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Abstract
Background: The origin of complex adaptations is one of the most controversial questions in
biology. Environmental induction of novel phenotypes, where phenotypic retention of adaptive
developmental variation is enabled by organismal complexity and homeostasis, can be a starting
point in the evolution of some adaptations, but empirical examples are rare. Comparisons of
populations that differ in historical recurrence of environmental induction can offer insight into its
evolutionary significance, and recent colonization of North America by the house finch (Carpodacus
mexicanus) provides such an opportunity.

Results: In both native (southern Arizona) and newly established (northern Montana, 18
generations) populations, breeding female finches exhibit the same complex adaptation – a sex-bias
in ovulation sequence – in response to population-specific environmental stimulus of differing
recurrence. We document that, in the new population, the adaptation is induced by a novel
environment during females' first breeding and is subsequently retained across breeding attempts.
In the native population, first-breeding females expressed a precise adaptive response to a
recurrent environmental stimulus without environmental induction. We document strong
selection on environmental cue recognition in both populations and find that rearrangement of the
same proximate mechanism – clustering of oocytes that become males and females – can enable
an adaptive response to distinct environmental stimuli.

Conclusion: The results show that developmental plasticity induced by novel environmental
conditions confers significant fitness advantages to both maternal and offspring generations and
might play an important role not only in the successful establishment of this invasive species across
the widest ecological range of extant birds, but also can link environmental induction and genetic
inheritance in the evolution of novel adaptations.

Background
Evolutionary biology is concerned with explaining the ori-
gin and diversification of organismal forms. However,
despite great advances in the understanding of mainte-
nance and adaptive evolution of existing organismal
forms, we still know very little about their origin [1,2].

Especially puzzling is the origin of complex adaptations
that involve close and context-dependent integration of
multiple organismal systems.

The dual effect of a novel environment on phenotypic
plasticity – simultaneous exposure of "hidden" develop-
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mental variation and strong selection on this variation –
can be a starting point in the evolutionary persistence of
some adaptations [3-6]. When individuals vary in their
response to the novel stimulus, when this variability is
heritable, and the stimulus is recurrent, such environmen-
tal induction can lead to eventual genetic determination
of a novel adaptation [7,8]. The central thesis of this view
is that evolutionary novelty often involves reorganization
of preexisting phenotypes [9,10] and this results in simi-
larity of the novel changes among individuals, facilitates
response to novel selection pressures, and can ultimately
lead to genetic assimilation of the novel trait [9,11-16].
Yet, empirical documentation of evolutionary persistence
of environmentally induced adaptations is rare in natural
populations [17-19].

Documentation of environmental induction and pheno-
typic retention of adaptive plasticity is the first step in
investigating this proposed sequence, and rapid coloniza-
tion of North America in the last 70 years by the house
finch (Carpodacus mexicanus) – a species native to south-
western United States – provides such an opportunity. In
both native (southern Arizona) and newly established
(northern Montana) populations, sex-bias in ovulation
sequence (Figure 1) confers significant fitness benefits – in
the recently established population, it increases pheno-
typic variance in offspring growth which leads to greater

juvenile survival under novel ecological conditions, and
in the native population, it lessens offspring exposure to
ectoparasites and associated mortality [20-22]. In Mon-
tana, the environmental stimulus to sex-biased ovulation
is closely associated with the number of days during oog-
enesis when the ambient temperature falls below 4°C –
minimum egg-tolerance temperature for most passerine
birds ("critical temperature days" hereafter; [23]). In the
native population in Arizona, the environmental cue is
exposure of females during egg-laying to hematophagous
ectoparasitic nest mite Pellonyssus reedi that infests most
nests for 1.5–2 months during the late part of each breed-
ing season [21]. The cues are unique for each population
– Montana population is not exposed to nest mites,
whereas Arizona population is not exposed to below egg-
tolerance temperature during oogenesis and egg-laying.

Here we studied the similarity in responses to population-
specific environmental stimulus and proximate mecha-
nisms behind such responses in first-breeding (i.e., 8–12
months old) females in each population. Because most
first-breeding females in the recently-established Mon-
tana population are long-distance immigrants from
southern populations [24], they are not expected to have
either an evolved recognition of the local environmental
stimulus at the northernmost part of the species' range or
an evolved and precise modification of ovulation

Short-term sex-bias in ovulation sequence in house finch femalesFigure 1
Short-term sex-bias in ovulation sequence in house finch females. Sex-bias in response to A) ambient temperature 
below egg-viability threshold during early breeding season in Montana (n = 86 nests), and B) late season nest mite infestation in 
Arizona (n = 110 nests). In both populations, there was no sex-bias in ovulation sequence in other parts of the breeding sea-
son. Asterisks show sex-ratios significantly deviating from parity. Coefficient of variation (cv) indicates variability in relative 
ovulation sequence of male and female eggs (see Methods).
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sequence in response to this stimulus. On the other hand,
first-breeding females in the Arizona population are
mostly locally born or short-distance immigrants from
local populations that experience yearly seasonal mite
infestation that exerts high nestling mortality [21], and
thus are expected to have evolved both a recognition of
the local environmental stimulus (onset of mite season)
and a response to it.

Results
Response to environmental stimulus
Sex-bias in ovulation sequence of first-breeding females
was closely associated with the number of critical temper-
ature days during oogenesis in Montana (MT hereafter;
maximum likelihood estimation χ2 = 45.28, p < 0.001)
and with number of mites at the nest site in Arizona (AZ
hereafter; χ2 = 106.3, p < 0.001), but the shape of the rela-
tionship differed between the populations. Linear regres-
sion best described the relationship between the response
and stimulus for first-breeding females in MT (Figure 2a;
biases = 0.93 ± 0.12 (s.e.m.) + 0.22 ± 0.02 critical days, t
= 9.64, n = 93, p < 0.001; cubic spline fit versus linear
regression fit: t = 4.66, p < 0.01), whereas a threshold-like
cubic spline best described the relationship in first-breed-
ing females in AZ (Figure 2b, χ2 = 25.3, n = 131, p < 0.01).
First-breeding females in MT had less precise sex-bias of
ovulation sequence than first-breeding females in AZ (Fig-
ure 1; CV of within-sex variability of ovulation positions
– males: 44.6% (MT) vs. 23.3% (AZ), females: 54.5 vs.
39.8%; both Fs > 3.38, p < 0.05).

Covariation between sex-bias and environmental stimu-
lus across breeding episodes differed between the popula-
tions (Figure 2cd; interaction: population x breeding
episode x relative stimulus, F1,243 = 5.98, p = 0.015). In
MT, threshold for environmental induction of sex-bias
decreased across breeding episodes in females that were
followed throughout their lifetime (Figure 2c; χ2 = 8.05, n
= 51, p = 0.01), and by the third breeding episode a single
critical temperature day during oogenesis was sufficient to
exert a full response (Figure 2c). However, the strength of
the response did not differ across breeding episodes across
females' lifetime (Figure 2e; χ2 = 4.33, p = 0.12). In AZ,
neither the relationship between cue and response (Figure
2d; χ2 = 0.84, n = 29, p = 0.51), nor the strength of the
response differed across breeding episodes (Figure 2f; χ2 =
3.54, p = 0.14).

Natural selection on response to environmental stimulus
We documented strong selection on response to environ-
mental stimuli in both populations (Figure 3). In MT,
first-breeding females that biased ovulation order when
experiencing critical temperature days during oogenesis
had the highest fledging success, whereas females that
experienced the critical temperature days but did not bias

ovulation sequence had the lowest success (Figure 3a;
standardized selection differentials: bST (bias) = 0.43, t =
5.25, p < 0.01; bST (stimulus) = -0.13, t = -1.46, ns). In AZ,
first-breeding females that responded strongly to the
mites had the highest fledging success, whereas females
that had lesser or no response had the lowest success (Fig-
ure 3b; bST (bias) = 0.42, t = 6.21, p < 0.01, bST (stimulus)
= -0.39, t = -5.82, p < 0.01). The strength of selection on
response to stimulus differed between the populations
(interaction: population x relative stimulus x response:
F1,223 = 56.15, p < 0.001, interaction: cue x population:
F1,223 = 27.51, p < 0.001; model F7,223 = 25.01, p < 0.01),
however the sharper peak of the estimated AZ fitness con-
tour was likely confounded by the direct mortality effect
of nest mites on nestling survival in nests with more than
20 mites at the onset of incubation (Figure 3b).

Proximate mechanisms of response to environmental cue
To investigate the proximate mechanisms behind adap-
tive sex-biased ovulation, we studied similarity in yolk
uptake among oocytes within and between sexes within a
clutch in both populations. Specifically we examined
whether oocytes that become males and females were
recruited into the rapid growth stage at different times
during oogenesis (see Background to avian oogenesis
below; Figure 4a, c), a pattern expected to generate
stronger correlations of yolk partitioning among single-
sex follicles compared to mixed-sex follicles, or whether
male and female oocytes are recruited in random order
(Figure 4bd), a pattern not expected to generate sex-spe-
cific groups of oocytes similar in yolk deposition [see [25]
for details]. In first-breeding females in AZ, our analyses
revealed three significantly different, mostly sex-specific,
oocyte groups in females that experienced mite infestation
and had sex-biased ovulation order (Figure 4a; pseudo-t2

= 10.01, p < 0.001), and three weakly differentiated,
mixed-sex groups in females that breed under mite-free
conditions and did not bias ovulation order (Figure 4b;
pseudo t2 = 5.76, p < 0.05; difference: Wilks' 8 = 0.91, F =
3.06, p < 0.05). In MT, there were four sex-specific groups
in females that experienced critical temperature days dur-
ing oogenesis (pseudo-t2 = 29.5, p < 0.05), and two weakly
differentiated, mixed-sex groups in females that did not
experience critical temperature days during oogenesis
(pseudo-t2 = 8.3, p < 0.05; difference: Wilks' 8 = 1.16, F =
4.36, p < 0.05).

Discussion
In order for environmentally-induced plasticity to have
long-term evolutionary consequences, it has to be allowed
and retained by organismal homeostatic processes, have a
heritable component, induce similar changes across indi-
viduals, and confer consistent fitness benefits [6,9,26];
however, studies of these requirements are rare in natural
systems. In several populations of house finches across
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The relationship between environmental stimulus (critical temperature days during oogenesis in Montana and number of mites at nest sites in Arizona) and response to the stimulus (number of biases in ovulation sequence)Figure 2
The relationship between environmental stimulus (critical temperature days during oogenesis in Montana and 
number of mites at nest sites in Arizona) and response to the stimulus (number of biases in ovulation 
sequence) in A) first-breeding females in Montana (n = 93 females), B) first-breeding females in Arizona (n = 131 females). 
C) Estimated number (mean ± s.e.m.) of critical temperature days during oogenesis required to exert full response (three 
biases in ovulation sequence) across female's lifetime in Montana (n = 51 females), D) Estimated number (mean ± s.e.m.) of 
nest mites during oogenesis required to exert full response (four biases in ovulation sequence) across female lifetime in Ari-
zona (n = 29 females). Note that the ordinate axes in C) and D) are scaled identically to the abscissa axes in A) and B) to 
show the full range of the stimulus. E) Biases (mean deviations ± s.e.m.) in ovulation sequence across three breeding episodes 
of the same females in Montana, and F) in Arizona. Bubble radius is proportional to the number of overlapping data points. 
Lines connect means that are not significantly different.
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North America, modification of within-clutch laying
sequence of male and female eggs is under current natural
selection in both maternal and offspring generations;
these modifications are thought to be proximately pro-
duced by interplay of induced changes in maternal hor-
monal profile during breeding in novel or stressful
conditions and associated distinct accumulation of hor-
mones by oocytes that become males or females [23,27].
Here we showed that, first, the sex-biased ovulation
sequence in first-breeding females in the newly estab-
lished population was induced approximately propor-
tionally to novel environmental stimulus, whereas first-
breeding females in the native population responded to
the environmental stimulus in a precise threshold-like
pattern and without induction (Figure 2). Second, the
dependence of response on environmental stimulus less-
ened across a females' lifetime in the newly established
population (Figure 2c). Third, in both populations, sex-
biased ovulation order was associated with the same
mechanism – sex-specific groups of oocytes most likely
induced through temporal similarity in recruitment time
between oocytes that become the same sex (Figure 4;
[25]).

These results raise two main questions. First, what are the
mechanisms enabling phenotypic accommodation of
environmentally-induced response across a female's life-
time? Second, how can environmental induction of ovu-
lation sequence lead to evolution of precise patterns of
sex-biased ovulation sequence found in some birds,
including in the ancestral population of the study species?
We also discuss alternative explanations for the observed
findings, including the evolution of reaction norms in
maternal traits between populations.

In both populations, the response to distinct environmen-
tal cues was produced by rearrangement of the same prox-
imate mechanism – clustering of male and female
oocytes. We suggest that such clustering is induced by
temporal hormonal fluctuations in female's plasma, such
that the effect of ambient temperature on prolactin-regu-
lated female's incubation behaviors or direct experience of
nest mites at the onset of mite infestation season, induces
female hormonal fluctuations, resulting in exposure of
growing oocytes to distinct hormonal profiles, subse-
quent accumulation of distinct hormonal concentrations
which in turn, can affect the sex-determining meiotic divi-

Estimated contour plots of offspring survival as a function of number of deviations (biases) in ovulation sequenceFigure 3
Estimated contour plots of offspring survival as a function of number of deviations (biases) in ovulation 
sequence. Response to A) critical temperature days in Montana population (n = 128 nests), and B) number of mites at nest 
site in Arizona population (n = 96 nests infested with mites). Note that the ordinate axis shows number of mites at the stage of 
egg-laying and this number increases greatly by the time nestlings hatch and mite-induced mortality occurs. Numbers show 
proportion of nestlings fledged out of the number of eggs laid.
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sion of oocytes [25,27-29]. Indeed, because hormonal
mechanisms are involved in both assessment of environ-
mental change and incorporation of novel environmental
input, environmental induction of hormonal changes and
subsequent phenotypic retention of their effects is a fre-
quently documented route in the evolution of novel adap-
tations and morphologies [8,30-33]. Because of its
complexity, redundancy, and environmental sensitivity,
hormonal regulation of avian reproductive system is par-
ticularly well-suited for retention of environmentally-
induced modifications [34]. Specifically, hormones regu-
lating oocyte proliferation and ovulation have strong
environmental sensitivity, and hormonally-mediated
changes in gene expression as a result of prior breeding
experience, changes in photoperiod, food, mate familiar-
ity, or ambient temperature are often documented [35-
39]. Moreover, environmental modifications of the first
ovulation sequence, such as sensitivity to ovulation-
inducing hormones, might be retained throughout a
female's lifetime in vertebrates [40-42], apparently by the
homeostatic effects of complex reproductive systems.
Thus, hormonal regulation might have a major role in the

observed rearranging the same mechanism for novel
inputs and novel functions in the two study populations.

Female birds can show precise and context-dependent
adjustment of sex-bias in laying order in relation to
changes in mate quality, food availability, and time of
breeding season, both across individuals [43-46] and
between breeding attempts [47-49]. How can precise sex-
bias in ovulation sequence evolve, especially when its ini-
tial induction is likely to be imprecise (e. g., Figures 1a,
2e)? We propose that evolved precision in sex-bias is
caused by the linkage between hormonal mechanisms
that influence sex-determination and mechanisms that
enable distinct accumulation of hormones in oocytes that
become males and females. Distinct allocation of hor-
mones into male and female oocytes is under strong selec-
tion on offspring growth; for example in the two recently
established house finch populations with opposite sex-
bias in ovulation sequence, males produced in female-
biased positions and females in male-biased positions
accumulated hormones incompatible with their normal
development [50], likely accounting for strong selection

Groups of oocytes similar in yolk (x-axis – Ward's minimum distance) in relation to oocyte' sex and ovulation order in first-breeding femalesFigure 4
Groups of oocytes similar in yolk (x-axis – Ward's minimum distance) in relation to oocyte' sex and ovulation 
order in first-breeding females. A) Arizona population under mite infestation conditions (n = 72 nests), B) Montana pop-
ulation with > 5 critical days during oogenesis (n = 63 nests), C) Arizona population under mite free conditions (n = 99 nests), 
D) Montana population with ≤ 1 critical days during oogenesis (n = 34 nests). Drawings show hypothetical arrangement of 
oocytes in the ovary that would correspond to sex-specific clusters in A) and B) or non-sex specific hierarchical arrangement 
in C) and D). Vertical bars on the left side delineate significantly distinct clusters.
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for environmental stimulus recognition documented in
this study (Figure 3a). Because hormones in female
plasma change with the progress of oogenesis, laying, and
incubation, oocytes develop in and accumulate different
hormonal milieus depending on the time of their seques-
tration, which, in turn, might produce temporal bias in
time of sequestering of oocytes that become males and
females resulting in sex-specific groups of oocytes
described here [see also [51-53]]. Thus, natural selection
should maintain close integration between the mecha-
nisms by which hormones can bias sex-determination
(including through environmental induction) and mech-
anisms enabling sex-specific accumulation of hormones
by oocytes. Such integration not only can explain the
observed within-generation increase in precision of sex-
bias in ovulation sequence (Figure 2e), but also might be
the mechanism for precise sex-specific maternal alloca-
tion of resources within a clutch in some birds [54-56].

In the native population, the finding of higher precision,
greater expression, and lesser dependency of sex-bias in
ovulation sequence on environmental induction (Figure
1, 2d) is consistent with observations that sex-bias in ovu-
lation is accompanied by precise maternal adjustment of
offspring growth, likely representing an evolved mother-
offspring co-adaptation under selection on offspring mor-
phology during periodic mite infestation [21]. On the
contrary, in the new population, selection on modifica-
tion of ovulation sequence acted primarily on the mater-
nal generation, such that females that were able to resolve
the contrasting hormonal requirements of overlapping
incubation and oogenesis under novel breeding condi-
tions had the highest fitness [23]. Elsewhere, we analyzed
the effects of maternal adaptation on offspring across ten
consecutive generations in relation to similarity in envi-
ronmental conditions between maternal and offspring
generations and found that the effects of induced mater-
nal adaptation on the offspring induced wider phenotypic
plasticity in offspring development and morphology
rather than precise adjustment of offspring growth [22].

Alternatively, the newly established population might be
expressing only a variant of the reaction norm that cannot
be expressed in the native population due to more consist-
ent and stronger selection on the reaction norm there [57-
59]. In the context of this study system, the reaction norm
is the sensitivity to environmental stimuli or a narrower
range of adaptive response in the native population. How-
ever, strong within-individual changes in phenotypic
plasticity (Figure 2c), the precise and complex nature of
adaptive response where a different sex-bias in ovulation
sequence is favored in different populations (Figure 1),
and the fact that stimuli are unique for each population
make it unlikely that the observed population differences
in dependence of the response on the stimulus (Figure 2c,

d) constitute differential expression of the same reaction
norm or a retained response. At the same time, it is impor-
tant for future studies to address the within-population
contribution of genetic and environmental factors to the
evolution of reaction norms.

Conclusion
Across dispersing and native populations of the house
finch, we observe differential importance of maternal
effects for the evolution of local adaptations – from envi-
ronmentally-induced maternal effects that increase devel-
opmental plasticity in the first few generations of the
newly established population to the reliable production
of locally adaptive morphologies in the absence of sex-
biased maternal effects, but short-term and reversible
maternal effects on offspring growth under mite infesta-
tion in the native population [20-22]. We showed that
developmental plasticity induced by novel environmental
conditions confers significant fitness advantages to both
maternal and offspring generations and might play an
important role not only in the successful establishment of
house finches across the widest ecological range of extant
bird species, but also can provide an example of the link
between environmental induction and genetic inherit-
ance in the evolution of novel adaptations.

Methods
Study populations and general methods
House finches were studied in 1995–2006 in the recently
established population at the northernmost part of spe-
cies' range in northwestern Montana, where this species
started breeding in the late 1970s, and in 2002–2007 in
the southern part of their native range in southwestern
Arizona, 2700 km to the south, where finches bred for at
least 10,000 years. In both populations, all resident birds
were marked with a unique combination of four rings,
and age category and prior breeding experience were
known for all birds included in this study. All females laid
one egg per day between 0500 and 1100 and eggs were
numbered sequentially on the day of laying. Embryos or
nestlings were sexed molecularly [60] and the maximum
oogenesis duration (ten days concluding with the laying
of penultimate egg and ovulation of the last egg) was
assessed with the oocyte lipid accumulation method [61].
To minimize the effect of clutch size on sex-bias in ovula-
tion sequence, we restricted the analyses to 4 and 5 egg
clutches. Analysis of similarity of oocyte yolk uptake was
conducted according to [[25], see also below]. To examine
changes in response across breeding attempts we followed
the same females across their lifetime.

Environmental stimulus and response measures
In the MT population, we recorded the number of days
during a ten-day oogenesis period with average daily (24
hr) temperature ≤ 4°C ("critical temperature days"). To
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minimize the effect of timing of this environmental stim-
ulus on probability of response, we excluded four nests
where the stimulus was absent during the first five days of
oogenesis. Weather data were obtained from permanent
weather stations at the Missoula Country Airport one km
from the MT study site [28]. In Arizona population, we
counted Pellonyssus reedi mites at nest sites every second
day and the total population of mites was subsequently
verified by fumigating nests with chloroform; only esti-
mated abundance of nest mites at the egg-laying stage was
used in this study. Because the full adaptive response –
population-specific ovulation sequences of male and
female eggs – was known for each population ([20,21],
which see for tests of sex-biased ovulation), we measured
the magnitude of the response as the number of "correct"
deviations in each ovulation sequence (i.e., clutch) fol-
lowing [23]. Briefly, full "correct" response was three posi-
tions deviated from parity (1st, 2nd, and the last) for the
MT population and four deviated positions (1st, 2nd, 4th

and last) for the AZ population (Figure 1). To compare
populations, we divided the number of deviations
("biases" hereafter) for each female by the maximum
number of deviations for the population. All analyses
involving this measure were conducted with nest identity
as a random effect to correct for female-specific ovulation
sequences. Variability in the precision of sex bias in ovu-
lation sequences (Figure 1) was measured by ranking
male and female egg-laying positions separately within a
clutch and calculating coefficient of variation for mean
within-clutch probability position for each sex [see also
[62]] that was subsequently compared with Levene's test.

Brief background to avian oogenesis
Ovarian oocytes recruited into the pre-ovulatory pool
undergo rapid yolk accumulation and typically form tem-
poral hierarchy of growth, followed by sequential ovula-
tion. In addition to temporal variation in recruitment to
the rapid yolk deposition stage, hierarchical arrangements
among the simultaneously growing oocytes and ovulation
intervals are maintained by growth inhibiting hormonal
interactions among maturing oocytes [63-65]. Such inhib-
iting interactions have pronounced spatial patterns, such
that only follicles in the close proximity or at similar
stages of development are affected. Thus, differences
between oocytes that become males and females in either
time of recruitment or in spatial arrangement in the ovary
can produce sex-specific groups or "clusters" of oocytes.
Such clusters have been inferred through analyses of sim-
ilarity in oocyte accumulation of lipids, carotenoids, vita-
mins, and hormones [25,27,50].

Statistical analyses
To assess shape and magnitude of the response (e.g., bias
number) as a function of environmental stimulus
(number of critical days in MT and number of mites at

nest site in AZ) we used regression procedures in general-
ized additive models of PROC GAM in SAS 9.13. The Pois-
son regression analysis of GAM procedure enables
simultaneous test of the stimulus, estimation and statisti-
cal comparison of the best shape of the relationship
between the stimulus and the response, and visual assess-
ment of the value of stimulus corresponding with the full
response. To estimate and test the change in dependency
of the response on stimulus, we plotted, with ODS graph-
ics module of PROC GAM, for each breeding episode in
both populations, the 99% confidence interval around
the best-fit curve. We then recorded the smallest value of
the stimulus corresponding to the full response (three
positions in MT and four in AZ). We repeated this proce-
dure with replacement for all nests in MT and AZ datasets
and mean ± s.e.m. were calculated for Figure 2c, d. Overall
significance of the dependency of response on stimulus
was tested with PROC GENMOD logistic regression, the
means of response dependence on stimulus among breed-
ing episodes were compared with Waller-Duncan K-ratio
t-test, and the magnitude of response across breeding epi-
sodes was compared with repeated measures ANOVA in
REPEATED module of PROC MIXED of SAS 9.13 with
breeding episode, female age cohort, and year as categori-
cal fixed effects and female identity as a random effect. To
compare response to environmental stimulus across all
females, breeding episodes, and populations in the single
test, we standardized both the response and strength of
stimulus variables to percentages of the full response and
maximum stimulus (three biased positions, and 10 criti-
cal temperature days in MT and four biased positions and
55 mites in AZ) and tested the interaction between the fac-
tors with PROC GLM with the response constrained by
female identity. Correlational structure of oocyte similar-
ity in yolk uptake was converted to distances in canonical
discriminant analysis (PROC CANDISC in SAS 9.13). The
cluster analysis of similarity in correlational structure
between follicles of different ovulation order and sex was
conducted by Ward's minimum distance method using
pseudo-F and preudo-t2 statistics to estimate the number
of statistically distinct clusters [after [25]].
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