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Abstract

Background

The quantification of brain atrophy in relapsing-remitting multiple sclerosis (RRMS) may

serve as a marker of disease progression and treatment response. We compared the asso-

ciation between first-line (FL) or second-line (SL) disease-modifying drugs (DMDs) and

brain volume changes over time in RRMS.

Materials and Methods

We reviewed clinical trials in RRMS between January 1, 1995 and June 1, 2014 that

assessed the effect of DMDs and reported data on brain atrophy in Medline, Embase, the

Cochrane database and meeting abstracts. First, we designed a meta-analysis to directly

compare the percentage brain volume change (PBVC) between FLDMDs and SLDMDs at

24 months. Second, we conducted an observational and longitudinal linear regression anal-

ysis of a 48-month follow-up period. Sensitivity analyses considering PBVC between 12

and 48 months were also performed.

Results

Among the 272 studies identified, 117 were analyzed and 35 (18,140 patients) were

included in the analysis. Based on the meta-analysis, atrophy was greater for the use of an

FLDMD than that of an SLDMD at 24 months (primary endpoint mean difference, -0.86;

95% confidence interval: -1.57–-0.15; P = 0.02). Based on the linear regression analysis,

the annual PBVC significantly differed between SLDMDs and placebo (-0.27%/y and

-0.50%/y, respectively, P = 0.046) but not between FLDMDs (-0.33%/y) and placebo

(P = 0.11) or between FLDMDs and SLDMDs (P = 0.49). Based on sensitivity analysis, the

annual PBVC was reduced for SLDMDs compared with placebo (-0.14%/y and -0.56%/y,

respectively, P<0.001) and FLDMDs (-0.46%/y, P<0.005), but no difference was detected

between FLDMDs and placebo (P = 0.12).
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Conclusions

SLDMDs were associated with reduced PBVC slope over time in RRMS, regardless of the

period considered. These results provide new insights into the mechanisms underlying atro-

phy progression in RRMS.

Introduction
The development of disease-modifying drugs (DMDs) for multiple sclerosis (MS) has been
based on their observed effects on clinical outcomes, including the rate of relapse and the accu-
mulation of permanent disability [1,2]. Aside from these clinical parameters, changes in brain
lesion burden have been commonly used to monitor the in vivo effects of DMDs based on con-
ventional MRI, which serves as a potential surrogate marker in MS trials. However, the use of
this measure has been disputed because of the poor correlation between MRI-based measures
of inflammatory activity and relapse and disability progression [3,4].

Although inflammation and focal demyelination are the pathological hallmarks of MS, the
occurrence of brain atrophy is currently a classical characteristic of cross-sectional and longitu-
dinal imaging studies beginning at the earliest stage of the disease and proceeding throughout
the disease course [5]. Because brain atrophy represents the net effect of primary disease-
related pathophysiological processes, including demyelination, axonal loss and neurodegenera-
tion, quantifying brain volume changes may represent a promising MRI outcome measure to
evaluate the expected or unexpected (neuroprotective) effects of DMDs [6,7].

Nearly all phase II and III clinical trials concerning first-line (FL) or second-line (SL) DMD
previously included brain atrophy as outcome measure, we were interested in determining the
manner in which SLDMDs and FLDMDs modified brain atrophy progression over time. First,
we performed a meta-analysis to compare the effect of FLDMD, SLDMD and placebo on atro-
phy. Second, we conducted an observational and longitudinal linear regression analyses to eval-
uate the potential association between DMDs and brain volume changes over time.

Materials and Methods

Search strategy and selection criteria
This study has adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) guidelines (S1 PRISMA Checklist) [8]. We collected all reports fulfilling the fol-
lowing selection criteria: trials of relapsing-remitting MS (RRMS) assessing the efficacy of a
DMD and reporting cerebral atrophy data. The literature search was performed in MEDLINE
(PubMed), EMBASE, and CENTRAL (the Cochrane Library) using terms for the disease name
(“multiple sclerosis”), “atrophy” and DMDs ("glatiramer acetate" or "interferon" or "terifluno-
mide" or "BG-12" or "laquinimod" or "natalizumab" or "fingolimod" or "alemtuzumab" or
"daclizumab" or "ocrelizumab") from January 1, 1995, to June 1, 2014. The complete search
algorithm that was used in MEDLINE search is avalaible in the S1 Text. We also included the
phase II and III trials of each drug, which were occasionally collected directly from the authors
if they were not published, and posters or abstracts from scientific meetings. The abstracts
were independently screened for article selection, and full-length articles were examined if rele-
vant information could not be ascertained from the abstracts. The studies were selected accord-
ing to inclusion criteria, and we excluded studies that did not report atrophy results and
excluded duplicate records between databases.

Drugs and Brain Atrophy in RRMS: A Meta-Analysis

PLOS ONE | DOI:10.1371/journal.pone.0149685 March 16, 2016 2 / 14



Data extraction
We reviewed the full text of all selected studies and extracted data from all studies containing
PBVC, the brain volume or the brain fraction at each imaging time point among RRMS patients
from baseline to up to 48 months. For each study, we collected the design of the study (random-
ized, placebo-controlled and active-controlled), the technique used to measure PBVC, and the
name and dose of the DMD used. Then, for each arm of each study (an arm was a group of
patients treated with the same DMD at the same dose), we collected the sex ratio, age, EDSS, pre-
vious annual relapse rate, duration of disease progression since the first symptoms or diagnosis,
number of randomized patients and number of patients at each imaging time point. When clini-
cal data related to the atrophy measurement were missing from the article, we referred to the piv-
otal trial article. If the number of patients was not indicated at one time point, we recorded the
number of initially randomized patients as the appropriate value. Glatiramer acetate, interferon,
teriflunomide, BG-12 and laquinimod were classified as FLDMDs, and natalizumab, fingolimod
and alemtuzumab were classified as SLDMDs according to the health authorities’ recommenda-
tions. Daclizumab was considered an SLDMD based on the previous health authorities’ recom-
mendations for immunosuppression in organ transplant patients.

Endpoints
The endpoint was PBVC from baseline to up to 48 months and was compared between
FLDMD, SLDMD and placebo. In studies using the SIENA method, PBVC was automatically
calculated and reported by authors. Some trials performed repeated measurements, whereas
others performed only one PBVC measurement. For other methods of atrophy measurement,
the brain volume or brain fraction at each time point was reported, and the authors calculated
the percentage brain volume or fraction change from baseline, which we considered the PBVC.
If the PBVC was not calculated by the authors, we estimated it using the following formula:
(brain volume or fraction at the given time point–brain volume or fraction at baseline) / brain
volume or fraction at baseline. A negative result represented a decrease in brain volume, indi-
cating atrophy progression.

Statistical methods
The baseline characteristics for each qualified study and DMD are presented as the means and
standard deviations (SD) when available. To examine the association between FLDMD,
SLDMD and placebo and PBVC over time, we performed two statistical approaches.

First, we performed a meta-analysis of exclusively those studies that compared the PBVC
between an FLDMD and placebo, an SLDMD and placebo or an FLDMD and SLDMD at 12 or
24 months at the recommended doses using Review Manager (RevMan, Version 5.3, Copenha-
gen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Continuous outcomes
were expressed as the means and SD. If the SD was missing, we used a weighted average of the
SD reported in other studies of the same class of DMD and measurement period. If the I² statis-
tic heterogeneity measure exceeded 50%, we used a random effects model. In each study
included in the meta-analysis, a predefined 7-point quality control was used to address for
biases [9] and funnel plot was performed to evaluate the publication bias.

Second, we performed a linear regression analysis using a Generalized Estimating Equations
model, adjusting for time-trend and group, which was appropriate for repeated longitudinal
data. Formally, we tested the interaction between each pair-wise DMD and time to explore the
potential differences in brain atrophy over time. We weighted each brain volume change
according to the number of patients examined at each time point. In the overall analysis over
the 48-month follow-up period, we included all studies and all PBVC values. In a secondary
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analysis performed between 12 and 48 months to correct for any possible pseudoatrophy
effects [10], we included exclusively those studies that reported the PBVC at 12 months and at
least one other time point thereafter. For complementary sensitivity analyses, we evaluated
only randomized studies that used the current clinically recommended dose when 2 doses were
available in the same study and used the best-validated methods of atrophy measurement
(SIENA and BPF) [11,12].

A P-value less than 0.05 was considered to denote statistical significance. No adjustment
was made for multiple comparisons. We used the SAS v9.4 software (SAS Institute, Inc., Cary,
NC, USA) for statistical analysis.

Results

Number of studies
We identified 272 studies between January 1, 1995, and June 1, 2014, including 152 in MED-
LINE, 37 in COCHRANE, 24 in EMBASE and we included an additional 59 clinical trials (Fig
1). Based on a screen of the abstracts, 155 studies were excluded because of impertinent or
duplicate records. The full texts of 117 studies were analyzed. Sixty-one studies were excluded
due to the lack of PBVC data, 20 were excluded because the data had been previously reported
and 1 was excluded because it did not report data before 48 months from baseline. We analyzed
35 studies representing 71 arms (some studies included 3 comparative arms, and others
included only one arm in which the brain volume was monitored). In the meta-analysis, we
included 15 head-to-head studies of the PBVC at 12 or 24 months. Risk of bias is summarized
in S1 and S2 Figs. In the observational and longitudinal linear regression analyses, all 35 studies
were included in the overall analysis, and between 10 and 15 studies were included in the sec-
ondary analyses according to the criteria described above.

Characteristics of the studies and the population
The 35 included studies are presented in S1 Table. Table 1 summarizes the primary characteris-
tics of the studies, and Table 2 shows the baseline characteristics of the FLDMD, SLDMD and
placebo arms. These studies represented 18,140 patients, 51% of whom were treated with an
FLDMD, 27% of whom were treated with an SLDMD, and 22% of whom received placebo. The
primary baseline characteristics of the patients (age, disease duration, EDSS, and annualized
relapse rate) did not differ between the FLDMD and SLDMD groups.

Meta-analysis
At 12 months, no significant differences were detected between SLDMDs and placebo (primary
endpoint mean difference, 0.05; 95% confidence interval (CI): -0.14–0.24; P = 0.62; Figure A in
S3 Fig), between FLDMDs and placebo (0.02; 95% CI: -0.26–0.30; P = 0.87; Figure B in S3 Fig)
or between FLDMDs and SLDMDs (-0.03; 95% CI: -0.29–0.23; P = 0.83; Fig 2A).

At 24 months, greater atrophy was detected in the placebo group than in the SLDMD group
(0.85; 95% CI: 0.21–1.48; P = 0.009; Figure C in S3 Fig) and the FLDMD group (0.30; 95% CI:
0.11–0.48; P = 0.002; Figure D in S3 Fig). The comparison between FLDMD and SLDMD
revealed significantly greater atrophy in the FLDMD group than the SLDMD group (−0.86;
95% CI: −1.57–−0.15; P = 0.02; Fig 2B). Publication bias is avalaible in S4 Fig.

Observational and longitudinal linear regression analyses
Overall analysis. The PBVC slope was negative in all groups studied between months 0

and 48. Atrophy was more pronounced in the placebo group, with an estimated annual PBVC

Drugs and Brain Atrophy in RRMS: A Meta-Analysis

PLOS ONE | DOI:10.1371/journal.pone.0149685 March 16, 2016 4 / 14



Fig 1. Flow chart of systematic review. *One study could be included at 12 and 24 months. DMD: Disease Modifying Drug; FLDMD: First-line DMD;
SLDMD: Second-line DMD; PCB: Placebo; BPF: Brain Parenchymal Fraction; SIENA: Structural Image Evaluation, using Normalisation, of Atrophy.

doi:10.1371/journal.pone.0149685.g001
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slope of -0.50%/y. The estimated annual PBVC was -0.33%/y for patients who received an
FLDMD and -0.27%/y for those who received an SLDMD (Fig 3A). A significant difference
was detected between the SLDMD and placebo groups (P = 0.046) but not between the
FLDMD and SLDMD groups (P = 0.49) or between the FLDMD and placebo groups
(P = 0.11).

Secondary analyses. Fifteen studies were analyzed that included data between 12 and 48
months (8210 patients) (Fig 3B). The annual PBVC slope was reduced for SLDMDs compared
with placebo (-0.14%/y and -0.56%/y, respectively, P<0.001) and FLDMDs (-0.46%/y,
P<0.005), but no difference was detected between FLDMDs and placebo (P = 0.12).

Other complementary sensitivity analyses, which evaluated only randomized trials that
used the currently recommended doses (12 studies, Fig 3C) and the BPF or SIENA method (10
studies, Fig 3D), confirmed the greater reduction in atrophy among the patients who received
an SLDMD compared with those who received an FLDMD or placebo (P<0.005 and P<0.001,
respectively, in both analyses). No difference in atrophy was detected between FLDMDs and
placebo based on each analysis (P = 0.40 and P = 0.47, respectively).

Discussion
The present study of all clinical trials that included the effect of an FLDMD or SLDMD on
brain atrophy as an outcome measure showed that in patients with RRMS, the use of an
SLDMD significantly decreased the slope of PBVC compared with placebo over a period of 48
months. In contrast, we did not detect any differences in the PBVC slope between FLDMD and
placebo based on either the primary and secondary analyses. The effect of SLDMDs on PBVC
was significantly greater than that of FLDMDs at 24 months based on the meta-analysis and
between 12 and 48 months based on the observational longitudinal linear regression analyses,
including sensitivity analyses of randomized clinical trials that used the recommended doses

Table 1. Primary characteristics of the 35 included studies.

All studies, n = 35

Designa

Placebo-controlled, n (%) 16 (46)

Active-controlled, n (%) 11 (31)

Different doses, n (%) 14 (40)

Not randomized, n (%) 10 (29)

Number of arms

1, n (%) 7 (20)

2, n (%) 14 (40)

3, n (%) 14 (40)

Type

Phase 2, n (%) 3 (9)

Phase 3, n (%) 17 (49)

Others, n (%) 15 (43)

Technique

BPF, n (%) 9 (26)

SIENA, n (%) 17 (49)

Other, n (%) 9 (26)

aOne study could be in two designs.

BPF: Brain Parenchymal Fraction; SIENA: Structural Image Evaluation, using Normalisation, of Atrophy.

doi:10.1371/journal.pone.0149685.t001
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and validated methods of atrophy measurement. The observed superior effect of SLDMDs to
FLDMDs on the PBVC over time is intriguing.

Several mechanisms may underlie the observed difference in the PBVC slope between the
use of an FLDMD and an SLDMD. The powerful and sustained anti-inflammatory effect may
be considered the primary factor that explains the observed difference in PBVC progression
between SLDMDs and FLDMDs and placebo. In all head-to-head studies, SLDMDs displayed
a larger clinical effect on relapse and MRI activity than interferon or glatiramer acetate [13–
15]. However, other in vitro or in vivo studies in the field of neuroprotection suggested that
some SLDMDs, such as fingolimod, may display additional pharmacological properties via
direct interactions with glial cells and neurons [16]. Other specific potentially protective mech-
anisms that are not directly related to anti-inflammatory effects have been suggested for mono-
clonal antibodies [17,18]. However, similar interesting mechanisms in the field of
neuroprotection have been described for some FLDMDs [19,20]. Therefore, the exact mecha-
nisms that affect PBVC over time remain to be elucidated, even if the larger anti-inflammatory
effect of SLDMDs may ultimately be sufficient to explain the results of our study based on con-
sidering the convincing data linking the neurodegenerative process to the initial inflammatory
process in MS [21,22].

Evaluating the prevention of brain atrophy as a reliable outcome measure of drug effective-
ness is currently an active topic in MS research [6,23,7]. Previously, assessment of drug effec-
tiveness mainly belongs to changes for T2 lesion load, gadolinium-enhancing lesions and T1
black hole lesions. However, depending of the disability outcome criteria, method used to mea-
sure lesions and time endpoint of the study, weak or no correlation were observed with one or
all these MRI criteria [24–27]. On the contrary, brain atrophy may represent a promising MRI
outcome measure considering pathophysiological processes including demyelination, axonal

Fig 2. Forest plot of comparison between FLDMD and SLDMD at 12 months (A) and 24months (B). DMD: Disease Modifying Drug; FLDMD: First-line
DMD; SLDMD: Second-line DMD; SD: Standard Deviation.

doi:10.1371/journal.pone.0149685.g002
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loss and neurodegeneration. Recently, Sormani et al. published a meta-analysis [28] exploring
the relationship between the treatment effect size on brain atrophy and the treatment effect
size on disability progression. In that study, the authors demonstrated that the treatment effect

Fig 3. Evolution of the percentage brain volume change up to 48months (A), from 12 to 48months (B), from 12 to 48months using only
randomized studies and recommended doses (C) and from 12 to 48 months using only randomized studies, recommended doses and BPF or
SIENA techniques (D). *, significant, see p-value in the associated table. DMD: Disease Modifying Drugs; FLDMD: First-line DMD; SLDMD: Second-line
DMD; β: Coefficient of monthly PBVC slope; SE: Standard Error; PBVC: Percentage Brain Volume Change; NS: Not significant. Each Circle represents the
percentage brain volume change from baseline, in one group of patients treated in the same study by the same treatment. Circle is proportional to the sample
size of the studied arms.

doi:10.1371/journal.pone.0149685.g003
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on disability progression correlated with the treatment effect on both brain atrophy and active
MRI lesions. Despite a weak correlation coefficient between the treatment effect on brain atro-
phy and that on MRI lesions (R = 0.2), the variable “atrophy” in the multivariate weighted
regression independently correlated with the treatment effect on disability progression, sug-
gesting that the effect on brain atrophy contributed to that on the focal lesions to slow disability
progression, which may be clinically relevant. Although our goal and methods were different
from this previous study, our findings examined another important aspect of brain atrophy
measurement over time, the possible difference in the treatment effect on PBVC between dif-
ferent types of DMDs. In their study, Sormani et al. did not classify the DMDs, and the dura-
tion of evaluation was limited to 2 years after randomization according to the endpoint
disability progression over the same period. By extending the assessment period to 48 months
and separately examining the post-pseudoatrophy period (12–48 months), we added comple-
mentary data on the duration and level of the effect of certain DMDs on PBVC over time.
Accordingly, our findings suggest that the larger effect of SLDMDs on the rate of brain atrophy
may predict their lower risk of disability progression than FLDMDs. However, this result
remains to be formally demonstrated at the trial and individual levels for each SLDMD
included in this analysis.

Our study contains some limitations. First, the drugs included in the DMD classes differed
in terms of mode of action but the classification method used was based on a large professional
consensus in the literature [29,30] and the recommendations of European health authorities
for all DMDs, except for daclizumab for which recommendations have yet to be provided by
these regulatory agencies. We decided to classify daclizumab into the SLDMD group based on
its pharmacological profile and its previous use for the prevention of allograft rejection during
renal transplantation [18]. Second, the methods used to assess PBVC differed between the
studies included. However, in the meta-analysis, we used random effect models which account
for this heterogeneity in the precision of the DMD effect size assessments and in the longitudi-
nal analysis, we conducted subgroup analyses including only homogeneous techniques of atro-
phy measurement. BPF and SIENA are the most frequently used methods to measure brain
volume in clinical practice and in MS trials of DMDs [31]. In a larger clinical trial dataset,
blinded analysis by separate MRI reading centers using either SIENA or BPF measurements
showed similar trends with a highly correlation at baseline and for brain volume change [32].
Third, one study [33] in the meta-analysis had PBVC of -3.7% in the FLDMD arm, appearing
to be very different from other studies, and may represent a potential bias. Fourth, the comple-
mentary longitudinal analysis of PBVC over time included non-randomized single-arm studies
and dissociated the arms of the randomized studies. Therefore, the results of the slope compar-
ison between the DMD groups, even if they are more powerful than those of the meta-analysis,
should be interpreted with caution. Nevertheless, several subgroup analyses were conducted
including only randomized clinical trials, recommended doses and homogeneous techniques
of atrophy measurement to assess the robustness of our conclusions [28,34]. Finally, the results
of both, the meta-analysis and the linear regression analyses, consistently revealed a superiority
of SLDMDs to FLDMDs regarding PBVC (see Fig 3B–3D).

Despite the correlation between some DMDs and the slowing of brain atrophy, we cannot
confirm a relationship for any specific treatment between its treatment effect, the progression
of atrophy and the clinical status at the individual level. Future studies with a primary objective
of determining the relationship between atrophy and progression of motor or cognitive
impairment are needed. In addition, this study is limited to the RR phase of MS, and these
results cannot be applied to the progressive phase of MS. Moreover, our analysis was limited to
48 months of follow-up and could not be extended to a longer period due to the lack of studies
beyond this period.
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Our findings may have important clinical implications regarding therapeutic strategies for
patients with RRMS. In fact, individual SLDMDs have previously displayed larger effects on
the annual relapse rate and/or disability accumulation in patients than classical FLDMDs
based on head-to-head comparisons [13–15]. If brain atrophy is considered a highly clinically
relevant marker of disease progression that predicts the progression of motor and/or cognitive
disability [35–38], our findings suggest that the use of an SLDMD in the therapeutic strategy
should be considered as soon as possible according to the McDonald criteria [39] if MRI fol-
low-up reveals any brain volume change. For patients who must shift from an FLDMD to an
SLDMD according to the recommendations of health authorities, our data suggest that this
SLDMD should be maintained as long as possible, even if clinical and radiological progression
is lacking, because a disease-free status does not ensure the absence of neurodegeneration [40].
In this context, the recent proposition of Kappos et al. to include brain volume loss in a revised
measure of MS disease-activity freedom provides novel insight into the assessment of the over-
all effects of DMDs on MS disease and guides the therapeutic strategy for RRMS patients [41].
Clearly, this should need a large diffusion of atrophy measurement as a routine radiological
parameter in MRI follow-up.

In the near future, the availability of new DMDs that may exhibit neuroprotective effects
could emerge from the private and/or academic manufacturing drug pipeline, likely leading to
the use of brain atrophy measurement as a major surrogate marker of treatment efficacy for all
MS forms. Our findings suggest that the PBVC should be monitored over a sufficient period of
time. Regardless of the potential clinical value of this evaluation, this measure will likely be
used in addition to the global assessment of disease progression to ensure that the reduction in
the brain atrophy slope is formally clinically relevant.
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