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ABSTRACT Green sulfur bacteria are in the family Chlorobiaceae, which is com-
posed of four distinct genera, namely, Chlorobaculum, Chlorobium, Prosthecochloris,
and Chloroherpeton, with Chlorobium species being the most commonly represented
in genome studies. We have now sequenced only the fourth species of Chlorobacu-
lum, which established Chlorobaculum sp. 24CR as a separate species and should
help characterize the genus.

The green sulfur bacteria are in the Chlorobiaceae family, which is an interesting
group that appears to be distantly related to Bacteroides (1). Green sulfur bacteria

are obligately anaerobic photolithoautotrophs that perform anaerobic photosynthesis
with oxidation of inorganic sulfur compounds (sulfide, polysulfide, or thiosulfate) (2).
They live in both fresh and saltwater habitats, but their most interesting characteristic
is their tolerance for very low light conditions, where they often form tightly coupled
consortia with a central motile bacterium (3, 4). All members have large, distinct light
harvesting structures called chlorosomes, which contain bacteriochlorophyll proteins
and carotenoids (5–7). Chlorosomes are comprised of specific proteins connected to
the reaction center though the Fenna-Matthews-Olson (FMO) protein (5). Several
Chlorobiaceae species have been sequenced since the first genome of Chlorobaculum
tepidum TLS in 2002 (8–11). These genomes are relatively small (2 to 3 Mbp), which
reflects the biochemical simplicity of this phylum (5, 8, 12). Because of the challenges
with obligately anaerobic cultivation, Chlorobaculum strains are underrepresented in
genome sequence studies compared with other photosynthetic organisms. Neverthe-
less, they play an important environmental role in the geochemical sulfur cycle in
nature.

The Chlorobaculum sp. 24CR strain was isolated by N. Pfennig from the Carmel River
(California), near Hopkins Marine Station in Monterey around 1960. A pure culture was
established on standard Chlorobium medium with acetate and thiosulfate. We isolated
DNA from decades-old frozen cells, using the GeneJET DNA purification kit (Thermo
Scientific), in order to examine potential differences in this strain compared with the
other sequenced members of Chlorobiaceae. The quantity and quality of DNA were
determined using Qubit and NanoDrop instruments and showed a 260/280 ratio of
1.81. The DNA library was prepared with the Nextera DNA flex library prep kit (Illumina).
The genome was sequenced using 500 �l of a 1.8-pM library with an Illumina MiniSeq
instrument, using paired-end sequencing (2 � 150 bp). This sequencing generated
1,892,452 reads, yielding a total of 163.86 Mbp. Quality control of the reads was
performed using FASTQC within BaseSpace (Illumina, version 1.0.0), using a kmer size
of 5 and contamination filtering. The data were assembled de novo using the Velvet
application (version 1.2.10) (13) within BaseSpace (Illumina). The assembled genome
consists of 109 contigs (�500 bp), with the largest contig being 154,777 bp, and an N50
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value of 62,441 bp. The G�C content was 56.7%. The genome sequence was annotated
using Rapid Annotations using Subsystems Technology (RAST; version 2.0) (14), which
showed the whole-genome sequencing (WGS) project to be 2,772,917 bp in length and
identified 2,958 coding DNA sequences (CDSs) and 51 RNAs.

A BLAST (NCBI) comparison of the 16S rRNA subunit shows 98% identity to Chlo-
robaculum parvum DSM263 (1,472/1,508 bp) and 97% to Chlorobaculum tepidum TLS
(1,462/1,508 bp). As expected for a green sulfur bacterium, Chlorobaculum sp. 24CR has
a set of chlorosome genes, including A, B, C, D, E, F, H, I, J, and X, and the BchlA-
containing FMO protein. It also contains the Sox FXYZAB genes for thiosulfate oxidation.

A JSpecies comparison (15) of the average percentage nucleotide identity (ANI)
between Chlorobaculum sp. 24CR and other published Chlorobaculum genomes gave
the following percentages: Chlorobaculum limnaeum DSM1677, 85.8%; Chlorobaculum
tepidum TLS, 84.8%; and Chlorobaculum parvum DSM263, 81.0%. Thus, Chlorobacu-
lum sp. 24CR appears to be approximately equidistant to the other three Chloro-
baculum species that have been sequenced. They are more distant to the Chlorobium,
Prosthecochloris, and Chloroherpeton species at about 70% identity. However, these
numbers are clearly below the proposed 95% cutoff for genome definition of a species,
which suggests that Chlorobaculum sp. 24CR should be recognized as a separate
species.

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number SDGU00000000. The version de-
scribed in this paper is the first version, SDGU01000000. The raw sequencing reads have
been submitted to the SRA and the corresponding accession number is SRR8483032.
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