgHspB1 dissociates into small oligomers at elevated tem-

peratures. The dissociated conformers interacted with the gel filtration col-

umn through hydrophobic interactions. In contrast, dissociation of the

oligomer was not observed by small-angle X-ray scattering at 55 °C. The
result partially coincides with the results of size exclusion chromatography,

showing that dissociation did not occur at high protein concentrations. How-

ever, a significant structural change in the oligomeric conformations appears

to occur between room and higher temperatures. Reflecting their status as

homeotherms, mammalian sHsps are regulated by phosphorylation. A phos-

phorylation mimic mutant of CgHspB1 with the replacement of Ser15 to

Asp exhibited relatively lower oligomer stability and greater protective abil-

ity against thermal aggregation than the wild-type protein. The result clearly

shows a correlation between oligomer dissociation and chaperone activity.

Small heat shock proteins (sHsps) endow cells with

stress tolerance. sHsps bind to partially folded or

denatured proteins, thereby preventing irreversible

aggregation or promoting correct substrate folding

[1,2]. Overall amino acid sequence homology between

sHsps is considerably lower compared to other chaper-

ones. Their common feature is the a-crystallin domain

which is named after the a-crystallin in vertebrate

lenses [3]. The N-terminal region is highly variable,

and the C-terminal extension is partially conserved

with the consensus IXI motif [4]. Most sHsps

take large oligomeric structures composed of 12–36

subunits [5–7]. The sHsp from Methanocaldococ-

cus jannaschii (MjHsp16.5) forms a spherical 24-mer

oligomer with a diameter of 12 nm (PDB-ID: 1SHS)

[7]. The sHsp of Sulfolobus tokodaii strain 7

(StHsp14.0) forms a similar oligomer composed of

24 subunits (PDB-ID: 3VQK) [8]. On the contrary,

the sHsp from wheat (wHsp16.9) forms a double-

ring-shaped oligomer consisting of 12 subunits

(PDB-ID: 1GME) [6]. We have determined the crys-

tal structure of a sHsp from the fission yeast,

Schizosaccharomyces pombe, SpHsp16.0. SpHsp16.0

forms a hexadecameric oligomer structure in which
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eight dimers of SpHsp16.0 form an elongated sphere

with 422 symmetry (PDB-ID: 3W1Z) [9].

There exist 10 genes encoding sHsps in mammalian

genomes [10]. They differ slightly in monomeric molec-

ular weight, stress inducibility, oligomeric structure,

chaperone activity, and tissue distribution [11–13].

HspB1/Hsp27 is almost ubiquitously expressed in all

human tissues [11,13] and is involved in the regulation

of many vital functions. HspB1 seems to be responsi-

ble for regulation and stabilization of the cytoskeleton

[14,15], possesses anti-apoptotic activity [16,17], and

protects the cell against oxidative stress [18,19]. Mam-

malian sHsps, which reflect the homeothermic status

of mammals, are regulated by phosphorylation. Extra-

cellular stresses induce phosphorylation two or three

serine residues.

The molecular architecture of HspB1/Hsp27 is con-

troversial. Analytical ultracentrifugation analysis

showed that the mean molecular mass is 730 kDa [20].

On the contrary, HspB1/Hsp27 in the nonphosphory-

lated state was reported to form 24-mers by gel-filtra-

tion chromatography studies [21]. Lelj-Garolla et al.

[22] showed that HspB1/Hsp27 exists in the equilib-

rium state of monomers/dimers, tetramers, 12-mers,

and 16-mers based on sedimentation velocity analysis.

The same group has shown that oligomerization of

HspB1/Hsp27 increases with the temperature elevation

from 10 to 40 °C. The largest oligomers at 10 °C were

8–12-mers, whereas oligomers as large as 22–30-mers

were observed at 40 °C [23]. This observation contra-

dicts the general knowledge that the large oligomeric

structures of sHsps disassemble to smaller oligomers at

the high temperature [24,25]. The analysis by size

exclusion chromatography showed that the wild-type

HspB1/Hsp27 eluted as a broad peak with an average

molecular mass of approximately 590 kDa [26]. The

molecular mass decreased by introducing phosphoryla-

tion mimic mutations. Chaperone activity is also

increased by mutations. Therefore, it is reasonable to

think that the dissociation of oligomers is correlated

with molecular chaperone activity.

The crystal structure of the human HspB1 a-crys-
tallin domain has been reported [27]. Unexpectedly,

the HspB1 fragment does not form the typical b7/b7
dimers but rather hexamers by an asymmetric contact

between the b4 and the b7 strands from the adjacent

a-crystallin domain.

In this study, we expressed and characterized HspB1/

Hsp27 from Chinese hamster ovary (CHO) cells.

According to the scientific name of the Chinese hamster,

Cricetulus griseus, it is referred to as HspB1 from CHO

cells (CgHspB1) hereafter. CHO cells are mostly used

for industrial production of therapeutic proteins.

Proteostasis in CHO cells should be important for the

production of therapeutic proteins. However, there have

been only a few reports on chaperones, including

HspB1/Hsp27 in CHO cells. One of the advantages of

CHO cells compared with other mammalian cells is its

robustness. HspB1/Hsp27 is also known to play a role

in the inhibition of apoptosis and actin cytoskeletal

remodeling. Thus, it may take an essential role in the

robustness of CHO cells.

We have firstly performed structural and functional

characterization of HspB1/Hsp27 from CHO cell. The

results will give the insights not only to the functional

mechanism of HspB1/Hsp27 but also to the proteosta-

sis and robustness of CHO cell.

Materials and methods

Cloning, expression, and purification

The full-length gene for CgHspB1 was amplified from total

cDNA of CHO cells using the primers 50-GGA TAT CCA

TAT GAC CGA GCG CCG CG-30 and 50-GAA TTC

CTA CTT GGC TCC AGA CTG TTC CGA CTT C-30.
The amplified DNA fragment was digested with Nde I and

EcoR I and inserted into the Nde I/EcoR I site of pET23b.

Then, the constructed plasmid, pET23b-wild-type CgHspB1

(CgHspB1WT), was used for the production of

CgHspB1WT in Escherichia coli BL21 Star (DE3). The

plasmid for the production of the phosphorylated mimic

CgHspB1, CgHspB1 with S15D mutation (CgHspB1S15D),

was made through site-directed mutagenesis with the pri-

mers 50-GCT GCT GCG GAG CCC CGA CTG GGA

ACC ATT CCG GG-30 and 50-CCC GGA ATG GTT

CCC AGT CGG GGC TCC GCA GCA GC-30 using

pET23b- CgHspB1WT as a template [28].

Escherichia coli BL21 (DE3) cells transformed with

pET23b-CgHspB1WT or pET23b-CgHspB1S15D were

grown at 37 °C in Luria–Bertani medium containing

100 µg�mL�1 ampicillin for 24 h. The cells were harvested

by centrifugation at 5000 g for 10 min at 4 °C.
The harvested cells were suspended in buffer A (50 mM

Tris/HCl, pH 8.0) and disrupted by sonication, and the sus-

pension of disrupted cells was centrifuged at 24 000 g for

30 min at 4 °C. The supernatant was applied to a TOYO-

PEARL DEAE-650 anion exchange column (Tosoh,

Tokyo, Japan) equilibrated with buffer A. Proteins were

eluted with a linear gradient of 0–400 mM NaCl in buffer

A. Fractions containing CgHspB1 were pooled and dia-

lyzed with buffer A overnight. The dialyzed protein solu-

tion was applied to a RESOURCE Q column (GE

Healthcare Bio-Sciences, Buckinghamshire, UK) equili-

brated with buffer A. Proteins were eluted with a linear

gradient of 0–500 mM NaCl in buffer A. Fractions contain-

ing CgHspB1 were pooled, concentrated by ultrafiltration
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(Amicon Ultra, Merck Millipore, Billerica, CA, USA), and

then applied to a HiLoad 26/60 Superdex 200 pg size exclu-

sion column (GE Healthcare Bio-Sciences) equilibrated

with buffer B (50 mM Tris/HCl pH 7.5, 0.1 mM EDTA,

150 mM NaCl).

Isopropyl malate dehydrogenase from Thermus ther-

mophilus HB8 (IPMDH) was expressed in E. coli and puri-

fied as described previously [29].

Protein aggregation measurements

The thermal aggregation of porcine heart citrate synthase

(CS) was monitored by measuring light scattering at

500 nm with a spectrofluorometer (FP-6500; JASCO,

Tokyo, Japan) at 45 °C as described previously [30]. Native

CS (50 nM, monomer) was incubated in TKM buffer

(50 mM Tris/HCl, pH 7.5, 100 mM KCl, and 25 mM

MgCl2) with or without CgHspB1WT or CgHspB1S15D.

The assay buffer was preincubated at 45 °C and continu-

ously stirred throughout the measurement.

Size exclusion chromatography

Size exclusion chromatography was performed with a gel-fil-

tration column (SB-804HQ; Showa Denko, Tokyo, Japan)

using an HPLC system, PU-1580i, connected to a MD1515

multiwavelength detector (JASCO) as described previously

[31]. CgHspB1WT or CgHspB1S15D was diluted to the

specified concentrations (as monomer) in buffer B. A 100-µL
aliquot of diluted CgHspB1WT or CgHspB1S15D was

heated at the specified temperature for 30 min and then

loaded onto a column heated at the same temperature and

eluted with buffer B with or without 20% ethylene glycol at

a flow rate of 1.0 mL�min�1. The proteins are monitored by

the absorbance at 215 nm. To examine the reversibility of

the dissociation, CgHspB1WT or CgHspB1S15D preheated

at 45 °C for 30 min was analyzed by gel filtration at room

temperature after cooling at 25 °C for 30 min.

Size exclusion chromatography–multiangle light

scattering

The purified CgHspB1 was analyzed by size exclusion chro-

matography–multiangle light scattering (SEC-MALS) on a

TSKgel G3000XL column (Tosoh) connected to a multian-

gle light-scattering detector (MINI DAWN; Wyatt Tech-

nology, Santa Barbara, CA, USA) and a differential

refractive index detector (Shodex RI-101; Showa Denko)

with an HPLC system, PU-980i (JASCO), as described pre-

viously [31]. A 100-µL aliquot of sample was injected into

the column and eluted with buffer B at 1.0 mL�min�1. The

molecular weight and protein concentration were deter-

mined according to the instructional manual (Wyatt Tech-

nology).

SAXS measurements

Small-angle X-ray scattering (SAXS) was performed on a

laboratory system (NANO-Viewer system; Rigaku, Tokyo,

Japan). The two-dimensional scattering data were measured

using a two-dimensional detector (PILATUS 100K; Dec-

tris, Baden, Switzerland), and the data were circularly aver-

aged to one-dimensional data. The sample detector distance

was set to 791 mm, which was calibrated with silver behen-

ate. The scattering intensity, I(Q), was measured for scat-

tering vectors (Q = 4p sinh/k) ranging from 0.012 to

0.2 �A�1. The temperature was maintained at 25 °C or

55 °C. The innermost part of I(Q) was fitted under the

Guinier approximation [32] to the equation I(Q) = I(0)exp

[�Rg
2Q2/3], where I(0) and Rg are the forward scattering

intensity (Q = 0) and the radius of gyration, respectively. A

series of diluted samples were measured to extrapolate C/I

(0) and Rg
2 to zero protein concentration. The sample con-

centration ranged from 0.56 to 9.93 mg�mL�1. The low-res-

olution model was constructed from the SAXS data at

25 °C by DAMMIF [33] without symmetrical constraints.

Ten independent models were averaged by DAMAVER

[34]. Figures of the low-resolution model were prepared

using the PYMOL program [35].

Results

We amplified full-length cDNA for HspB1/Hsp27

from total cDNA of CHO cells using PCR. The amino

acid sequence of CHO HspB1/Hsp27 (CgHspB1) was

almost identical to those of other mammals (Fig. 1).

Among three putative phosphorylation sites, Ser 15

and Ser 82 of human HspB1 are conserved in

CgHspB1. It is known that murine and human HspB1

has only one cysteine residue, and the dimeric unit is

connected by a disulfide bond [36,37]. Although the

disulfide bond is not indispensable for dimer forma-

tion, it is thought to be related to the regulation of

HspB1 by oxidative stress. The cysteine residue is also

conserved in CgHspB1.

Wild-type CgHspB1 was expressed in E. coli and

purified to homogeneity. First, we examined the chap-

erone activity of CgHspB1WT. CgHspB1WT protected

CS from thermal aggregation at 45 °C (Fig. 2). Near-

complete suppression of aggregation was attained by

the addition of 24 excess molar CgHspB1WT.

Then, we examined the temperature- and concentra-

tion-dependent conformational change of CgHspB1WT

using size exclusion chromatography on an HPLC sys-

tem (Fig. 3). CgHspB1WT exists as a large oligomer simi-

lar to other sHsps. From the retention time, the

molecular weight is estimated to be larger than 100 kDa.

The CgHspB1WT oligomer decreased at the elevated

temperature, and the oligomer reappeared when the
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temperature was shifted to the room temperature

(Fig. 3A). Curiously, peaks for the dissociated small

oligomers or monomers were not observed at the ele-

vated temperatures (Fig. 3B–D). When the concentra-

tion was 6 µM, the oligomer peak completely

disappeared, and only trace broad peaks for smaller

oligomers appeared. The oligomer dissociation was

also dependent on concentration. Almost no change

was observed when the concentration was 30 µM

(Fig. 3D). To examine the conformation of

CgHspB1WT at the elevated temperature, size exclu-

sion chromatography was performed with a buffer

containing 20% ethylene glycol (Fig. 4) [31]. As ethy-

lene glycol reduces hydrophobic interactions,

nonspecific interactions between CgHspB1WT and the

column resin should be reduced. Under these condi-

tions, we observed the peak for CgHspB1WT at a

position for small oligomers. Since the retention time

of the peak corresponds to that for the polymers with

the molecular weights of several ten kDa, they seem to

be dimers. The results suggest that CgHspB1WT disso-

ciates into dimers at elevated temperature and the

hydrophobic surface is exposed.

The mixtures of CgHspB1 and client proteins were

analyzed with size exclusion chromatography (Fig. 5).

CgHspB1WT (30 µM) and CS appeared as separate

peaks at room temperature. At 55 °C, the peak for

CgHspB1WT remained, but the peak for CS

+

+

+

#

Fig. 1. Amino acid sequence alignment of Chinese hamster HspB1 with various sHsps. Amino acid sequence alignment of human HspB1

(HUMAN_HSPB1, P04792), Chinese hamster HspB1 (CgHSPB1), mouse HspB1 (MOUSE_HSPB1, P14602), human HspB2

(HUMAN_HSPB2, Q16082), human HspB3 (HUMAN_HSPB3, Q12988), human HspB4 (HUMAN_HSPB4, P02489), and human HspB5

(HUMAN_HSPB5, P02511) is shown. The three phosphorylated Ser residues in Human HspB1 are marked by ‘+’. The Cys residue that

forms inter-subunit disulfide bond is marked by ‘#’.
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disappeared. The oligomer peaks stayed in the same

position. It is reasonable to think that not the original

large oligomer but the dissociated small oligomers

interact with the denatured CS. Then, the heated

mixture was cooled and analyzed at room temperature.

The large complex of CgHspB1 and CS appeared. The

same experiment was performed using a thermostable

protein, IPMDH (Fig. 5). Since IPMDH does not

denature at 55 °C, the presence of IPMDH did not

affect CgHspB1.

The molecular mass of CgHspB1WT at room tem-

perature was determined to be 384 kDa using SEC-

MALS (Fig. 6A). As the deduced molecular mass of a

subunit is 23.4 kDa, the oligomer is calculated to be a

16-mer. The oligomeric state of CgHspB1WT was also

investigated with SAXS (Fig. 6B). Rg at 25 °C was

estimated to be 60.9 �A, and the molecular mass calcu-

lated from the I(0) value was 361 kDa, which was

almost the same as that calculated from the results of

SEC-MALS. The low-resolution model of the oligomer

of CgHspB1WT in solution was constructed from the

SAXS data at 25 °C (Fig. 6C). The SAXS model was

an oval sphere, which is similar to the crystal structure

of SpHsp16.0 [9]. Curiously, dissociation of the oligo-

mer was not observed by SAXS. At 55 °C, the Rg

value increased to 75.3 �A (Fig. 6B). The results partly

coincide with the size exclusion chromatography

results in which dissociation was not observed at high

protein concentrations, because the SAXS experiment

is performed at a high protein concentration.

Among the putative phosphorylation sites of HspB1,

two are conserved in CgHspB1 (Fig. 1). Since Ser15 is

(s)

(a
.u

)

(nM)

Fig. 2. Effect of CgHspB1WT on thermal aggregation of CS. The

thermal aggregation of CS from porcine heart was monitored by

measuring light scattering at 500 nm with a spectrofluorometer at

45 °C. CS (50 nM, monomer) was incubated in the assay buffer

with or without CgHspB1WT (150, 300, 600, and 1200 nM as

monomers). The average values with the error bars of standard

deviations from triplicate assays are plotted.

A

C

B

D

(min)

(a
.u

.)

6 µM

(min)

(min) (min)

(a
.u

.)

(a
.u

.)

(a
.u

.)

12 µM

18 µM 30 µM

Fig. 3. Oligomer dissociation of CgHspB1

at elevated temperatures. CgHspB1WT (A.

6 µM; B. 12 µM; C. 18 µM; D. 30 µM as

monomer) was incubated at the specified

temperature for 30 min and then analyzed

using size exclusion chromatography at

the same temperature. CgHspB1WT

heated to 55 °C was analyzed by gel

filtration at room temperature after cooling

at 25 °C for 30 min [25 °C(Re)].
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conserved only in HspB1, we focused Ser15 and exam-

ined the effect of phosphorylation by analyzing S15D

mutant. Compared with the wild-type, the

CgHspB1S15D oligomer is unstable (Fig. 7A). Even at

the room temperature, CgHspB1S15D was partially

dissociated into small oligomers, likely dimers

(Fig. 7A,B). CgHspB1S15D showed a significantly

high capacity to protect CS from thermal aggregation

(Fig. 7C). An equimolar amount of CgHspB1S15D

was sufficient to suppress the increase in light scatter-

ing induced by aggregation of CS.

Discussion

We have performed functional and structural character-

ization of HspB1 from Chinese ovary cell (CgGspB1).

CgHspB1 could suppress the thermal aggregation of

CS. CgHspB1 exists as a large oligomer and exhibits

temperature-dependent dissociation. The dissociation

also depends on the concentrations. Curiously, almost

no change was observed at high concentrations. SAXS

experiments also showed that CgHspB1 remained as the

large oligomer at high temperature.

The molecular architecture of HspB1 is controver-

sial. Analytical ultracentrifugation showed that the

mean molecular mass is 730 kDa [20], and gel-filtra-

tion chromatography studies indicated that HspB1

forms 24-mers in the nonphosphorylated state [21].

Our result coincides with the observation by Lelj-Gar-

olla et al. [22] that HspB1 exists as an equilibrium

mixture of monomers/dimers, tetramers, 12-mers, and

16-mers based on sedimentation velocity analysis. Ana-

lytical ultracentrifugation experiments with various

HspB1 concentrations clearly demonstrate that the oli-

gomeric size increases from 10 to 40 °C. These larger

oligomers are in equilibrium with smaller species, and

their association is reversible. Therefore, they are not

nonspecific aggregates [22]. Although we have shown

that CgHspB1 exits as 16-mer structure, it seems to be

variable as there is a difference in the oligomeric struc-

tures between at the room temperature and the ele-

vated temperature.

Rogalla et al. [21] demonstrated that both phospho-

rylated HspB1 and the phosphorylation mimic mutant

showed significantly decreased chaperone activity

in vitro. They concluded that large oligomers of sHsps

are necessary for chaperone action. However, other

studies have clearly shown that phosphorylation mimic

mutations destabilize HspB1/Hsp27 oligomers and

enhance chaperone activity [26].

We have shown that a single phosphorylation

mimic at S15 significantly increased chaperone

(min)

6 µM
(a

.u
.)

Fig. 4. Oligomer dissociation of CgHspB1 analyzed by gel filtration

in the presence of 20% ethylene glycol. CgHspB1WT (6 µM) was

analyzed by gel filtration using buffer containing 20% ethylene

glycol.

A B

(min)

(a
.u

.)

(a
.u

.)

(min)

Fig. 5. Interaction of CgHspB1 with client proteins. CgHspB1WT (30 µM) was incubated with CS (A) or IPMDH (B) at 25 and 55 °C for

30 min and then analyzed by size exclusion chromatography at the same temperature. The mixture incubated at 55 °C was cooled to 25 °C

and analyzed at 25 °C (25 °C Re).(A) CgHspB1 + CS. +, complex of CgHspB1 and CS; *, CgHspB1 oligomer; #, CS. (B) CgHspB1 + IPMDH.

* CgHspB1 oligomer; &, IPMDH dimer; $, IPMDH monomer.
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activity and decreased oligomer stability. Even at the

room temperature, CgHspB1S15D partially dissoci-

ated into small oligomers, likely dimers (Fig. 7A,B).

The hydrophobic character of the dissociated dimers

was clearly shown by the interaction with the gel-

filtration column. The correlation between chaperone

activity and oligomer dissociation is clearly shown by

the comparison between CgHspB1WT and

CgHspB1S15D. However, the idea is contradicting

with the fact that dissociation of CgHspB1WT was

B

CA

(min)

( )

(g
·m

ol
–1

)

(g
·m

L
–1

)

Fig. 6. Oligomeric structure of CgHspB1

analyzed by SAXS. (A) Molecular mass

determination of CgHspB1 by SEC-MALS.

The purified CgHspB1 was analyzed by

SEC-MALS on a TSKgel G3000XL column

connected to a multiangle light-scattering

detector (red) and a differential refractive

index detector (blue) on an HPLC system,

PU-980i. (B) SAXS profile of CgHspB1.

SAXS profiles of CgHspB1 25 °C (black) or

55 °C (red) are shown. (C) Structure of

CgHspB1 oligomer calculated from SAXS

data. The SAXS envelope of CgHspB1

was calculated from the SAXS profile at

25 °C.

A

C

B

(min)

12 µM6 µM

(a
.u

.)
(a

.u
.)

(a
.u

.)

(min)

(s)

(nM)

Fig. 7. Characterization of the

phosphorylation mimic mutant of

CgHspB1 and CgHspBS15D. (A, B)

Oligomer dissociation of CgHspBS15D at

elevated temperatures. CgHspBS15D (A.

6 µM; B. 12 µM) was incubated at the

specified temperature for 30 min and then

analyzed with size exclusion

chromatography using a buffer containing

20% ethylene glycol at the same

temperature. CgHspBS15D heated to

45 °C was analyzed by gel filtration at

room temperature after cooling at 25 °C

for 30 min [25 °C (Re)]. (C) Effect of

CgHspBS15D on the thermal aggregation

of CS. The thermal aggregation of CS

from the porcine heart was monitored by

measuring light scattering at 500 nm with

a spectrofluorometer at 45 °C. Native CS

(50 nM, monomer) was incubated in assay

buffer with or without CgHspBS15D (150

and 300 nM as monomers). The average

values with the error bars of standard

deviations from duplicate assays are

plotted.
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not observed at the relatively high concentration. The

discrepancy can be explained as follows. CgHspB1 is

in the dynamic equilibrium between large oligomers

and small oligomers. In the large oligomeric conforma-

tion, the hydrophobic surface remains inside. The

hydrophobic surfaces are exposed by dissociation of

the oligomers to interact with unfolded polypeptides.

At a high concentration, most of the CgHspB1

remains in the large oligomeric conformation. How-

ever, the large oligomers are not static. They exchange

dimer units which interact with unfolded proteins.

Thus, the hydrophobic surface of the large oligomers

is occasionally exposed by releasing a dimer unit,

which may induce the formation of various oligomeric

structures.
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