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ABSTRACT Due to the ever-increasing data collected in genomic breeding programs, there is a need for
genomic prediction models that can deal better with big data. For this reason, here we propose a Maximum
a posteriori Threshold Genomic Prediction (MAPT) model for ordinal traits that is more efficient than the
conventional Bayesian Threshold Genomic Prediction model for ordinal traits. The MAPT performs the
predictions of the Threshold Genomic Prediction model by using the maximum a posteriori estimation of
the parameters, that is, the values of the parameters that maximize the joint posterior density. We compared
the prediction performance of the proposed MAPT to the conventional Bayesian Threshold Genomic
Prediction model, the multinomial Ridge regression and support vector machine on 8 real data sets. We
found that the proposed MAPT was competitive with regard to the multinomial and support vector machine
models in terms of prediction performance, and slightly better than the conventional Bayesian Threshold
Genomic Prediction model. With regard to the implementation time, we found that in general the MAPT and
the support vector machine were the best, while the slowest was the multinomial Ridge regression model.
However, it is important to point out that the successful implementation of the proposed MAPT model
depends on the informative priors used to avoid underestimation of variance components.
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In plant breeding it is very common to measure ordinal traits like
gray leaf spot (GLS) resistance (0 = no infection, 1 = low, 2 = medium,
3 = high, 4 = total infection level) (Montesinos-López et al., 2015), rice
sheath blight resistance measured on a 0-9 scale, where 0 indicates no
disease and 9 indicates dead or collapsed plants (Zou et al., 2000),
cucumber mosaic virus (CMV) resistance (1 = no symptoms on the
third and fourth axillary shoots, 2 = systemic necrosis on the shoots
and/or mosaic on the leaves of the third axillary shoot [corresponding
to the inoculated leaf], 3 = systemic necrosis on the shoots and/or
mosaic on the leaves of both axillary shoots) (Caranta et al., 2002), etc.

For this reason, appropriate genomic selection (GS) methods for
dealing with ordinal traits have been developed, for example, the
Bayesian Threshold Genomic Best Linear Unbiased Predictor
(TGBLUP) proposed by Montesinos-López et al. (2015). However,
the TGBLUP model requires considerable computational resources
since it was built under a Bayesian framework and involves the
sampling process of high-dimensional unknown parameters itera-
tively. The TGBLUP model is a Bayesian version of classical probit
models which were first introduced by Bliss (1934a, b) and Gaddum
(1933) for binary data.
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The TGBLUP is very competitive in terms of prediction perfor-
mance, as was shown by Montesinos-López et al. (2019), who
compared this method to deep learning (DL) and support vector
machine (SVM). However, due to the fact that the TGBLUP model
was built under a Bayesian framework (that uses Gibbs sampling), it
requires a lot of computational resources because convergence re-
quires considerable time in the context of large data sets. For this
reason, methods for ordinal data that are more cost effective than
Markov Chain Monte Carlo (MCMC) sampling are lacking. One
approach to partially solve this problem of MCMC, is to base the
prediction in terms of different point estimates of the parameters, for
example, by using the maximum a posteriori (MAP) estimate of the
parameters, which maximizes their joint posterior distribution. This
is different from the MCMC framework where the full posterior
probability distribution is explored and then summarized (mean,
median, quantiles, etc.) to draw inferences and make predictions. The
MAP also uses the full posterior distribution, f ðujyÞ}f ðyjuÞf ðuÞ; that
contains all the knowledge about the unknown quantity u to find
point or interval estimates of u, but instead the MAP solves an
optimization problem to estimate a central tendency (point estimate)
of the posterior probability; the u values that maximize the full
posterior distribution, f ðyjuÞf ðuÞ; are called the MAP estimates.
For the latter, the MAP estimator is interpreted as an analog of
maximum likelihood for Bayesian estimation, since instead of max-
imizing the likelihood, it maximizes an augmented likelihood, that
is, the posterior distribution.

For this reason, the MAP is an alternative probability framework
for Bayesian methods under the MCMC framework. It selects the
most likely hypothesis given the data and a prior distribution of the
parameters, is often more tractable than full Bayesian learning,
requires less computing time than MCMC methods, and can be
implemented for large data sets more efficiently. Also, the larger the
data set, the better its performance (Brownlee 2019). However, the
posterior means (pure Bayesian) are always preferred over the MAP
estimates under a theoretical point of view. But when the posterior is
not in closed form or is difficult to sample, MAP estimators can be
calculated much faster in several orders of magnitude than posterior
means. It is also important to point out that if the posterior is
approximately symmetric (more common with larger data sets),
MAP estimates are closer to posterior means and can be a good point
estimate (Gelman et al., 2014). So, the attractiveness of the MAP is
actually that it can be a very cheap approximation of the posterior
mean. One of the drawbacks of the MAP method is that it does not
allow estimating uncertainty in the parameters (SE, variance, etc.),
which is a big deal in association studies, but not a big problem in the
prediction paradigm, since for the evaluation of prediction perfor-
mance, we can use cross-validation and the bootstrap method to
estimate the uncertainty of the parameter estimates.

Applications of the MAP in statistical science for association and
prediction studies are many, for example, for the estimation of item
parameters and latent abilities in item response theory (Rigdon and
Tsutakawa 1983), for estimation in a multivariate normal regression
model with incomplete data (Meng and Rubin 1993), for parameter
estimation in a gammamodel with incomplete data (Meng and Rubin
1993), for parameter estimation in mixed models in the presence of
missing data in quantitative genetics (Lindstrom and Bates 1988; Van
Dyk 2000), for parameter estimation in probit models (Ruud 1991),
for the estimation of the polychoric correlation when two ordinal
items were measured (Chen and Choi 2009) and for image recon-
struction (Dong 2007; Hebert and Leahy 1989).

In genomic selection, MAP strategy has been applied for continuous
traits and ordinal traits. For example, Yi and Banerjee (2009) considered
MAP estimation appropriate for generalized linear models, but not
appropriate for continuous traits. Shepherd et al. (2010) developed a
MAP estimation for the BayesB model, which is a different formulation
than the BayesB estimation done by Hayashi and Iwata (2010), who also
considered a MAP estimation of the BayesA model. Kärkkäinen and
Sillanpää (2013) developed a MAP estimation for the ordinal model
with a Laplace prior distribution of the marker effects.

Parameter estimation using the MAP approach is straightforward
when the f ðujyÞ}f ðyjuÞf ðuÞ has a closed form since an analytical
solution can be obtained using standard calculus techniques. How-
ever, this case is rare even when we have all the full conditionals for
each component of u. For this reason, most of the time the following
are used for MAP estimation: (a) numerical methods (Newton’s
methods, conjugate gradient descendent, etc.) that need first or
second order derivatives, (b) the Expected Maximization (EM) al-
gorithm that does not require derivatives of the posterior density, and
(c) the Monte Carlo method using simulated annealing.

Of the three options, the EM algorithm can be a good alternative
in some problems, since it does not require derivatives of the full
posterior distribution and iteratively allows finding parameter esti-
mates in the presence of missing data and unobserved (hidden)
random variables in the models, and when the random variables
belong to the exponential family, its performance is guaranteed.

The EM algorithm maximizes a lower bound of the likelihood
function or augmented likelihood, better known as the Q-function,
iteratively. Two steps are performed at each iteration: the Expectation
(E) and Maximization (M) steps. The Q-function that consists of
integrating out the missing values, allows obtaining the expected
value of the complete data log likelihood function (observed +
missed), while the M step consists of maximizing the Q-function
over the unknown parameters. This iterative process is repeated until
the convergence criterion is satisfied. Due to the fact that the
maximization step most of the time is computationally simple
because it only involves complete data, and that its convergence is
stable, the EM algorithm enjoys great popularity. The EM algorithm
is safe since it guarantees an increasing likelihood sequence and safe
monotonic convergence (McLachlan and Krishnan 1997; Dempster
et al., 1977; Borman 2004). However, although the EM algorithm
converges toward a stationary point of the marginal posterior density,
(a) it depends on initialization, (b) it is a deterministic algorithm since
it does not allow automatically estimating a variance-covariance
matrix of parameter estimates (the uncertainty), and (c) it is limited
to models where it is possible to conveniently perform the expectation
and maximization steps.

However, to broaden the applicability of the EM algorithm to
circumstances where the M-step is more complicated, Meng and
Rubin (1993) extended the conventional EM to complicated M-steps
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by replacing the M-step of the EM algorithm with a sequence of
conditional maximization (CM) steps in which each component
parameter is maximized individually, conditionally on the other pa-
rameters remaining fixed. Meng and Rubin (1993) called this extension
the Expectation conditional maximization (ECM) algorithm.

The ECM algorithm is attractive as a tool for predicting ordinal
data in the context of genomic selection since the data sets collected
for plant breeding continue growing, and also because there is
empirical evidence that the difference in speed between Bayesian
models under MCMC and a MAP estimation algorithm is far from
trivial. The run time of an MCMC algorithm is typically hours at the
lowest, while EM algorithms perform the analyses in significantly less
time (Kärkkäinen and Sillanpää 2013). For this reason, in this paper
we propose an expected conditional maximization a posteriori thresh-
old (MAPT) model for parameter estimation in the Threshold
Genomic prediction model.

Our proposed method is different from the GEM algorithm that
Kärkkäinen and Sillanpää (2013) used to analyze ordinal genomic
data, since their algorithm works by updating each parameter with
the expected values of the corresponding fully conditional posterior
distribution, while we use the conditional mode of each parameter
and also a different latent variable.

MATERIAL AND METHODS

Statistical models

Bayesian threshold genomic best linear unbiased prediction
(TGBLUP): The ordinal probit model assumes that conditioned to

xi (covariates of dimension p), Yi is a random variable that takes
values 1, ..., C, with the following probabilities:

PðYi ¼ cÞ ¼ Pðgc21 # li # gcÞ
¼ F

�
gc þ xTi b

�
2F

�
gc21 þ xTi b

�
;   c ¼ 1;   . . . ;   C

(1)

where b ¼ ðb1; . . . ;bpÞT are beta coefficient effects associated with
the p explanatory variables, and 2N ¼ g0 , g1 ,   . . . , gC   ¼ N
are threshold parameters. A Bayesian formulation of this model
assumes the following independent priors for the parameters: a flat
prior distribution for g ¼ ðg1; . . . ; gC21Þ (f ðgÞ}1), a normal dis-
tribution for beta coefficients, bj

���s2
b � Nð0;s2

bÞ, j ¼ 1; . . . ;   p, and a
scale inverse chi-squared distribution for s2

b, s
2
b � x22

vb;Sb . The same
prior variance is assigned to all independent covariates, so the
shrinkage is homogeneous.

This threshold model assumes that the process that gives
rise to the observed categories is an underlying or latent con-
tinuous normal random variable li ¼ 2 xTi bþ ei where ei is  a 
normal random  variable with mean  0  and variance  1;   and  the 
values of li are called “liabilities” (Gianola, 1982, and Sorensen
et al., 1995). The ordinal categorical phenotypes in model (1)
are generated from the underlying phenotypic values, li, as
follows: yi ¼ 1 if 2N, li , g1;   yi ¼ 2 if g1 , li , g2;. . ..,
and yi ¼ C if gC21 , li ,N. The TGBLUP model can be
implemented in the BGLR package of Pérez-Rodríguez and de
los Campos (2014) in the R statistical software (R Core Team
2020).

Figure 1 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC), and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine)
for data set 1 in trait DTHD. The left panel
is with interaction (I) and the right panel is
without interaction (WI).
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Multinomial ridge regression: The multinomial Ridge regression
model, with C levels for the response variable, c ¼ 1; 2; ::;C, assumes
the following relation with a regressor variable x:

PðY ¼ cjxÞ ¼ expðb0c þ bT
c xÞPC

k¼1
expðb0k þ bT

k xÞ
(2)

Let Y be the n·C indicator response matrix, with elements Yic ¼
IðYi ¼ cÞ. Then the Ridge penalized log-likelihood function becomes:

lpðb0;bÞ ¼
1
n

Xn
i¼1

nXC
c¼1

yic
�
b0c þ xTi bc

�

2 log
hXC
c¼1

exp
�
b0c þ xTi bc

�io
                                       

2
1
2
lkbk2 (3)

where b0 ¼ ðb01; . . . ;b0CÞ, b is a p ·C matrix of coefficients with
column c equal to bc, regression coefficients are related to outcome
category c, c ¼ 1;   2;   :::;   C, l$ 0 is a regularization parameter that
determines how much the beta coefficients are shrunk toward zero.
The optimization of this loss function (3) can be done using the R

package glmnent (Lasso and Elastic-Net Regularized Generalized
Linear Models) (Friedman et al., 2010). To select the tuning hyper-
parameter (l), this function performs a 10-fold cross-validation with
the training set. This default strategy will be used in the applications.

Support vector machine: Support Vector Machine (SVM) is a
popular and efficient machine learning algorithm proposed by
Vapnik (1995) for binary classification problems. Its versatility
and the fact that it performs well in the presence of a large number
of predictors, even with a small number of cases, makes SVM very
appealing for solving a great variety of problems such as text
categorization, image recognition, speech recognition, face detection,
faulty card detection, credit rating analysis, junk mail classification,
diabetes classification and cancer, to mention some of them (Byun
and Lee 2002; Attewell et al., 2015). SVM is the solution to the
following optimization problem in its dual representation:

Maximize |fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
a

LðaÞ ¼
Xn
i¼1

ai 2
1
2

Xn
i¼1

Xn
j¼1

aiajyiyjK
�
xi; xj

�
(4)

subject to :  
Xn
i¼1

aiyi ¼ 0 and 0#
Xn
i¼1

ai #T (5)

Figure 2 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine)
for data set 1 in trait DTMT. The left panel
is with interaction (I) and the right panel is
without interaction (WI).
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where T is a non-negative tuning parameter that determines the
number and severity of violations to the margin (and to the
hyperplane) that we will permit; it is seen as the total amount of
errors that will be tolerated. Generally, this is chosen by cross-
validation. Kðxi; xjÞ is a kernel, which is a positive definite func-
tion that quantifies the similarity between two observations (James
et al., 2013).

Once found, the a value in the optimization problem in (4) and (5),
â, the training/test observations (x) under SVM are classified according

to the sign of f̂ ðxÞ ¼ b̂0 þ
PNS

i¼1
âiyiKðxi; xÞ, where b̂0 ¼ 1

NS

P
i2S

ðyi 2P
j2S

âjyjKðxi; xjÞÞ and NS is the total number of support vectors (S)

lying on a marginal hyperplane; if f ðxÞ,0, the observation is assigned to
the class corresponding to -1, but if f ðxÞ.0, the observation is assigned
to the class corresponding to 1 (James et al., 2013).

Also, since most of our data sets contain K . 2 classes in the
response variable, we implemented the one-vs.-one approach that
constructs KðK2 1Þ=2 binary SVMs to compare each pair of classes
(k,k’), where one class is coded as +1 and the other as -1. Then, the
prediction is done with a voting scheme where a new observation x is
assigned to the most frequently assigned class in the KðK2 1Þ=2
binary SVM (James et al., 2013). We implemented the SVM with the

radial kernel Kðxi; xi’Þ ¼ exp½2g
Pp
j¼1

ðxij2xi’ jÞ2�, with g a positive

constant (James et al., 2013):The SVM was implemented with the R
package e1071 in the R statistical software (R Core Team 2020).

In all models, the relationship matrix G was calculated as
G ¼ WWT

q (as proposed by VanRaden 2008), where W is a matrix
of scaled markers (or environmental information) of dimension
J ·m.The Gmatrix is a covariance matrix that contains the similarity
between individuals based on marker information, pedigree or
environmental information. However, for the implementation we
obtained the square root of matrix G, and then we post multiplied it
for the design matrix of genotypes.

Maximum a posteriori Threshold (MAPT) genomic
prediction model
Instead of using a Gibbs sampler for this model, as done in the BGLR
R package, here we propose making predictions with the MAP of the
parameters. To do this, an ECM approach is used with the latent
variable approach and re-parameterization proposed by Ruud (1991)
for obtaining the maximum likelihood estimation. First, note that
from the latent representation in model (1), this can be equivalently
represented as

Yi ¼ c⇔gc21 # li # gc⇔0# l�ic # 1

where l�ic ¼ li 2hi 2 gc21
gc 2 gc21

� N

�
2hi 2 gc21
ðgc 2 gc21Þ;

1
ðgc 2gc21Þ

�
, for c ¼ 2; . . . ;

C2 1, and Yi ¼ 1⇔li # 0⇔l�i1 ¼ li 2hi # 0;   Yi ¼ C⇔li $ gC⇔
l�iC ¼ li 2hi $ 0, where l�1 � Nð2hi 2 g1; 1Þ and l�iC �
Nð2hi 2 gC21; 1Þ. Then, by defining d1 ¼ g1, dC ¼ 1 and dc ¼
gc 2 gc21, c ¼ 2; . . . ;   C2 1; and denoting this modified latent vari-
able as li instead of l�i , the complete likelihood (based on the observed
values yi and the latent variables li) of the parameters is given by

Lðb;g; y; lÞ ¼
Yn
i¼1

f
�
yi; li;b;g

� ¼Yn
i¼1

nh
fl�i1ðli;b;gÞIf2N#li#0g

iIfyi¼1g

·
YC21

c¼2

h
fl�icðli;b;gÞIf0#li#1g

iIfyi¼cg

·
h
fl�iC ðli;b;gÞIf0#lig

iIfyi¼Cgo

and from here the corresponding log-posterior distribution of the
parameters is given by

ℓpðb; d; y; lÞ ¼
Xn
i¼1

(
Ifyi¼1g

�
2
1
2
logð2pÞ2 1

2
ðli þ hi þ d1Þ2

�

þ
XC21

c¼2

Ifyi¼cg
"
2
1
2
logð2pÞ þ 1

2
log
�
d2c
�

2
d2c
2

h
li þ hi þ

Xc21

g¼1

dg

 !
d21
c

i2#

þ Ifyi¼Cg
"
2
1
2
logð2pÞ2 1

2
li þ hi þ

XC21

g¼1

dg

 !2#)

2
1

2s2
b

Xp
j¼1

b2
j 2

p
2
log
�
s2
b

	
þ vb

2
log



Sb
2

�

2 log
h
G
�vb
2

	i
2
�
1þ vb

2

	
log
�
s2
b

	
2

Sb
2s2

b

¼ 2
1
2

Xn
i¼1

(
Ifyi¼1gðli þ hi þ d1Þ2

þ
XC21

c¼2

Ifyi¼cg
"
2log

�
d2c
�þ hlidc þ hi þ

Xc21

g¼1

dg

 !i2#

þ Ifyi¼Cg li þ hi þ
XC21

g¼1

dg

 !2)

2
1

2s2
b

Xp
j¼1

b2
j 2

p
2
log
�
s2
b

	
þ vb

2
log



Sb
2

�

2 log
h
G
�vb
2

	i
2
�
1þ vb

2

	
log
�
s2
b

	
2

Sb
2s2

b

where d ¼ ðd1; . . . ; dC21Þ: The expected value of this complete log-
posterior with respect to the conditional distribution of the latent
variables l given the observations y, and current values of the
parameters, bðtÞ and dðtÞ, is given by

E-Step (a):

Q
�
b; d

���bðtÞ;   dðtÞ
	
¼ E

h
ℓpðb; d; y; lÞ

���bðtÞ;   dðtÞ; y
i

¼ 2
1
2

Xn
i¼1

(
Ifyi¼1g

h
l��i þ �l�i þ hi þ d1

�2i

þ
XC21

c¼2

Ifyi¼cg
 
22logðdcÞ þ

(
l��i d2c

þ
h
l�i dc þ hi þ

Xc21

g¼1

dg

i2)!
þ Ifyi¼Cg

"
l��i

þ l�i þ hi þ
XC21

g¼1

dg

 !2#)

where l�i ¼ E½li
��bðtÞ;   dðtÞ; yi� and l��i ¼ Var½li

��bðtÞ;   dðtÞ; yi� are the
mean and variance of the conditional distribution of the latent
variable li. For yi ¼ c, c ¼ 2; . . . ;C2 1, li

��bðtÞ;   dðtÞ; yi is a truncated

normal distribution in ð0; 1Þ with mean 2ðhi þ
Pc21

g¼1
dgÞ=dc and
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variance 1=dc, while for yi ¼ 1, li
��bðtÞ;   dðtÞ; yi is a truncated normal

distribution in ð2N; d1Þ with mean 2ðhi þ d1Þ and variance 1, and
when yi ¼ C, li

��bðtÞ;   dðtÞ; yi is also a truncated normal distribution in

ð0;NÞ with mean 2ðhi þ
PC21

g¼1
dgÞ and variance 1 (in the implemen-

tation this was computed with the R package truncnorm, Mersmann
et al., 2018).

In the ECM algorithm, the M-step in the EM is replaced by several
computationally simpler conditional maximization (CM)-steps,
where in each of these steps, Qðb; d��bðtÞ;   dðtÞÞ is maximized with
respect to one parameter at a time, keeping the others fixed, and
repeating this for each parameter. Specifically, the CM-step in this
model is given by:

CM-steps (b):

Step 1: d
ðtþ1Þ
1 ¼ 2 1

n

Pn
i¼1

fðl�i þ hiÞIfyi¼1g þ Ifyi¼2gðl�i d2 þ hiÞþPC
c¼3

Ifyi¼cg½l�i dc þ hi þ
Pc21

g¼2
dg �g

.

Step 2: For k ¼ 2; . . . ;C2 1; dðtþ1Þ
k is the positive solution of the

following quadratic equation:

2
Xn
i¼1

Ifyi¼kg þ

Xn

i¼1

Ifyi¼kgl�i hi þ
Xn
i¼1

Ifyi¼kgl�i
 !Xk21

g¼1

dg

þ
XC
c¼kþ1

Xn
i¼1

Ifyi¼cg
�
l�i dc þ hi

�þ Xn
i¼1

Ifyi¼cg
 !Xc21

g¼1

g 6¼k

dg

0
BBBB@

1
CCCCAÞdk

þ
Xn
i¼1

Ifyi¼kg
�
l��i þ l2�i

�þ XC
c¼kþ1

Xn
i¼1

Ifyi¼cg
 !

d2k

¼ 0:

Step 3: For
j ¼ 1; . . . ; p;   bðtþ1Þ

j ¼ 2

Pn

i¼1
fxijðl�i þhijþd1ÞIfyi¼1gþ

PC

c¼2
Ifyi¼cgxijðl�i dcþhijþ

Pc21

g¼1
dg ÞgPn

i¼1
x2ijþs22

b

,

where hij ¼
Pp
k¼1
k6¼j

xikbk .

Step 4: s2
b
ðtþ1Þ ¼ 1

2 ðSbþbTbÞ
1þvb

2 þp
2

.

These steps were obtained by solving the derivative of
Qðb; d��bðtÞ;   dðtÞÞ with respect to each parameter equal to 0. For

Figure 3 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine)
for data set 2 in trait DTHD. The left panel
is with interaction (I) and the right panel is
without interaction (WI).
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example, for k ¼ 2; . . . ;C2 1;   the derivative of this quantity with
respect to dk, and equal to 0 is given by
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Then, by multiplying by dk and grouping terms, step 2 is obtained.
This is similar for the rest of the parameters. In all the CM-steps, the
updated parameters obtained in the above CM-steps are used.

When a flat prior is assumed for the beta coefficients, step 4 is
removed, and step 3 of the CM-steps is replaced by

b
ðtþ1Þ
j ¼ 2
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:

The extension of ECM implementation occurs almost immediately
when more predictors are included in this model.

Hyperparameter specification
Hyperparameter specification in genomic prediction is very impor-
tant for building models with reasonable prediction performance.
Here, we adopted the strategy used in the BGLR package (Pérez and
de los Campos 2014), but with some modifications. We assigned a
proportion 12R2of the total variability to the latent variable, to the
linear predictor 2xTi b. Because the average variance of the latent
variables across the individuals is equal to

Vl ¼
1
n

Xn
i¼1

VarðliÞ ¼ 1
n
tr
�
XXT�s2

b þ 1

then by fixing a value for vb, the prior average of the proportion of
the total variability explained by the linear predictor is 12R2 when
the scale parameter of the prior distribution of the variance of the
beta coefficients is chosen to be Sb ¼ ð12R2ÞVl

1
n trðXXT Þ ðvb 2 2Þ. We used

R2 ¼ 0:5  and the vb value used in the applications was set by default
to 1000, which induced a prior distribution for s2

b with mean ð12R2ÞVl
1
n trðXXT Þ

and a coefficient of variation of about 4:48%.

Phenotypic data sets
We used 8 data sets, of which data sets 1-7 were used by Montesinos-
López et al. (2019) and data set 8 was used byMontesinos-López et al.
(2015). More specific details of these data sets can be found in these
articles: Montesinos-López et al., 2015 and 2019. Data sets 1-7 belong

Figure 4 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model model in BGLR,
M2 = MAPT model, M3 = multinomial model
in glmnet and M4= support vector machine)
for data set 2 in trait DTMT. The left panel is
with interaction (I) and the right panel is with-
out interaction (WI).
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to four elite yield trial (EYT) nurseries from the Global Wheat
Program of the International Maize and Wheat Improvement Center
(CIMMYT), that were evaluated at the Norman E. Borlaug Research
Station, Ciudad Obregon, Sonora, Mexico. All these nurseries were
evaluated during four seasons: 2013-2014 (EYT 13-14; here called
data set 1 with 767 lines), 2014-2015 (EYT 14-15; called data set
2 with 775 lines), 2015-2016 (EYT 15-16; called data set 3 with
964 lines) and 2016-2017 (EYT 16-17; called data set 4 with 980 lines).
Most of these data sets were evaluated in the following six environ-
ments: Bed2IR, Bed5IR, Flat5IR, FlatDrip, EHT and LHT. In this
publication we used only the information of two discretized traits,
Days to Heading (DTHD) and days to maturity (DTMT), with five
levels each (1, 2, 3, 4, 5).

Data set 5 is part of data set 3; for this reason, the phenotypic
information and genomic information were obtained in the same way
as in data set 3. However, only 964 lines of the total 980 lines under
study in data set 3 had complete data. But now we used three traits
measured in data set 5: grain color (GC) (1 = yes, 2 = no), leaf rust
(ordinal scale with 5 points) and stripe rust (ordinal scale with 3 points).
Data set 6 and data set 7 are part of the wheat yield trial (YT) nurseries
from CIMMYT’s Global Wheat Breeding Program. For data set 6, the
number of lines used was 945, and for data set 7, 1145 wheat lines were
used. In this publication we only used the ordinal trait lodging (ordinal
scale of 5 points) measured on both data sets.

Data set 8 contains information of 278 maize lines on Gray Leaf Spot
(GLS) disease which is caused by the fungus Cercospora zeae-maydis.

This data set contains phenotypic and genotypic information of the
278 maize lines from the Drought Tolerance Maize (DTMA) project of
CIMMYT’s Global Maize Program. The data set was originally analyzed
by Crossa et al. (2011), and re-analyzed later by González-Camacho et al.
(2012), Montesinos-López et al. (2015) and Pérez-Rodríguez et al. (2018)
using different statistical models. The data set includes information on
disease severity measured on an ordinal scale with 5 points: 1 = no
disease, 2 = low infection, 3 = moderate infection, 4 = high infection
and 5 = totally infected.

Genotypic data
Data sets 1, 2, 3, and 4 were genotyped using genotyping-by-
sequencing (GBS) (Elshire et al., 2011; Poland et al., 2012) at Kansas
State University, using an Illumina HiSeq2500 for obtaining genome-
wide markers. Marker polymorphisms were called across all lines
using the TASSEL (Trait Analysis by Association Evolution and
Linkage) GBS pipeline (Glaubitz et al., 2014) and anchored to the
International Wheat Genome Sequencing Consortium’s (IWGSC)
first version of the reference sequence (RefSeq v1.0) assembly of the
bread wheat variety Chinese Spring. Markers with more than 60%
missing data, less than 5% minor allele frequency and percent
heterozygosity greater than 10% were removed; as a result, we
obtained 2,038 markers. Missing marker data were imputed using
LinkImpute (Money et al., 2015) implemented in TASSEL (Bradbury
et al., 2007), version 5. The lines under study were filtered for more
than 50% missing data and we ended up with 3,486 lines (79.807%)

Figure 5 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine) for
data set 3 in trait DTHD. The left panel is with
interaction (I) and the right panel is without
interaction (WI).
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of the total 4,368 lines originally evaluated in four seasons (767 lines
from data set 1, 775 lines from data set 2, 964 lines from data set 3 and
980 lines from data set 4) (Juliana et al., 2018). The lines used in data
sets 5, 6, and 7 were genotyped with the same marker system that was
used for the other data sets.

The lines of data set 8 were initially genotyped with 1,152 SNPs
and re-genotyped later with 55k SNPs using the Illumina platform.
After removing SNPs with more than 10% missing values and
imputing filtering markers with minor allele frequency smaller than
0.05, a total of 46,347 markers were still available for further analysis.
The data set containing the phenotypic and genotypic information
can be downloaded from http://hdl.handle.net/11529/10254.

Data availability
Details of the phenotypic and genomic data of the first seven data sets
used in this study can be downloaded from the link: http://hdl.handle.
net/11529/10548140. Data set 8 is available at http://hdl.handle.net/
11529/10254.

Metrics used to measure prediction performance
To evaluate the prediction performance, we used a type of cross-
validation that mimics a situation where lines were evaluated in

some environments for all traits but where some lines were
missing in other environments. We implemented a fivefold
cross-validation, using four folds for training and one for testing.
We reported the average of the five folds of the proportion of cases
correctly classified (PCCC). It is important to point out that the
process for tuning the hyper-parameter (l) in the multinomial
Ridge regression was done with ten-fold cross-validation. Also,
for the PCCC we computed the standard error (SE) in each fold
using 500 bootstrap samples (of observed and predicted values
from the testing); then the average of the 5 SE was reported as a
measure of variability in each metric. It is important to point out
that the fivefold cross-validation strategy was implemented with
only 1 replication.

RESULTS
The results are given in seven main sections. Each section provides
the prediction performance of each data set with the proposed
methods, except that data sets 6 and 7 are given in the same section.
In each section the proposed method (M2) is compared with the
multinomial ridge regression (M3) model, support vector machine
(M4), and the Bayesian threshold genomic best linear unbiased
prediction model (M1).

Figure 6 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine)
for data set 3 in trait DTMT. The left panel
is with interaction (I) and the right panel is
without interaction (WI).
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Data set 1
In this data set, the levels of both response variables were five (1, ...,5).
It is important to point out that here the predictor contains in-
formation with (E+G+GE) and without the genotype by interaction
term (E+G); E refers to environment information, G refers to the
genotypes incorporating the genomic relationship information and
GE refers to the genotype by environment interaction. First, we
compared the prediction performance in trait DTHD of the proposed
MAPT (model M2) algorithm with the Bayesian Threshold Genomic
prediction model (model M1) implemented in the BGLR package, the
classic Multinomial Ridge regression (model M3) implemented in the
library glmnet, and the support vector machine (model M4) imple-
mented in the library e1071. Then, we did the same for trait DTMT.
The panels (right and left) in all figures except Figures 9 and 10 give
the results of the models with and without interaction.

Figure 1A shows that in general the best predictions for trait
DTHDwere observed when the genotype by environment interaction
was ignored under models M3 and M4; however, models M3 and M4
were not statistically better than model M2. The worst performance
was observed under model M1 with and without taking into account
the genotype by environment interaction term (Figure 1A). Also,
without genotype by environment interaction, no statistical differ-
ences were observed in the prediction performance of models M2, M3

andM4, which outperformed model M1 in most environments. With
regard to the implementation time, Figure 1B indicates that when
ignoring the genotype by environment interaction, the best models
were M2 and M4 and the slowest was model M3. When taking into
account the interaction term, model M2 was the best in implemen-
tation time, while the worst was model M3 (Figure 1B; right panel).
Also, the largest gain in terms of time of performance of M2
compared to the other models was observed when considering the
genotype by environment interaction.

For trait DTMT, we also obtained the best predictions when
ignoring the genotype by environment interaction with models M3
and M4, although they were not statistically better than the proposed
model M2 (Figure 2A). In general, the worst performance in terms of
prediction was observed in model M1. Taking into account the
genotype by environment interaction, we observed (Figure 2A) in
the four environments that model M2 was the best in terms of
prediction performance but was not statistically better than models
M3 and M4 and was better than model M1 in two out of the four
environments. Regarding the implementation time, without taking
into account the genotype by environment interaction, Figure 2B
(right panel) indicates that the slowest model was model M3 and the
fastest was model M2; however, a large difference was not observed
between the time required for models M2 andM4. On the other hand,

Figure 7 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine)
for data set 4 in trait DTHD. The left panel
is with interaction (I) and the right panel is
without interaction (WI).
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taking into account the genotype by environment interaction, the
shortest implementation time was observed in model M2 and the
slowest in model M3 (Figure 2B; left panel), and taking into account
the genotype by environment interaction, model M2 showed the
greatest superiority in terms of implementation time compared to
the other models (Figure 2B).

Data set 2
In data set 2, there were five (1, ..., 5) levels of the response variable. In
this data set, the predictor contains information with (E+G+GE) and
without the genotype by interaction term (E+G). Figure 3A gives the
prediction performance for trait DTHD. Here also the best predictions
were observed when ignoring the genotype by environment interaction
under models M3 and M4, but in most cases, these models were not
statistically better than model M2. In general, the worst prediction
performance was observed under model M1, but in most cases it was
not statistically different than model M2 (Figure 3A). Taking into
account the genotype by environment interaction, the prediction
performances of M2, M3 and M4 were very similar (no statistical
differences were found). With regard to implementation time, in all
environments the best time was in model M2 and the slowest in model

M3; however, the gain in implementation time of M2 compared to the
other models was less when the genotype by environment interaction
term was not taken into account (Figure 3B; right panel).

For trait DTMT, the best performance in terms of PCCC was
observed when the genotype by environment interaction term was
ignored and, again, models M3 and M4 were the best in terms of
prediction performance, but in all cases no statistical differences were
observed with regard to model M2 (Figure 4A). In general, M1 had the
worst prediction performance. When the genotype by environment
interaction was taken into account, the differences betweenmodelsM2,
M3 and M4 were smaller, but under this scenario, many times model
M1 was not statistically different from model M2 (Figure 4A). With
regard to implementation time, the fastest models were models M1 and
M2 (taking into account the interaction term), but models M1,M2 and
M4 were the slowest when the genotype by environment interaction
term was ignored; however, the implementation time for model M3 is
very expensive compared to the other 3 models (Figure 4B).

Data set 3
First, we explain the prediction performance of the 4 models for trait
DTHD. The same predictor as in data sets 1 and 2 was used with

Figure 8 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine)
for data set 4 in trait DTMT. The left panel
is with interaction (I) and the right panel is
without interaction (WI).
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(E+G+GE) and without the genotype by interaction term (E+G).
Figure 5A indicates that when the genotype by environment in-
teraction was not taken into account, the best models were models
M3, M4 and M2. However, no statistical differences were observed
between these three models in terms of prediction performance, but
in general the worst model was model M1 (Figure 5A). When the
genotype by environment interaction was taken into account, model
M2 was the best in four of the five environments; however, it was not
statistically superior to models M3 and M4. In general, the best
predictions were obtained when the genotype by environment in-
teraction was ignored. It is important to point out that in environ-
ment LHT, the best predictions occurred under models M2-M4, but
generally in all environments, the predictions were larger than
random guessing (20% since the response variable has five levels).
With regard to the implementation time, the best model was model
M2, but the gain was larger for this model compared to the other three
models when genotype by environment interaction was taken into
account (Figure 5B; left panel). It is important to point out that the
slowest time performance was observed in model M3, that is, it was
many times longer than the time performance of the other models
(Figure 5B).

For trait DTMT, the best prediction performance was observed
when the genotype by environment interaction was ignored, and

again the best predictions were observed under model M3 and the
worst under model M1. However, model M3 was not statistically
better than models M2 and M4. When the genotype by environment
interaction was considered, models M2,M3 andM4 were the best and
M1 was the worst (Figure 6A). In terms of implementation time,
model M2 was the best and model M3 the slowest, and again the
major gain in terms of implementation time was observed in models
with genotype by environment interaction (Figure 6B; left panel).

Data set 4
The same two predictors as in the previous three data sets were used
with (E+G+GE) and without the genotype by interaction term (E+G).
For trait DTHD, Figure 7A shows that when the genotype by
environment interaction was ignored, the best models in terms of
PCCC were models M3 and M4 and the worst was model M1. When
the genotype by environment interaction was taken into account,
models M2, M3 and M4 were the best and the worst again was model
M1. However, in general, the best predictions were observed when the
genotype by environment interaction was ignored (Figure 7A). The
prediction performance was quite similar across environments for
each model (Figure 7A). As for the implementation time, again the
best model was model M2 and the worst was model M3. However,
under genotype by environment interaction, the largest gain was

Figure 9 Average prediction performance in
terms (A) of the proportion of cases correctly
classified (PCCC) and (B) the implementation
time in minutes (Time) of the four models
(M1= Bayesian threshold genomic best linear
unbiased prediction model in BGLR, M2 =
MAPT model, M3 = multinomial model in
glmnet and M4= support vector machine)
for data set 5 in traits GC, Leaf_Rust and
Stripe_Rust.
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observed with model M2 compared to the other models (Figure 7B;
left panel). It is important to point out that, in general, model M3 was
many times slower in terms of implementation time than the other
models.

For trait DTMT, when the genotype by environment interaction was
not taken into account, models M3 and M4 were the best in terms of
PCCC, and model M1 was the worst (Figure 8A; right panel). However,
when the genotype by environment interaction was considered, models
M2, M3 and M4 were the best and model M1 was the worst (Figure 8A;
left panel). The best predictions were observed without considering the
genotype by environment interaction and the predictions of environ-
ments Bed5IR and Flat5IR were considerably better withmodelsM3 and
M4 (Figure 8A; right panel). With regard to the implementation time,
again the best model was model M2 and the slowest model was M3, but
again the largest gain in terms of implementation time was observed
when genotype by environment interaction was taken into account
(Figure 8B; right panel). In both scenarios, with andwithout the genotype
by environment interaction, the best model in terms of implementation
time was M2, the second best was model M1, the third best was model
M4 and the worst was model M3.

Data set 5
This data set contains three ordinal traits; for this reason, we report
the prediction performance for trait GC (binary trait), Leaf_Rust

(5 levels) and Stripe_Rust (3 levels). The predictor now only contains
information on genotypes (G). For traits GC, Leaf_Rust and Stripe_
Rust, we found no statistical differences between the four models in
terms of prediction performance, but the best predictions were ob-
served in trait Stripe_Rust and the worst in trait Leaf_Rust (Figure 9A).
In terms of implementation time, we found in all traits that the best
time was observed in models M2 and M4, but the worst time was in
model M3 (Figure 9B). However, the longest implementation time was
observed for trait Leaf_Rust and the shortest for trait GC (Figure 9B).

Data set 6-7
Both these data sets have only one trait (lodging) with five levels in the
response variable. The predictor in these two data sets only contains
information on genotypes (G). In terms of prediction performance, in
both data sets we found no statistical differences between the four
models even though models M1 and M2 were slightly better. The
prediction performance in data set 7 was much better than in data set
6 (Figure 10A). With regard to the implementation time, in data set
6 the best performance was observed under model M4, followed by
model M2, and the worst performance occurred under model M3
(Figure 10B). In data set 7, the best implementation time was
observed in models M2 and M4 and the worst again in model M3
(Figure 10B). In general, the implementation time was longer in
data set 7 than in data set 6 (Figure 10B). Finally, in both data sets,

Figure 10 Average prediction performance
in terms (A) of the proportion of cases cor-
rectly classified (PCCC) and (B) the implemen-
tation time in minutes (Time) of the four
models (M1= Bayesian threshold genomic
best linear unbiased prediction model in
BGLR, M2 = MAPT model, M3 = multinomial
model in glmnet and M4= support vector
machine) for data sets 6 and 7 in trait Lodging.
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the implementation time of model M3 was many times longer than
the time of the other models (Figure 10B).

Data set 8
In this data set, the only trait evaluated was GLS with five levels.
Figure 11A gives the prediction performance with the simple pre-
dictor with interaction (E + G + GE + A + AE) and without
interaction (E + G + A; A refers to the genotypes incorporating
pedigree information). In one out of three environments, models M2,
M3 and M4 outperformed model M1. A similar pattern was observed
with and without the genotype by environment interaction, but
taking into account the genotype by environment interaction was
slightly better than ignoring it (Figure 11A). With regard to the
implementation time, in general, the best performance was observed
in model M2, then in model M4 and then in model M1, and the worst
performance was observed in model M3 (Figure 11B). The imple-
mentation time was considerably longer when the genotype by envi-
ronment interaction was taken into account (Figure 11B) and model
M3 was considerably slower in terms of implementation time than
the other models (Figure 11B).

The prediction performance with the more complex predictor
(with interaction: E + G + GE + A + AE + Rep + ERep + GRep +
ARep, and without interaction: E + G + A + Rep + ERep + GRep +

ARep; Rep refers to the effects of replications, ERep to the interaction
between the environment and replications, GRep to the interac-
tion between the genotypes and replications and ARep to the
interaction between the lines with pedigree and replications) for
the GLS trait is given in Figure 12. Figure 12A shows no statistical
differences in terms of prediction performance between the four
models with and without the genotype by environment interaction
term. However, in general, the performance was better taking into
account the genotype by environment interaction (Figure 12A).
On the other hand, with regard to the implementation time, model
M2 was the best, model M4 the second best and model M1 the
third best, while model M3 was the worst. The required imple-
mentation time was many times longer in model M3 compared to
the other models (Figure 12B).

Sensitivity of the priors
In this section we evaluated the degree of sensitivity of the priors
in the prediction performance of the proposed MAPT model. As
mentioned in material and methods, the prior of the beta coefficients
is informative and the degree of informativeness depends on the
coefficient of variation of the prior distribution of s2

b which is equal to
CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðvb 2 4Þ

q
, that does not depend on the scale parameter. For

large values of vb, this prior will concentrate around its mean Sb
vb 2 2.

Figure 11 Average prediction performance
in terms (A) of the proportion of cases cor-
rectly classified (PCCC) and (B) the implemen-
tation time in minutes (Time) of the four
models (M1= Bayesian threshold genomic
best linear unbiased prediction model in
BGLR, M2 = MAPT model, M3 = multinomial
model in glmnet and M4= support vector
machine) for data set 8 in trait GLS with a
simple predictor. The left panel is with inter-
action (I) and the right panel is without in-
teraction (WI).
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Therefore, according to the hyper-parameter specification described

before (in material and methods) Sb ¼ ð12R2ÞVl
1
n trðXXT Þ ðvb 2 2Þ, and this

indicates that its mean is reduced to

E
�
s2
b

	
¼ Sb

vb 2 2
¼ ð12R2ÞVl

1
n trðXXTÞ :

But the concentration around this mean of the prior can be controlled
for its coefficient of variation (CV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2⁄ ðvb 2 4Þ�Þp

that only de-
pends on the degrees of freedom ðvbÞ parameter. For this reason, to
evaluate the sensitivity of the prior distribution specification for s2

b,
four values of CV were evaluated: 5%, 7.5%, 10% and 15% that
resulted in the following degrees of freedom values (vbÞ : 804, 369,
204 and 92.88, respectively. These different degrees of freedom
(different values of CV) represent the amount of prior information.
The larger (smaller) the CV (degrees of freedom=vbÞ, the less in-
formative the prior distribution. Results are given in Figure B1
(Appendix B) for data set 1 for traits DTHD and DTMT. Figure
B1 shows that the lower the CV (more informative prior), the better
the prediction performance in both traits (DTHD and DTMT).
However, a big difference in terms of prediction performance was
not observed when the CV was increased from 5 to 7.5%; however,
when the CV was increased to 15%, a drastic reduction in terms of

prediction performance was observed. The performance of the pro-
posed MAPT model with regard to the degree of informativeness of
the prior for data set 2 (Figure B2), data set 3 (Figure B3) and data set
4 (Figure B4) was very similar and these plots (Figure B1 for data set
1) are displayed in Appendix B.

DISCUSSION
In this article, applications of the ECM algorithm for MAP estimation in
the context of ordinal data for genomic-enabled prediction were in-
troduced due to the need to implement GS with ever-increasing ordi-
nal data sets. The general performance of the proposed Maximum a
posteriori Threshold Genomic Prediction (MAPT) model was compared
with that of the conventional Bayesian threshold genomic best linear
unbiased prediction model, a multinomial Ridge regression model and
the popular support vectormachine. In terms of prediction performance,
in most of the evaluated data sets, the proposedMAPTmodel was better
than the conventional Bayesian threshold model and almost similar to
themultinomial Ridge regression and support vector machine. However,
in terms of implementation time, the MAPT model was almost always
better than the multinomial Ridge regression, most of the time better
than the conventional Bayesian Threshold Genomic prediction model
and many times similar to or slightly better than the support vector
machine model.

Figure 12 Average prediction performance
in terms (A) of the proportion of cases cor-
rectly classified (PCCC) and (B) the implemen-
tation time in minutes (Time) of the four
models (M1= Bayesian threshold genomic
best linear unbiased prediction model in
BGLR, M2 = MAPT model, M3 = multinomial
model in glmnet and M4= support vector
machine) for data set 8 in trait GLS with a
more complex predictor (with Rep). The left
panel is with interaction (I) and the right
panel is without interaction (WI).
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One advantage of the proposed MAPT model is that it is very
stable and its implementation time in general is lower than that of
models M1 andM3. The stability of theMAPT is attributed to the fact
that it was built using the ECM algorithm that guarantees a mono-
tonic increasing expected likelihood function, which means the
iterative parameter estimation method will not have many divergence
problems, as do conventional optimization methods. Another advan-
tage of the proposed MAPT algorithm is that since it was built under
the Bayes theorem framework, it allows incorporating prior infor-
mation, but with the difference that instead of sampling from the
distribution of the full conditionals, we only compute the posterior
mode of the full conditional distributions.

Because we observed that the proposed MAPT using uninforma-
tive priors considerably underestimates the variance components
compared to those obtained by the Bayesian Ordinal regression, to
be able to successfully use the proposed method in the context of
genomic prediction, we provided more informative priors for the
variance component of the beta coefficients. The prior specification
was done according to Pérez et al. (2010), who assume that a certain
proportion of phenotypic variance is explained by the genotypic
variance, but instead of equating the expected a priori genotypic
variance divided by 1

n trðXXTÞ to the mode (Sb=ðvb þ 2Þ of the prior
distribution for the genetic variance, and solving for the scale
parameter (SbÞ for a fixed value of degrees of freedom (vbÞ, we
equated the expected a priori genotypic variance divided by 1

n trðXXTÞ
to the mean of the prior distribution for the genetic variance
(Sb=ðvb 2 2ÞÞ, and then we solved the scale parameter (SbÞ for a
fixed value of degrees of freedom (vbÞ. This approach allows control
of the prior specification to be concentrated more around its mean
prior phenotypic value with a desired coefficient of variation. It is
important to point out that for a better performance of the proposed
MAPT method, we always suggest scaling each independent variable.

As mentioned in the introduction, our method is different from
the GEM method proposed by Kärkkäinen and Sillanpää (2013),
which uses the conditional mean to update each parameter, while our
proposed MAPT uses the conditional mode of each parameter, and
the ECM algorithm implementation is based on a different latent
variable than in the representation proposed by Ruud (1991).

On the other hand, an explanation of why many times the support
vector machine was the best can be attributed to the fact that we
implemented the support vector machine with a Gaussian kernel,
while the other models (M1, M2 and M3) were implemented without
a specific kernel (linear kernel). That is, the outstanding performance
of the support vector machine can be attributed to the fact that the
Gaussian kernel captures no linear patterns of the training data sets
used that cannot be captured bymodelsM1, M2 andM3, where linear
kernels were used.

CONCLUSIONS
In this research, we proposed an alternative method for the Bayesian
threshold genomic best linear unbiased prediction model based on
the MAP estimation method. The proposed method is simple, easy to
implement and an efficient tool for learning parameters of a model
since it was built using the Expected Conditional Maximization
(ECM) for deriving the MAP for the conventional threshold genomic
best linear unbiased prediction model. Our proposed maximum a
posteriori threshold genomic prediction (MAPT) model was com-
pared with the conventional Bayesian Threshold genomic best linear
unbiased prediction model, the multinomial Ridge regression model
and the support vector machine. We found that the proposed MAPT
model was very competitive in terms of prediction performance with

multinomial Ridge regression and the support vector machine which,
in most data sets, outperformed the conventional Threshold genomic
prediction model. However, in terms of implementation time, our
proposed model (MAPT) and the support vector machine were the
best, and the worst was the multinomial Ridge regression model,
which although it produced a competitive prediction performance,
its implementation time (computational resources) is extremely de-
manding. For these reasons, we encourage plant breeding scientists
to benchmark the proposed method with other machine learning
models for ordinal outcomes to get a better sense of the usefulness of
our approach.
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APPENDIX A

The pdf of the gamma distribution with shape parameter s and rate parameter r:
fSbðx; s; rÞ ¼ rsxs21

GðsÞ expð2rxÞ. The mean, mode and the variance of this distribution are s=r, ðs2 1Þ=r and s=r2, respectively. The probability
density function (pdf) of the scaled inverse chi-square distribution with v degrees of freedom and scale parameter S, x22ðv; SÞ, is given by

f
�
s2; v; S
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S
2

�v
2

G
�
v
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exp 2

S
2s2


 �
:

and the mean, mode, variance and coefficient of variation of this distribution are given by S
v2 2,

S
vþ2,

2S2

ðv22Þ2ðv2 4Þ and
ffiffiffiffiffiffiffiffi
2

v2 4

q
respectively. Note

that if s2 � x22ðv; SÞ then s2 ¼ 1
X where X � G



v; S2

�
:

APPENDIX B

Figure B1 Prediction performance of the proposed MAPT model in terms of the proportion of cases correctly classified (PCCC) for traits: A) DTHD
and B) DTMT of data set 1, under four values of coefficient of variation (CV). The smaller the CV, the more informative the prior. The left panel is with
interaction (I) and the right panel is without interaction (WI).
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Figure B2 Prediction performance of the proposed MAPT model in terms of the proportion of cases correctly classified (PCCC) for traits: A) DTHD
and B) DTMT of data set 2, under four values of coefficient of variation (CV). The smaller the CV, the more informative the prior. The left panel is with
interaction (I) and the right panel is without interaction (WI).

Figure B3 Prediction performance of the proposedMAPTmodel in terms of proportion of cases correctly classified (PCCC) for traits: A) DTHDand B)
DTMT of data set 3, under four values of coefficient of variation (CV). The smaller the CV, the more informative the prior. The left panel is with
interaction (I) and the right panel is without interaction (WI).
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Figure B4 Prediction performance of the proposed MAPT model in terms of the proportion of cases correctly classified (PCCC) for traits: A) DTHD
and B) DTMT of data set 4, under four values of coefficient of variation (CV). The smaller the CV, the more informative the prior. The left panel is with
interaction (I) and the right panel is without interaction (WI).
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