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ABSTRACT Estimations of microbial community diversity based on metagenomic data
sets are affected, often to an unknown degree, by biases derived from insufficient cover-
age and reference database-dependent estimations of diversity. For instance, the com-
pleteness of reference databases cannot be generally estimated since it depends on the
extant diversity sampled to date, which, with the exception of a few habitats such as
the human gut, remains severely undersampled. Further, estimation of the degree of
coverage of a microbial community by a metagenomic data set is prohibitively time-
consuming for large data sets, and coverage values may not be directly comparable be-
tween data sets obtained with different sequencing technologies. Here, we extend Non-
pareil, a database-independent tool for the estimation of coverage in metagenomic data
sets, to a high-performance computing implementation that scales up to hundreds of
cores and includes, in addition, a k-mer-based estimation as sensitive as the original
alignment-based version but about three hundred times as fast. Further, we propose a
metric of sequence diversity (Nd) derived directly from Nonpareil curves that correlates
well with alpha diversity assessed by traditional metrics. We use this metric in different
experiments demonstrating the correlation with the Shannon index estimated on 16S
rRNA gene profiles and show that Nd additionally reveals seasonal patterns in marine
samples that are not captured by the Shannon index and more precise rankings of the
magnitude of diversity of microbial communities in different habitats. Therefore, the new
version of Nonpareil, called Nonpareil 3, advances the toolbox for metagenomic analyses
of microbiomes.

IMPORTANCE Estimation of the coverage provided by a metagenomic data set, i.e.,
what fraction of the microbial community was sampled by DNA sequencing, repre-
sents an essential first step of every culture-independent genomic study that aims to
robustly assess the sequence diversity present in a sample. However, estimation of
coverage remains elusive because of several technical limitations associated with
high computational requirements and limiting statistical approaches to quantify di-
versity. Here we described Nonpareil 3, a new bioinformatics algorithm that circum-
vents several of these limitations and thus can facilitate culture-independent studies
in clinical or environmental settings, independent of the sequencing platform em-
ployed. In addition, we present a new metric of sequence diversity based on rarefied
coverage and demonstrate its use in communities from diverse ecosystems.
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The exploration of microbial diversity in natural and engineered environments has
been revolutionized by the use of metagenomics. However, the power of both

descriptive and comparative metagenomic analyses is strongly deterred by low cover-
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age, defined as the fraction of the DNA space covered by sequencing (1). To date, most
metagenomic studies assess the level of coverage only indirectly or not at all, mainly
owing to the difficulty of directly measuring the unseen fraction of a community. For
instance, many studies have assessed coverage by extracting 16S rRNA gene-containing
reads from amplicon or shotgun metagenomes, clustering these sequences in opera-
tional taxonomic units (OTUs) on the basis of their best matches in reference databases
or by de novo clustering, and counting the discovery of new OTUs with an increasing
number of available sequences. The degree to which this approach represents the
real diversity of the sample remains essentially unknown because it depends on the
unbiased recovery of 16S rRNA gene-containing reads from the metagenome, the com-
prehensiveness of the reference database in representing the natural diversity in the
sample, the extent of undersampling of the diversity, and the fact that identical 16S
rRNA gene sequences may represent distinct species because of the high degree of
sequence conservation of the rRNA genes (2).

We have recently presented a method to assess the level of coverage provided by
metagenomic data sets by a redundancy-based approach, Nonpareil (3). Briefly, Non-
pareil estimates the read redundancy in a metagenomic data set by using ungapped
alignments of a subset of sequencing reads against the entire metagenome and then
applies the Turing-Good estimator principle to approximate the abundance-weighted
coverage of the metagenome. Abundance weighting means that the coverage estimate
represents the fraction of the total DNA extracted from a sample (and by extension, the
fraction of the organisms, not species) that is represented in a set of metagenomic
sequence data, not necessarily how many different species are represented by the
extracted versus the sequenced DNA. For instance, the nonsequenced fraction may
represent a higher number of species even in cases where the coverage is �50% if the
community is characterized by high species evenness, which is not uncommon for soil
and sediment habitats. Nonpareil is database independent because it is based on
intrinsic characteristics of the data set and, given sufficient data (typically, a small
fraction of most available metagenomes), can produce robust estimations of coverage
regardless of the sequencing effort applied.

Two previously described techniques for the estimation of coverage in metagenomes
exist. The first one, COVER (4), assumes reference database completeness and a high degree
of taxonomic conservation in 16S rRNA gene copy number and genome size, assumptions
often violated by available genome sequences (5). Accordingly, Nonpareil is substantially
more accurate than COVER for most complex communities as previously shown (3). The
second one is a parametric approach currently not implemented in any available stand-
alone tool (6) that models occupancy as a Poisson process using a gamma approximation
and requires estimates of abundance and genome size joint distributions. Other ap-
proaches related to the problem of coverage exist but offer only indirect measurements
such as the maximum expected contig size (7) or the coverage of a target minimum-
abundance organism (8, 9) from which only an implementation for viral communities exists,
i.e., MetLab (10). Therefore, Nonpareil is advantageous compared to previously described
approaches and bioinformatic tools in that it is database independent, directly estimates
coverage, and is fully automated, allowing the end user to simply input a metagenomic
data set for coverage estimation. In addition, Nonpareil subsamples the estimated coverage
and fits the rarefied curve to a sigmoidal function in order to predict the sequencing effort
necessary to reach any target coverage (3). Using Nonpareil, we have shown that coverage
affects not only the completeness of descriptive metagenome-based profiling but also the
accuracy of comparative abundance analyses of features such as species or genes, high-
lighting the importance of coverage estimations for both descriptive and comparative
metagenomics (1).

While we have previously demonstrated that Nonpareil accurately estimates the
level of coverage in less complex metagenomic data sets, the estimation remained
prohibitively expensive for data sets comprising several billion base pairs. Here, we
present a new version of Nonpareil, Nonpareil 3, that effectively distributes the esti-
mation across processors and computing nodes by using high-performance comput-
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ing capabilities now often available to laboratories working with metagenomic data.
Nonpareil 3 also includes a new algorithm providing an alternative estimation of
coverage based on k-mer redundancy, as opposed to ungapped alignment in the
original version, with comparable accuracy but 2 orders of magnitude faster compu-
tation. This version allows end users to run Nonpareil analysis of relatively large
metagenomic data sets on personal computers as well. Moreover, we previously
showcased the qualitative sequence diversity rankings derived from Nonpareil curves
(1, 3). Here, we quantitatively assessed the level of sequence diversity derived from
Nonpareil curves, compared these estimations with other diversity indices, and present
typical ranges for communities from different environments, allowing for quantitative
ranking of the communities on the basis of their sequence complexity.

RESULTS
Reducing run time for large metagenomes. Nonpareil 3 can use parallelization

across nodes and threads by using Message Passing Interface (MPI) and pthreads,
respectively. We executed Nonpareil with the original alignment kernel by using both
parallelization methods, independently and in combination, on a 2.3-Gbp test data set
in order to evaluate the speedup. These optimizations resulted in up to 500 times faster
computation of coverage. Compared to Amdahl’s law, Nonpareil 3 speedups corre-
sponded to around 99.5% parallelization with MPI alone and around 99.8% paralleliza-
tion with MPI and four threads, while the observed speedup for multithreads in
one node was essentially linear (Fig. 1). In addition, the read redundancy can now be
estimated by using perfect matches of one k-mer per query read corrected by sequenc-
ing error estimation, instead of the complete ungapped alignment. This implementa-
tion results in similar coverage and diversity estimates, as well as highly correlated
projections of sequencing effort, but reduces the computational time by about 300
times (Table 1; see Fig. S1 in the supplemental material). We recommend using k � 24
(the default value in Nonpareil), the smaller value producing stable estimates (Fig. S2).
The runtime of Nonpareil with alignment kernel is approximately proportional to N �

Q � L2, where N is the total number of sequencing reads, Q is the number of query
sequencing reads searched against the complete metagenomic data set, and L is the
length of a read. In contrast, the complexity of Nonpareil with k-mer kernel is simply
N � L, i.e., directly proportional to the total data set size (Fig. S3). As the runtime for the
k-mer kernel is independent of the read length, Nonpareil 3 is directly compatible with
long-read data, although current technologies (e.g., PacBio or MinION) exhibit error
rates that are higher than optimal for the current Nonpareil implementation (i.e., �5%
expected sequencing error). Thus, additional optimizations will be necessary to allow
reads with higher sequencing error to be analyzed by Nonpareil. In addition, since the
runtime is not proportional to Q, it is practical to use a larger value for Q (default of
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10,000 instead of 1,000 in the alignment kernel), increasing the precision of Nonpareil
over that of the original version.

Sequencing error correction. In order to reduce the impact of sequencing error on
Nonpareil with k-mer kernel, we implemented a redundancy correction based on the
sequencing read quality scores. Briefly, we estimated the fraction of selected k-mers
that are expected to include at least one sequencing error from the quality scores and
removed that fraction from the list of k-mers without matches, assuming that the
introduced errors would most frequently result in unobserved variants (see Materials
and Methods for details). To test this correction, low- and high-coverage simulated
metagenome-like data sets of 101-bp reads (507,813 and 7,093,697 reads, respectively)
were generated in silico from 30 bacterial and archaeal genomes by a previously
described method (3) (Table S1; data sets are available at http://enve-omics.ce.gatech
.edu/data/nonpareil). For each test, 10,000 reads were randomly selected from the
simulated data sets and modified with substitution errors at a constant error probability
per base. The 10,000 reads were then used in Nonpareil with k-mer kernel as query
sequences with error correction enabled and disabled (Table S2; Fig. S4). In general,
error rates affected the estimation of both coverage and required sequencing effort
when error correction was disabled but not when it was enabled, indicating that the
correction effectively removes the effect of sequencing errors when the error proba-
bility estimation is accurate.

Nonpareil Nd. The Nonpareil index of sequence diversity (Nd), described in Materials
and Methods, is expressed in units of the natural logarithm of base pairs and summa-
rizes the community diversity in sequence space, i.e., how redundant (or conversely
unique) the sequences of a data set are among themselves. This metric depends on the
joint distribution of genome size and abundance, as well as intragenome gene dupli-
cation. Therefore, given a small variation in genome size and a small impact of genomic
duplications, e.g., for prokaryote-only communities, Nd can be used as a database-
independent metric of alpha diversity. Since the shapes of the Nonpareil curves from
replicates and subsamples closely resemble each other regardless of coverage (3), we
propose Nd as a coverage-independent measurement of the diversity of the sampled
community (Fig. S5).

We compared Nd and Shannon diversity index values in natural units (H=) from 16S
rRNA gene OTU tables in different collections of metagenomic data sets, including: set
I, metagenomes from different biomes including six mock data sets; set II, metag-
enomes and 16S rRNA gene amplicons from human microbiomes of different body
sites; and set III, a collection of marine metagenomes from different sampling sites. First,
we observed a high correlation (Pearson’s r � 0.804 [P � 10�15]; analysis of variance
[ANOVA], 64.6% variance explained [P � 10�15]) between Nd and H= values from diverse
environments (set I), as well as a monotonic trend for interquartile ranges (IQRs)
between different biomes (Fig. 2). This correlation was maintained in the subset of
mock samples alone (r � 0.87 [P � 0.023]), and the residuals were only slightly affected

TABLE 1 Kernel comparison of Nonpareil estimates for publicly available data setsa

Sample Identifier Reference Size (Gbp)

CPU time (min) % coverage
Required effort
(Gbp)

A K A K A K

Posterior fornix SRS063417 25 0.01 15.7 0.08 89 84 0.062 0.070
Stool sample SRS015540 25 0.32 438 0.85 81 71 2.62 5.55
Tongue SRS055495 25 0.22 286 0.68 71 61 3.22 6.08
LL 2011 SRR948155 3 2.95 4,397 16.5 84 79 11.7 24.1
LL 2009A SRR096386 26 1.17 1,444 6.40 68 64 20.5 24.8
LL 2009B SRR096387 26 1.12 1,463 5.75 70 64 14.3 20.0
Iowa soil JGI 402461 NAb 14.6 22,806c 49.0 56 48 662 1,051
aThe two kernels (A, alignment; K, k-mer) were compared in terms of CPU time, estimated coverage, and projected required sequencing effort to reach 95% coverage
of samples varying in complexity, including HMP (posterior fornix, tongue, stool sample), freshwater (Lake Lanier [LL]), and soil (Iowa continuous cornfield).

bNA, not available.
cCPU time was estimated for Iowa soil and observed in all other cases.

Rodriguez-R et al.

May/June 2018 Volume 3 Issue 3 e00039-18 msystems.asm.org 4

http://enve-omics.ce.gatech.edu/data/nonpareil
http://enve-omics.ce.gatech.edu/data/nonpareil
https://www.ncbi.nlm.nih.gov/sra/?term=SRS063417
https://www.ncbi.nlm.nih.gov/sra/?term=SRS015540
https://www.ncbi.nlm.nih.gov/sra/?term=SRS055495
https://www.ncbi.nlm.nih.gov/sra/?term=SRR948155
https://www.ncbi.nlm.nih.gov/sra/?term=SRR096386
https://www.ncbi.nlm.nih.gov/sra/?term=SRR096387
msystems.asm.org


by sequencing technology (ANOVA after including Nd, 3.7% variance [P � 0.008]).
However, most outliers had low Turing-Good coverage estimates for the 16S rRNA gene
OTU count profiles (labeled points in Fig. 2). Indeed, we observed a significant effect of
the 16S rRNA gene Turing-Good coverage estimates on the residuals (ANOVA after Nd,
excluding mock samples, 5.7% variance [P � 10�4]; ANOVA after Nd, including mock
samples assuming complete coverage, 14.7% variance [P � 10�11]) (Fig. 2, inset). We
did not observe a significant effect of the Nonpareil-estimated coverage on the
model residuals (ANOVA after Nd, 0.008% variance [P � 0.9]), indicating that a signifi-
cant component of the difference between the two estimates of diversity was due to
insufficient data to robustly estimate H= but not Nd. We were able to differentiate
between the effect of coverage on both estimates independently because the corre-
lation between 16S rRNA gene-derived Turing-Good coverage estimates and
metagenome-derived Nonpareil coverage estimates was partially lost by subsampling
of most metagenomic data sets in the estimation of Nd but not in the estimation of H=
(r � 0.64). (Note that H= was estimated on the basis of previously constructed OTU
tables on the complete data sets available [11], not subsamples as in the case of Nd; see
Materials and Methods for details.)

Next, we evaluated paired metagenomic and 16S rRNA gene amplicon samples from
the Human Microbiome Project (HMP) (set II) and observed a similarly high correlation
between median Nd and median H= values per body site (r � 0.93), as well as between
Nd and H= values per data set (r � 0.84; Fig. S6).

20 40 60
Turing-Good Coverage

for 16S (%)

-3
-2
-1
0
1
2

R
es

id
ua

ls

0

R = 0.2103

Denmark
Activated

Sludge

Diamante River 454

HMP
Mock
Even

HMP Mock
Staggered 454

MBARC26

M63H 25M

Platform
Illumina (79)
Ion Torrent (6)
454 (5)

Biome

Animal host (18)
Engineered (17)

Enrichment (3)

Freshwater (15)
Marine (16)

Mock (6)

Soil (15)

16 18 20 22

2

4

6

8

10

Metagenome Nd

16
S 

rR
N

A
 H
'

1

3

5

7

9

17 19 21 24
0

11

12 1514 523231

R = 0.804

Mouse
Dark-Phase
Stool

Axial Seamount
Hydrothermal Vent

FIG 2 Comparison of Nonpareil Nd sequence diversity and 16S rRNA gene OTU Shannon H=
taxonomic diversity indices on 90 metagenomes. Each data point represents the estimates on Nd

(x axis) and H= (y axis). The y-axis value of each point indicates the Bayesian analysis-corrected
Shannon index, and the line extending from the low part of each data point represents the exact
observed (maximum-likelihood) Shannon index. The color of each point indicates the type of biome
of each data set, the shape indicates the sequencing platform, and the size indicates the estimated
coverage of the 16S rRNA gene profile (Turing-Good estimate). For each biome, the IQR of both
estimates is represented as semitransparent rectangles. The least-squares linear correlation model is
represented in gray, including the central estimate (solid line), the 95% confidence interval (dashed-
line band), and the 80 and 95% prediction intervals (dotted-line bands). Labeled data sets fell
outside the 80% prediction interval. The inset shows the residuals from the linear model against the
Turing-Good estimate of 16S rRNA gene coverage.

Nonpareil 3

May/June 2018 Volume 3 Issue 3 e00039-18 msystems.asm.org 5

msystems.asm.org


Finally, we explored a collection of marine data sets (set III) and compared Nd and
H= diversity indices against available metadata by using ANOVA with alpha � 0.01. After
controlling for the variance introduced by the source project (as the first indepen-
dent variable in ANOVAs), we evaluated the effects of different variables on diversity
variation (see Materials and Methods). For both measurements of diversity (Nd and H=),
we observed significant effects of size fraction (H= variance explained, 16%; Nd variance
explained, 25% [P � 10�11]) and latitude (H= variance explained, 6.7%; Nd variance
explained, 1.5% [P � 0.01]), similar to previously reported results for estimated richness
as the measure of alpha diversity (12). Geographic location was also found to signifi-
cantly affect the variance of Nd (12% variance, P � 10�8) and much more weakly so the
variance of H= (4.3% variance, P � 0.02). Moreover, Nd captured a pattern of increased
diversity toward the winter (wintriness; explained variance, 2.3% [P � 0.0011]) not
observed with H= (explained variance, 0.14% [P � 0.46]).

DISCUSSION

Estimations of coverage from sequencing data have been a problem studied
since the onset of DNA sequencing techniques (reviewed in reference 13). However,
most efforts have been directed at estimation of the coverage of a single genome
such as those proposed early on by Lander and Waterman (14), as well as more
refined models later proposed by Wendl and collaborators (8, 9, 15). Few attempts
have been made to extend some of these concepts to entire communities assuming
joint distributions for abundance, genome size, and other relevant genomic fea-
tures (6, 7). However, such attempts have only indirectly addressed the problem of
coverage, ultimately targeting other characteristics such as the maximum expected
contig length. Therefore, these approaches are not directly comparable to the
Nonpareil estimate of coverage. Intrinsic characteristics of random samplings (such
as metagenomic data sets) can also be leveraged to determine the level of coverage
by using the principle of the Turing-Good estimator (16, 17). This principle has been
applied to the estimation of diversity in OTU profiles (18, 19), and similar ap-
proaches have been explored for the extrapolation of any count statistics derived
from sequencing data (20). Nonpareil uniquely uses this principle to directly
estimate the abundance-weighted average coverage of a metagenomic data set
based on the degree of overlap of individual metagenomic reads (3).

We have implemented algorithmic and computational improvements in Nonpareil
3 that now make it feasible to process large metagenomic data sets (e.g., tens to
hundreds of gigabase pairs) in minutes to hours, even with modest computational
resources and without compromising accuracy. Moreover, in addition to the estimation
of abundance-weighted average coverage and the projection to estimate required
sequencing efforts, Nonpareil 3 includes an estimation of sequence diversity, Nd. We
demonstrate that Nd correlates well with alpha diversity derived from 16S rRNA gene
OTU profiles but can also capture patterns in diversity not observed with 16S rRNA
gene profiles, likely because of the increased taxonomic resolution attainable by
whole-genome analyses. For example, seasonal diversity patterns observed with Nd in
marine metagenomic data sets were not captured by 16S rRNA gene OTU diversity
measured by Shannon H=. Therefore, Nonpareil advances the molecular toolbox for
environmental surveys, providing estimations of coverage and diversity independent of
databases and robust to various levels of sequencing effort applied, required sequenc-
ing effort for complete coverage, and sequence diversity, and scales well with large
metagenomic data sets. Applying Nonpareil to metagenomic data sets from different
biomes allowed us to quantify sequence diversity and its typical range for different
environments. Unsurprisingly, the most diverse communities were those in soil, with an
Nd IQR of 22 to 24. Marine communities (open ocean) followed soil communities at
about 2 units lower, with an Nd IQR of 20.5 to 21.8. Because of the logarithmic nature
of Nd, this corresponds to a sequence diversity about seven times lower in marine than
in soil communities. We observed wider and largely overlapping ranges of Nd in
communities from freshwater (IQR, 19.5 to 21.1), engineered systems (IQR, 17.8 to 20.7),
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and animal hosts (IQR, 18.1 to 20.3), all of which are about 2 to 7 times less diverse than
those in the open ocean and about 15 to 45 times less diverse than those in soil.
Importantly, these differences in sequence diversity translate to differences of several
orders of magnitude in required sequencing effort in order to achieve a similar level of
coverage (3). Human-associated communities (n � 8) did not differ significantly from
nonhuman animal-associated samples (Nd IQR, 18.2 to 20.1 versus 17.6 to 20.3),
including 4 mouse samples, 2 cow samples, 2 pig samples, 1 chicken sample, and 1
salmon sample (n � 10). These results should represent useful reference points for
designing future metagenomic studies and achieving the level of coverage that would
be desirable for each project and its research objective(s).

MATERIALS AND METHODS
Implementation. The processing of a sample in Nonpareil is divided into two main steps. The first

is redundancy estimation, where sequences are compared and the estimated redundancy is subsampled
at different values of sequencing effort. The large number of pairwise alignments makes this step the
most resource intensive. This task is now distributed across multiple nodes using MPI and processors
using C�� pthreads. Further, Nonpareil 3 offers a k-mer-based method for redundancy estimation (see
below) that accelerates this step by using short fragments of the sequencing reads with no errors
allowed. Finally, redundancies are subsampled in multiple threads. In Nonpareil 1, subsamples were
estimated linearly, resulting in sparse values toward the left side of the Nonpareil curve. Although this
strategy is still available, the default in Nonpareil 3 is logarithmic subsampling; sample size is iteratively
multiplied by a density factor (default 0.7) until only two reads remain.

The second step is estimation of the abundance-weighted average coverage at different
sequencing efforts (Nonpareil curves), fitting to a sigmoidal model (projection), and graphical
representation (e.g., Fig. S1). Note that this step relies on the assumption of independence of events
between sequencing reads; therefore, Nonpareil should be applied on single reads, one of the sister
reads in paired-end reads, or merged paired-end reads (3). This step has modest resource require-
ments and is implemented in the Nonpareil R package. In Nonpareil 3, we have streamlined this
analysis by using headers in the redundancy output files and included an estimation of the sequence
diversity derived from the fitted model (see below). All of the experiments in this report were
executed with Nonpareil v3.3.

k-mer kernel. To accelerate read-to-read comparisons, Nonpareil 3 now implements a k-mer-based
comparison kernel. Briefly, query k-mers are derived from a randomly selected subset of the metag-
enomic data set reads, with one target k-mer selected from the 5= end of each read. Determination of
the number of times each target k-mer (or its reverse complement) is found at any position of any
sequence read in the complete data set can be performed in time proportional to the size of the
metagenomic data set and is independent of the number of target k-mers. Note that this test is unable
to detect if any of the last k � 1 bases in a sequencing read cover the target k-mer, so for each
metagenomic read of length L, only L � k � 1 positions can be tested for matches, reducing the effective
size of the metagenomic data set scanned with respect to the complete alignment kernel. Nonpareil
curves (R package) account for the effect of this difference between sequencing effort and effective size,
and its effect is corrected.

Because the target k-mers are derived from the metagenomic sequence reads, some of the
k-mers will contain sequence errors, but if k is large enough, these k-mers will likely have zero
coverage. Although it is not possible to determine which of the zero-coverage target k-mers contain
errors, we utilized the sequencing quality (Q) scores from each target k-mer’s parent sequencing
read to estimate E, the expected number of k-mers with errors. To correct for these errors, we
reduced the target set by removing E zero-coverage target k-mers. The coverage counts for the
remaining target k-mers, along with the reduced effective metagenomic data set size, are passed
through the remaining original Nonpareil steps to estimate coverage, required sequencing effort,
and sequence diversity.

k-mer kernel comparison to the original alignment-based kernel. To compare the results
obtained with the traditional alignment kernel and the novel k-mer kernel, we executed both analyses
in seven metagenomic data sets with different degrees of diversity (Table 1; Fig. S1). Metagenomic data
sets were processed by using SolexaQA (21) with a maximum expected error of 1% and a minimum
length of 50 bp, and adapter contamination was clipped by using Scythe (https://github.com/vsbuffalo/
scythe). For paired-end samples, only the forward reads were used. Short Read Archive (SRA) identifiers
are provided in Table 1 for all of the data sets except Iowa continuous cornfield soil. For the latter, seven
lanes from one run of Illumina HiSeq were retrieved from the JGI Genome Portal (http://genome.jgi.doe
.gov) on 21 July 2016 from project 402461.

Nonpareil results with k-mer kernel were obtained by using a 27-in. iMac with 8 gigabytes of
random-access memory and an Intel Core i5 3.2-GHz processor using k � 24, 10,000 queries, and two
threads (only for subsampling, the k-mer matching portion of Nonpareil is single threaded). Nonpareil
alignment kernel results for Iowa soil were obtained by using the Michigan State University High-
Performance Computing Center nodes with 20 cores and the following options: 20 threads, 1,000
queries, 50% overlap, and a redundancy to coverage transformation factor of 1.0. All other data sets were
processed with a 27-in. iMac as described above and with the same Nonpareil alignment options at 95%
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identity and two threads. Iowa soil central processing unit (CPU) time for alignment kernel was estimated
by using the linear regression of the other data sets.

Nd. Nonpareil curves are plots of abundance-weighted average coverage (Ĉ) per sequencing effort
(LR) fitted to the cumulative probability function of the gamma distribution (3) with parameters � and
� as follows: Ĉ � �[�, � � log(LR � 1)]/�(�), where � is the gamma function and � is the lower
incomplete gamma function. Hence, we can use the mode of the corresponding gamma distribution to
identify the value of log(LR � 1) corresponding to the inflection point of the curve, which we propose
as a measurement of sequence diversity as follows: Nd � (� � 1)/�.

To evaluate the correlation between Nd and traditional measurements of alpha diversity derived from
taxonomic affiliation, we compiled three collections of metagenomic data sets. Set I consisted of 90
samples from multiple environments, set II consisted of 54 human-associated microbiome metagenomic
samples, and set III consisted of 292 marine samples. Set I was used to evaluate the general agreement
between traditional taxonomy-based alpha diversity and Nd. It consisted of 84 metagenomic data sets
from multiple environments divided into six distinct biomes plus six mock data sets (Table S3).
Subsamples of processed nucleotide reads (between one and seven file chunks of 0.5 gigabyte zipped, as
necessary to surpass 60% coverage or as many files as available) and OTU tables based on metagenome-
derived 16S rRNA gene-containing reads were obtained from EBI Metagenomics (11). The Shannon index
(H=) of each OTU table was estimated on the basis of Bayesian estimates of frequencies by using the
Dirichlet multinomial pseudocount model with Laplace prior, as implemented in the R package entropy
(22), with the exception of mock samples, for which maximum-likelihood entropy of input concentrations
was used. Note that the 16S rRNA gene-containing reads derived from metagenomes do not necessarily
overlap; hence, the EBI Metagenomics Pipeline uses closed-reference OTU picking (23), potentially
biasing the results by database completeness. Therefore, we extended this analysis by using set II derived
from the HMP (24). This collection consisted of samples from 13 body sites including 54 metagenomic
data sets and 3,613 16S rRNA gene amplicon data sets. Fifty-three samples included both types of data
sets. An OTU table including all of the processed samples was obtained from HMP Qiime Community
Profiling (23, 24), from which H= values per sample were estimated. Values were compared against Nd

values derived from the metagenomic data sets by body site (medians per site) and by sample
(intersection samples). Finally, we evaluated the resolution of Nd compared to H= by using set III, a
collection of marine samples derived from two global sampling projects, 228 samples from the Tara
Oceans expedition between September 2009 and March 2012 (12) and 64 samples from the Global
Ocean Sampling expedition between March 2009 and December 2010 funded by the Beyster Family
Fund and the Life Technology Foundation (SRA BioProject accession no. PRJEB10418). Sample metadata,
as well as preprocessed reads and 16S rRNA gene OTU tables, were obtained from EBI Metagenomics
(11). ANOVA was performed to evaluate the effects of different metadata variables on both Nd and
Bayesian analysis-corrected H= of extracted 16S rRNA genes. The variables considered were size fraction
(categorical), absolute value of latitude (i.e., degrees from the equator), latitude (degrees), geographic
location (Mediterranean Sea, North Atlantic Ocean, North Pacific Ocean, Indian Ocean, Red Sea, South
Atlantic Ocean, South Pacific Ocean, or Southern Sea), sampling date, and two decomposed seasonal
components of sampling date. The decomposed seasonal components were estimated as the sine
(vernality) and cosine (wintriness) of the date in radians (1 year � 2�) for samples in the Northern
Hemisphere or the negative sine and negative cosine, respectively, for samples in the Southern
Hemisphere.

Nonpareil 3 availability. Nonpareil 3 is available for online analyses at http://enve-omics.ce.gatech
.edu/nonpareil. The Nonpareil code is freely distributed under the artistic license 2.0 and is available at
https://github.com/lmrodriguezr/nonpareil.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00039-18.
FIG S1, PDF file, 0.6 MB.
FIG S2, PDF file, 0.3 MB.
FIG S3, PDF file, 0.1 MB.
FIG S4, PDF file, 0.3 MB.
FIG S5, PDF file, 0.5 MB.
FIG S6, PDF file, 0.2 MB.
TABLE S1, PDF file, 0.04 MB.
TABLE S2, PDF file, 0.05 MB.
TABLE S3, PDF file, 0.1 MB.
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