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Abstract: The objective of the present study was one step extracellular biosynthesis of silver
nanoparticles (AgNPs) using supernatant of Candida glabrata isolated from oropharyngeal mucosa of
human immunodeficiency virus (HIV) patients and evaluation of their antibacterial and antifungal
potential against human pathogenic bacteria and fungi. The mycosynthesized AgNPs were
characterized by color visualization, ultraviolet-visible (UV) spectroscopy, fourier transform infrared
spectroscopy (FTIR), and transmission electron microscopy (TEM). The FTIR spectra revealed the
binding and stabilization of nanoparticles with protein. The TEM analysis showed that nanoparticles
were well dispersed and predominantly spherical in shape within the size range of 2–15 nm.
The antibacterial and antifungal potential of AgNPs were characterized by determining minimum
inhibitory concentration (MIC), minimum bactericidal concentration (MBC)/ minimum fungicidal
concentration (MFC), and well diffusion methods. The MBC and MFC were found in the range of
62.5–250 µg/mL and 125–500 µg/mL, which revealed that bacterial strains were more susceptible
to AgNPs than fungal strains. These differences in bactericidal and fungicidal concentrations of the
AgNPs were due to the differences in the cell structure and organization of bacteria and yeast cells.
The interaction of AgNPs with C. albicans analyzed by TEM showed the penetration of nanoparticles
inside the Candida cells, which led the formation of “pits” and “pores” that result from the rupturing
of the cell wall and membrane. Further, TEM analysis showed that Candida cells treated with AgNPs
were highly deformed and the cells had shrunken to a greater extent because of their interaction with
the fungal cell wall and membrane, which disrupted the structure of the cell membrane and inhibited
the normal budding process due to the destruction and loss of membrane integrity and formation of
pores that may led to the cell death.
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1. Introduction

It is worthy to state that the 21st century is the golden era of silver nanotechnology because
silver-based materials and silver nanoparticles (AgNPs) are used in textile engineering, waste water
treatment and purification, optics, electronics, pharmaceutical industry, as catalysts, optical sensors,
and in the medical field as bactericidal, fungicidal, larvicidal, therapeutic, diagnostic, and anticancer
agents, in wound dressings, and imaging, etc. [1]. Silver-based materials and AgNPs are also used in the
coatings of medical devices, formulation of dental resin composites, coating on water filters, as topical
creams to prevent wound infections, as a microbiocidal agent in air sanitizer sprays, respirators,
pillows, soaps, laundry detergents, shampoos, socks, wet wipes, washing machines, wall paints,
toothpastes, etc. [1–3].

Due to the broad application of AgNPs in various fields, as mentioned above, the demand for
large-scale, eco-friendly, non-hazardous, faster, and biocompatible production of AgNPs with specific
size, shape, and properties have also been increased. AgNPs can be prepared either by physical,
chemical, or biological approaches. The synthesis of AgNPs by physical and chemical methods usually
requires expensive equipment, high pressure and temperature, stabilizers, and toxic reducing reagents.

The green routes of synthesis of AgNPs by exploring plant parts and microorganisms, such as
bacteria, fungi, algae, etc., has advantages over physical and chemical methods as green approaches
are environmentally-friendly, cost-effective, fast, pollution-free, and most importantly, provides
non-toxic and biocompatible natural reducing and stabilizing agents. Biosynthesis of AgNPs using
various species of filamentous fungi, such as species of Aspergillus, Penicillium, Fusarium, Trichoderma,
Verticillium, Rhizopus, Colletotrichum, and Neurospora, have been well studied and documented [4,5].
Nevertheless, reports on biosynthesis of AgNPs using single-celled yeasts remains limited and
a few yeast species, such as yeast strain MKY3 [6], Saccharomyces boulardii [7], S. cerevisiae [8],
Candida albicans [9,10], Candida utilis [11], and Candida lusitaniae [5] have been reported.

Yeast has been chosen for the extracellular biosynthesis of AgNPs because of their better
tolerance and metal bioaccumulation property, large scale production, economic viability, convenient
downstream processing, and most importantly, fungi produces huge amounts of proteins and enzymes
that acts as reducing and stabilizing agents [3,12–14].

The aims of the present work was to achieve: (i) extracellular mycosynthesis of AgNPs
using the supernatant of Candida glabrata for the first time as reducing and stabilizing
agents; (ii) the characterization of mycosynthesized AgNPs using a ultraviolet- visible (UV-Vis)
spectrophotometer, fourier transform infrared (FTIR), and transmission electron microscopy
(TEM); (iii) the assessment of antibacterial and anticandidal activity of mycosynthesized AgNPs
against Escherichia coli, Salmonella typhimurium, Klebsiella pneomonaie, Shigella flexneri, Pseudomonas
aeruginosa, Staphylococcus aureus, C. albicans, C. dubliniensis, C. parapsilosis, C. tropicalis, C. krusei,
and C. glabrata using agar well diffusion and standard microdilution methods by determining minimum
inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal
concentration (MFC); and (iv) the investigation of a mode of action of AgNPs against C. albicans using
transmission lectron microscopy (TEM).

2. Materials and Method

2.1. Preparation of Candida Glabrata Supernatant for the Synthesis of Silver Nanoparticles

Candida glabrata were isolated from the oropharyngeal mucosa of patients having oral candidiasis
by using a sterile cotton swab. The swabs were then dipped into 5 mL of Sabouraud dextrose
broth (SDB) (HiMedia, Mumbai, India) and then 0.1 mL of culture was spread homogenously onto
the HiCHROM differential agar (HiMedia, Mumbai India) plates at 37 ◦C for 48 h. Candida spp.
were identified by morphology on corn meal agar (CMA), sugar assimilation (SAT), HiCrome agar,
and a germ tube test [15]. C. glabrata isolates developed characteristic cream to white colonies,
whereas C. albicans isolates formed light-green colonies. Further, trehalase and maltase tests were
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performed to confirm the C. glabrata isolates [16]. One to two pure colonies of fresh C. glabrata cultures
were again suspended into 500 mL SDB and incubated for 48–72 h at 28 ◦C. After incubation, the culture
was centrifuged at 12,000 rpm for 10 min and the supernatant was collected and stored at 4 ◦C for the
synthesis of AgNPs. All media was purchased from HiMedia, Mumbai, India.

2.2. Extracellular Mycosynthesis, Sepration and Purification of AgNPs

For the biosynthesis of AgNPs, 20 mL of collected supernatant was added in 1 mM of silver
nitrate and then the solution was kept at room temperature overnight. The reduction of silver
nitrate into AgNPs showed a change in color of silver nitrate from colorless to brown, which is an
indication of the formation of AgNPs. Further, the synthesized AgNPs were separated and isolated
by ultracentrifugation as previously described with slight modification [17,18]. To remove excess,
unreduced silver ions and other possible impurities from the supernatant, the reaction mixture
containing NPs were centrifuged at 14,000 rpm for 20 min with Milli-Q water. The process of
centrifugation was repeated at least four times to ensure a better separation of NPs [17]. The particles
separated were then resuspended again in ethanol and then centrifugation was further repeated three
times [19]. A dark sediment was formed at the bottom of the centrifugal tube. After that, a dried
powder of the AgNPs was obtained by freeze-drying [18], and their characterization was performed.

2.3. Characterization of Silver Nanoparticles

The biosynthesized AgNPs were preliminarily characterized by visual observation of the color
change of the reaction mixture and then by measuring the absorbance of the colloidal suspension
before and after the isolation NPs from the supernatant using UV-Vis spectrophotometer (Perkin-Elmer
Lambda 25, Shelton, CT, USA). The preparation of samples for absorbance was accomplished as
described in our previous work [20]. Briefly, AgNPs were subjected to mild sonication for 20 min,
after which the UV-Vis spectra of AgNPs was monitored in the range of 270–700 nm. Distilled water
was used to adjust the baseline [20]. Further, to confirm the presence of protein in the supernatant
and their possible role in synthesis and reduction of AgNO3 was carried out by a simple protein-dye
binding assay, i.e., Bradford assay (Figure A1). The functional group present in the supernatant that
was responsible for the synthesis of AgNPs was analyzed by FTIR (SHIMADZU-8400 spectrometer,
Tokyo, Japan) in the range of 400 to 4000/cm. Further, the surface morphology, shape, and size of
synthesized AgNPs were characterized by transmission electron microscopy (Joel 2100, Tokyo, Japan).

2.4. Tested Microorganisms

The clinical isolates of fungal and bacterial species, i.e., C. albicans, C. tropicalis, C. parapsilosis,
C. dubliniensis, C. krusei, C. glabrata, S. aureus, E. coli, P. aeruginosa, K. pneomonaie, S. typhimurium,
and S. flexneri isolated from the oropharyngeal mucosa of the patients used in this study were
obtained from the Department of Microbiology, Jawaharlal Nehru Medical College and Hospital,
Aligarh Muslim University, India.

2.5. Evaluation of Antimicrobial Activity of Mycosynthesized AgNPs Using a Diffusion Method

The antimicrobial activity of as-synthesized AgNPs against various bacterial isolates, e.g., S. aureus,
E. coli, S. typhimurium, S. flexneri, K. pneomonaie, P. aeruginosa, and Candida spp., e.g., C. albicans,
C. dubliniensis, C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata were examined using a well
diffusion method as previously reported [17]. Briefly, a 6 mm diameter well was made on Nutrient
and Sabouraud dextrose agar plates previously inoculated with 100 µL of 1 × 106 bacterial and
fungal suspension, and then varying concentrations of AgNPs were aseptically filled in the well.
The plates were subsequently incubated at 37 ◦C (Bacteria) and 28 ◦C (Candida spp.) for 24 h, and the
antimicrobial activity was analyzed by measuring the diameter of the inhibition zone (mm) around
the well.



Nanomaterials 2018, 8, 586 4 of 12

2.6. Assessment of Antimicrobial Activity of AgNPs by Determining MIC and MBC/MFC

Minimal inhibitory concentration (MIC): The MIC values of mycosynthesized AgNPs against
bacterial and Candida isolates were assessed using the method described by Ansari et al. [21].

Minimal bactericidal and fungicidal concentration (MBC/MFC): Further, MBC and MFC values
of AgNPs against all tested bacteria and Candida spp. was examined using a method described in
References [17,21].

2.7. Ultrastructural Morphological Changes Caused by AgNPs in C. albicans: TEM Analysis

The morphological and ultrastructure alteration caused by AgNPs in C. albicans cells were
examined by using transmission electron microscope. The sample preparation and analysis procedures
were similar to those described in our previous research work [17].

3. Results and Discussion

3.1. Characterization of Biosynthesized AgNPs

In the present study, C. glabrata supernatant was used for the synthesis of AgNPs. After the
addition of C. glabrata supernatant with 1 mM aqueous solution of silver nitrate, a brownish color was
observed, which indicated the extracellular biosynthesis of AgNPs (Figure 1). Previously, it has been
reported that the reduction of Ag+ into AgNPs can be seen very clearly when the color of the solution
changes from colorless to brown due to the surface plasmon resonance [6]. Figure 2 shows the UV-Vis
spectroscopy of the as-prepared AgNPs in the range of 270–700 nm and a single strong peak was observed
at 460.64 nm, which is the characteristic of AgNPs. Bhat et al. [10] reported that the absorption line of
biosynthesized AgNPs was 430 nm when the silver nitrate solution was challenged with C. albicans.
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Figure 1. Biosynthesis of AgNPs using an extracellular filtrate of C. glabrata after 12 h at room
temperature in dark conditions. (a) Sterile Sabouraud dextrose broth with AgNO3; (b) Cell filtrate
without AgNO3; (c) Cell filtrate with AgNO3.

FTIR analysis was performed to identify the potential biomolecules and functional groups
responsible for the reduction of silver ions to Ag0 and stabilization of AgNPs [22]. Figure 3 shows
a strong absorption line at 3436.03 cm−1, which corresponds to the –OH groups that could arise
from carbohydrates present in the supernatant, and the peak at 1636.17 cm−1 is due to amides
(C–O stretch), i.e., characteristic of the presence of protein and enzymes in the supernatant that confirm
the extracellular formation of AgNPs [23]. The peak at 661 cm−1 corresponds to C–H (alkane) and
C=H bonding (alkene). In a previous study, Bhat et al. [10] found that the protein biomolecules present



Nanomaterials 2018, 8, 586 5 of 12

in the extract of C. albicans bind to the synthesized nanoparticles either by free amino or carboxyl
groups, and the released extracellular proteins could possibility stabilize the biosynthesized AgNPs.
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The mechanism of biosynthesis of AgNPs using microorganisms are well understood. It was
reported that the biomass or supernatant of microorganisms possibly act as bioreductant and capping
agents due to the presence of biomolecules such as proteins, amino acids, enzymes, vitamins,
and polysaccharides [10,23]. However, the most widely accepted mechanism for the biosynthesis of
AgNPs and other nanoparticles using microbes is mainly due to the presence of enzyme Nicotinamide
adenine dinucleotide (NADH) and NADH-dependent nitrate reductase [24–26]. The role of nitrate
reductase in the synthesis of AgNPs has been demonstrated by exploring the purified nitrate reductase
in vitro for the synthesis of AgNPs and it was found that the reduction of silver ions happens by means of
the transfer of electrons from NADH where enzyme NADH-dependent reductase acts as a carrier [24–26].

The TEM micrograph of as-prepared AgNPs exhibited that the synthesized AgNPs were
predominantly spherical and oval, well-dispersed, and uniform with a size range of 2–15 nm (Figure 4).
Niknejad et al. [8] reported biosynthesis of AgNPs using the yeast S. cerevisiae and they found that AgNPs
were mainly spherical and polydispersed within the size of 5–20 nm. The size of AgNPs obtained in our
study was much smaller than AgNPs synthesized from Candida utilis, where the size was 20–80 nm [11].
The image shows both individual and aggregated AgNPs (Figure 4). The particles were well-dispersed
and not in direct contact due to capping and stabilization of AgNPs by the proteins around the periphery
of the nanoparticles (Figure 4), which further confer the involvement of extracellular proteins and enzymes
secreted by C. glabrata in the supernatant that acted as reducing and capping agents [22].
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3.2. Antimicrobial Activity of Biosynthesized AgNPs

Antimicrobial activity of biosynthesized AgNPs against human pathogenic microorganisms, i.e.,
Candidal spp. and bacterial spp. was evaluated by agar well diffusion and two-fold microdilution
methods. A zone of inhibition test of mycosynthesized AgNPs against tested bacteria and Candida spp.
at different concentrations are shown in Figures 5 and 6, and it was very clear that AgNPs had an
excellent inhibition zone against all strains. The inhibition zone diameter showed that AgNPs were more
effective against bacterial strains in comparison to fungi (Figures 5 and 6). No antimicrobial activity
has been observed by the C. glabrata supernatant. Further, the antimicrobial properties of AgNPs
against various bacterial and fungal strains were examined by determining the MIC, MBC, and MFC.
The MIC and MBC values for all tested bacterial strains were found in the range of 31.25–125 µg/mL
and 62.5–250 µg/mL, respectively (Table 1), whereas the MIC and MFC values for fungal strain
was in the range of 62.5–250 µg/mL and 125–500 µg/mL, respectively (Table 2). It was found that
AgNPs were bactericidal at low concentration (62.5–250 µg/mL) and fungicidal at high concentration
(125–500 µg/mL), which revealed that bacterial strains were more susceptible to AgNPs than fungal
strains. In general, it was found that gram-negative and gram-positive bacterial strains showed better
antimicrobial activity when compared to fungi Candida spp. (Tables 1 and 2). These differences in
bactericidal and fungicidal concentrations of the AgNPs were due to the differences in the cell structure
and organization of the bacteria and yeast cells. The bacterial cell structure is less complex and they
are evolutionarily prokaryotic types, and were therefore unable to fight the toxic effects of AgNPs as
effectively as the eukaryotic yeast cells that can resist higher concentrations of AgNPs because of their
better cell organization and much more complex structure, and superior detoxification system [27].

Table 1. MIC and MBC values of biosynthesized AgNPs against bacterial strains.

Bacterial Isolates MIC (µg/mL) MBC (µg/mL)

Staphylococcus aureus 31 62
Escherichia coli 31 62

Pseudomonas aeruginosa 62 125
Klebsiella pneomonaie 62 125

Salmonella typhimurium 125 250
Shigella flexneri 62 125
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Table 2. MIC and MFC values of biosynthesized AgNPs against Candida strains.

Fungal Isolates MIC (µg/mL) MFC (µg/mL)

Candia albicans 62 125
Candida tropicalis 250 500

Candida parapsilosis 250 500
Candida dubliniensis 125 250

Candida krusei 125 250
Candida glabrata 250 500
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Figure 6. Antibacterial activity of mycosynthesized AgNPs at different concentrations evaluated
by agar well diffusion method against different pathogenic bacteria: (a) E. coli, (b) K. pneomonaie,
(c) P. aeruginosa, (d) S. typhimurium, (e) S. flexneri, and (f) S. aureus. Panel (g) represents the zone of
inhibition (in mm) at different concentrations of AgNPs.

3.3. Ultrastructural Changes in C. albicans after Exposure to AgNPs: TEM Analysis

The morphological alteration after exposure to biosynthesized AgNPs in C. albicans was
investigated using a transmission electron microscope. TEM analysis clearly showed that the untreated
C. albicans exhibited a normal and well-conserved cell wall that was mainly composed of an outer
layer, an intermediate space, and a thin innermost layer of the cell membrane (Figure 7a). However,
the Candida cells after the AgNP treatment showed an aberrant morphological structure and severe
damage that was characterized by the formation of “pits” and “pores” that result in the rupturing of
the cell wall and membrane (Figure 7b,c). Candida cells treated with AgNPs were highly deformed
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and the cells had shrunken to a great extent (Figure 7b,c). Further, it was observed that the damaged
cells exhibited either complete or localized separation of the membrane from the cell wall (Figure 7b,c).
Nasrollahi et al. [28] reported that the antifungal activity of AgNPs was due to the formation of “pits”
and “pores” on the surfaces of C. albicans and S. cerevisiae cells that led to the cell death. It has been
observed that AgNPs not only anchor to cells at several sites (Figure 7b,c; black arrows), but they
penetrate inside the cells (Figure 7c; red arrows), which could result in cell lysis. In their study,
Vazquez-Muñoz et al. found that AgNPs were non-specifically distributed in different regions of the
cytoplasm and cell wall, and the mode of action of AgNPs was due to the releasing of silver ions
that induced cell death [29]. In the present study, it was observed that the rupturing, disintegration,
and detachment of the cell wall and membrane from the cells led to the death of C. albicans (Figure 7b,c).
Kim et al. found that AgNPs exert an antifungal activity because of their interaction with the fungal
cell wall and membrane, which disrupts the structure of the cell membrane and inhibits the normal
budding process due to the destruction and loss of membrane integrity, and due to the formation of
pores that may led to the cell death [30]. Ishida et al. [31] also reported a similar mode of action of
AgNPs against yeast Cryptococcus neoformans where they found that the antifungal activity of AgNPs
was due to the disruption of the cell wall and cytoplasmic membrane [31]. Hwang et al. [32] found
that AgNPs exert an antifungal activity against C. albicans due to the production and accumulation
of reactive oxygen species (ROS) and free hydroxyl radicals (•OH) inside the cells, which regulates
and induces the cell death through mitochondrial dysfunctional apoptosis, release of cytochrome c,
nuclear fragmentation, DNA damage, and the activation of metacaspases [32].
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4. Conclusions

In this present study, a simple, one-step, safe, rapid, pollutant free, cost-effective, and ecofriendly
extracellular silver nanoparticles were prepared using the supernatant of yeast C. glabrata as reducing
and stabilizing agents for the first time. The synthesized nanoparticles were characterized by
UV-visible, TEM, and FTIR spectra. Extracellular synthesis of AgNPs by yeast, i.e., C. glabrate,
has advantages over mycelium fungi because separation of the particles is much easier and simpler,
takes less time without much sophistication, and therefore, extracellular synthesis of AgNPs has
importance from the point of view of large-scale production in an environmentally-friendly approach.
The extracellular mycosynthesized AgNPs showed excellent antibacterial and antifungal activity
against gram-negative and gram-positive pathogenic bacteria and Candida spp., respectively. Further,
the interaction of AgNPs with C. albicans studied by TEM showed the primary attachment and
penetration of nanoparticles inside the Candida cell that caused the rupturing, disintegration,
and detachment of the cell wall and membrane from the cells that led to the death of C. albicans.
Thus, these mycosynthesized AgNPs may lead to the development of appropriate pharmaceuticals
and represent an alternative remedy for the treatment of bacterial and fungal infections, but this needs
further in vivo cytotoxic studies before being brought into the market.
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