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Abstract: This is an introductory tutorial and review about the uncertainty problem in chromato-
graphic calibration. It emphasizes some unobvious, but important details influencing errors in the
calibration curve estimation, uncertainty in prediction, as well as the connections and dependences
between them, all from various perspectives of uncertainty measurement. Nonuniform D-optimal
designs coming from Fedorov theorem are computed and presented. As an example, all possible
designs of 24 calibration samples (3–8, 4–6, 6–4, 8–3 and 12–2, both uniform and D-optimal) are
compared in context of many optimality criteria. It can be concluded that there are only two indepen-
dent (orthogonal, but slightly complex) trends in optimality of these designs. The conclusions are
important, as the uniform designs with many concentrations are not the best choices, contrary to
some intuitive perception. Nonuniform designs are visibly better alternative in most calibration cases.

Keywords: calibration; optimality; regression; chemometrics; experimental design; uncertainty

1. Introduction

Chromatography is widely used for the quantitative analysis of a diverse array of
samples, often inside complex matrices. Validation of a quantitative method requires a
proper calibration step [1–3], defined as the estimation of dependence between the analyte
amount and a method response (peak height or area) [4–6]. As most of routine analysis is
still based on spectrophotometric detection with absorbance measurement, the calibration
curve is in most cases linear. Nevertheless, a small nonlinearity is often present, forcing
analysts to fit a quadratic equation.

The calibration equation is obtained from a set of calibration samples with a (most
often least squares) regression method. The obtained equation should be understood as
an estimator, which approximates true (but never known) value. Estimation is always
connected with an uncertainty [3], which depends on various factors. One of these factors
is the design of calibration experiments.

There are numerous papers about calibration theory in context of linear regression
considerations and assumptions, a strong effort was also put in the literature on dealing
with situations when there is a failure to meet some of them. Two papers of Baumann and
Watzig [7,8], as well as a general tutorial by Lee and McAllister [9] could be recommended
as a good starting point.

On the contrary, there is a lack of papers dealing with optimality of design during
the calibration process, written for chemists in their perspective. Papers touching upon
this area have been mainly published in statistical journals and written for statisticians
(including dozens of impractical math formulas) without clear conclusions for analysts
(they are cited in this paper in the appropriate places). Scheffe [10] is a good first choice for
the interested reader.
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In this paper we would like to touch upon these problems, emphasizing several not so
obvious details in the calibration process, in the most accessible way we can. We hope that
this article will expand knowledge about the calibration process and will result in more
proper design of future chromatographic methods.

2. Theory
2.1. Classical Formulation of Simple Linear Regression

We will introduce only the most important formulas, essential to understand every-
thing given further in context of the design [7,8,11]. Let us start with a classic formula of
multiple linear regression, where one response variable is modeled as a linear combination
of several variables:

yi = β0xi0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

where εi can be interpreted as some random error with normal distribution. The linear or
polynomial calibration can be perceived as a special case of such problem:

yi = β0 + β1xi + β2x2
i + · · ·+ εi

In this special case, xi0 always equals 1 (the intercept term) and the subsequent
polynomial coefficients contain the same x, but raised to a power. The chromatographic
response is then modeled as a linear combination of one (linear) or several (polynomial,
i.e., quadratic, cubic etc.) powers of the same concentrations. Natural processes are rarely
polynomial, but polynomial fitting can model almost all nonlinear functions in a flexible
way (by finding its Taylor expansion).

It should be mentioned that there is a possibility to remove the intercept term, forcing
the calibration curve to go through origin. Although this idea could be perceived as
advantageous (as the response should be zero without the analyte), calibration should
always include the intercept. Its value and significance is an important diagnostic tool [12].
In general, in most of methods the intercept term should be insignificant, and its significance
indicates a problem with calibration. Nevertheless, there are some analytical methods (for
instance TLC with densitometry), where offset of the response is possible, and significance
of the intercept term does not mean that the method is elaborated in a bad way.

Although the polynomial equation is not represented as a straight line, the fitting
is done as a linear regression problem. In practice, it is very advantageous. One can
analytically find the exact solution, opposite to nonlinear regression, when starting values
must be explicitly given and the whole process is only a numerical iterative optimization. In
most chromatographic cases, a quadratic equation can deal enough well with nonlinearity,
cubic equation is used extremely rarely. Therefore, we will describe only linear and
quadratic cases in this paper.

The regression equation can be rewritten in vector form yi = xT
i β + εi, where β is

the vector of coefficients of the fitted equation. Going one step further, we reach matrix
representation of the calibration problem:

y = Xβ + ε

Here y is a vector of noticed responses, whereas X is a matrix containing ones in the first
column (intercept), concentrations in the second one and optionally squares of concentra-
tions in the third one (and so on when higher order polynomial is fitted). We need to solve
this equation for a vector β, which minimizes the error ε in a least squares sense: sum of
squared errors (residuals) should be as smallest as possible.

Not deeply diving in the mathematical theory, there is an exact solution. Multiplying
both sides by XT (transpose of X) one can obtain

(
XTX

)
β = XTy. Dividing then both
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sides by the crossproduct XTX (which is equivalent to multiplying both sides by its inverse

(XTX)
−1

), one can obtain the well-known formula:

β = (XTX)
−1

XTy

As this is a matrix formula, it is correct for any number of calibration points (as well
as any order of fitted polynomial). There is also a possibility to remove intercept term from
the equation easily, by deleting the first column of X (containing ones).

The obtained β is an estimator of the relationship in the infinite population. By
multiplying this estimator by the original concentration matrix X, we can obtain values
computed from the obtained equation, which are called “fitted” values:

ŷ = Xβ = X
(

XTX
)−1

XTy

This is equivalent to the multiplication of y by some matrix H = X
(

XTX
)−1

XT, called
hat matrix. This process can be understood as a projection to some limited subspace
spanned by the fitted model.

The differences between original and fitted values (ŷ− y) are called the residuals,
and the regression method finds the subspace of the model which minimizes sum of their
squares. From a geometrical point of view, this is equal to minimization of information
inside the orthogonal complement of the fitted model. The information in residuals is
“lost”, in sense that it does not contribute to the model.

The fitted calibration line has a cognitive value only under precisely defined circum-
stances [12], and one of main requirements is that the residuals contain only random,
homoscedastic and normally distributed error (a noise, without any information). To satisfy
this condition, several issues must be assumed:

1. The modeled equation must match the real calibration dependence. This assumption
is not valid when a straight line is fitted to a curvilinear dataset (instead of quadratic or
cubic equation). Then, the residuals contain the whole nonlinearity pattern instead of
a random error. It causes the introduction of a strong systematic error to the predicted
values: the fitted equation does not estimate anything serious. The most frequently
used validation criteria: Pearson’s correlation coefficient r, as well as coefficient of
determination R2 are only measures of the error’s magnitude [13]: the randomness of
the error is neglected by them. Therefore, when their value is close to 1, it does not
indicate that the model is sufficient to describe the calibration dependence and that
all assumptions are fulfilled [14].

2. There is no error in x: concentrations are known without any uncertainty. This cannot
be achieved in practice, so calibration samples should be prepared as carefully, as
possible. There are some approaches that include this error into the model [15,16]. It
substantially makes the mathematical background much more complex, so they did
not reach much attention in practice.

3. The error is homoscedastic (the variance of the error does not depend on the con-
centration of analyzed compound). This can be checked with visual inspection of
residuals plot, as well as by Bartlett test on residual groups. In case of heteroscedasc-
ity, appropriate weights should be used in regression [17,18]. The most reasonable
weighting is the reciprocal of the concentration, as the error is proportional to it.
This is frequently a case in chromatography, when the injection volume remains the
same, but calibration is done with increasing concentrations. When standard addition
is performed, the error distribution change—this topic lies beyond the area of the
current paper, and interested readers can be referred to [19,20]. Another important
factor is also the use of certified reference materials [21].

4. The distribution of residuals should be as similar as possible to that of normal dis-
tribution. The attention should be put especially when the results were transformed.
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Although the logarithmic transformation seems to be good solution to deal with nonlin-
earity, it also transforms the errors [22,23]. Therefore, in most cases, quadratic regression
is better than the combination of the linear regression and the transformation.

2.2. Uncertainty of the Regression Estimates

The variance of the residuals

σ2 =
∑n

i=1 (ŷi − yi)
2

n− 2

(note n− 2 in the denominator, as this is the real degree of freedom here) is the basic and
most important measure of the response error. If the aforementioned assumptions are ful-
filled, it contains only the noise, so it can be interpreted as an uncertainty of approximation
of the real dependence, in infinite population from a finite calibration set.

The coefficients of the fitted equation are estimated with some own and individual
uncertainties, which differ from σ2. These errors come from multiplying σ2 by the elements
of the inverse of the covariance matrix:

Σ = σ2(XTX)
−1

=

[
σ2

0 σ01
σ01 σ2

1

]
The above form of the matrix is for linear model; it is then 2 × 2 matrix with variances

of β0 and β1 on its diagonal, and the covariance between them duplicated in the other cells
(which tells us that the matrix is symmetric. For quadratic regression it will be quite larger:

Σ = σ2(XTX)
−1

=

 σ2
0 σ01 σ02

σ01 σ2
1 σ12

σ02 σ12 σ2
2


These formulas bring us an important conclusion. The error of the estimation is

dependent on an error in the response (which cannot be changed as we have no influence
on it), but also depends on the chosen concentrations, which are placed in the X matrix.
The concentrations can be changed by the analyst, so it is possible to design the calibration
in the way to minimize this error as much as possible. The second conclusion is: the
estimators are intercorrelated. It can be a surprise, as this covariance is rarely given by
statistical software in the regression output.

For the linear regression, the elements of (XTX)
−1

can be quite simply computed:(
XTX

)−1
=

[
∑ x2 −∑ xi
−∑ x n

]
·
(

1
Sxx

)
where Sxx = ∑ (x− x)2, and x is the arithmetic mean of concentrations. So, it can be seen
that the error lowers when variance of concentrations (in calibration design) increases. The
slope estimation error is independent on the absolute value of concentrations, whereas the
intercept error and the covariance are proportional to these values and increase together
with their value.

The most important detail to understand now, is that uncertainties of the coefficients
depend on various factors-there is no way to optimize them all at the same time. Let
us summarize the best solutions for each uncertainty separately (without diving into
mathematical background of the optimization behind):

1. To minimize the slope uncertainty, one should take concentrations with as large
variance, as possible. The ideal solution would be to make the first half measurements
at zero and the second half at the highest concentration [24].

2. To minimize the intercept uncertainty, one should measure one observation at the
highest concentration and the other measurements should be done at concentration
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equal to zero. More reasonable solutions are available only when it is allowed to use
negative concentrations, which does not happen in practice.

3. It is possible to get rid of the covariance between uncertainties—to achieve this goal,
the concentrations should be symmetrical around zero (with mean equal to zero).
Without negative concentrations, the lowest covariance is achieved in the same case
as in (2).

Now let us focus on another details. The uncertainty does not depend on the coef-
ficients of the obtained equation. It could be perceived as an obvious fact, but the linear
regression is an exception. When fitting any nonlinear function to the data points, one
always ends up with uncertainty formulas containing the fitted coefficients [25–28]. This
leads to an interesting paradox—one should know the solution before designing the exper-
iment (allowing the solution to be known). This is the one of many reasons why we prefer
the linear regression in calibration.

2.3. Design Optimality

Instead of thinking which uncertainty is most important to optimize, one could
optimize some overall variance criterion. Various criteria were proposed, and in the case of
calibration the following approaches can be used [29,30]:

1. D-optimality, which minimizes the determinant
∣∣∣∣(XTX

)−1
∣∣∣∣ = 1/Sxx, (which is equal

to maximizing determinant of XTX). Optimizing experiment in this way forces us to
use the same strange design as when minimizing slope uncertainty.

2. C-optimality, minimizing the uncertainty of some linear combination of fitted coeffi-
cients, for example the uncertainty of the root of fitted line (such a parameter is often
computed in lipophilicity measurements). In linear regression, the mean of x values
must be equal to the place of the root. Not so useful idea-we are led again to the
paradox, as we must know the answer before designing the experiment.

3. A-optimality, minimizing the trace (sum of diagonal values) of
(

XTX
)−1

. It can be
seen, that this idea ends with the same solution, as minimizing the uncertainty of the
intercept.

4. T-optimality (maximizing the trace of XTX), as well as E-optimality (maximizing
the minimum eigenvalue of XTX), leading to measurement of all but one points
at maximum concentration and the remaining point at zero (reverse idea than the
intercept case).

The focused reader could ask now, why optimizing any uncertainty ends up with such
a strange design, which is unused in calibration practice. It is obvious that, the calibration
cannot be done at a concentration equal to zero: although the analysis of a blank response is
the common practice in method validation, the results do not have any reliable information
for modeling the calibration dependence. So, in the practice, the range of the calibration
should be transformed, placing the left boundary at some small concentration instead of
blank response.

Even if we did so, it could still look very strange to measure two concentrations only:
a small one and the largest one (even with many repetitions). The intuitive approach
is to measure something in the middle. The intuition gives us a good answer here, as
two-point design assumes explicitly the linearity. Two concentrations simply do not allow
any nonlinearity evaluation and cannot be fitted to quadratic equation if necessary.
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2.4. Uncertainty in Quadratic Regression

So let us perform analogous journey through quadratic model. The information matrix
for this case looks like in the following way:

XTX =

 n ∑ x ∑ x2

∑ x ∑ x2 ∑ x3

∑ x2 ∑ x3 ∑ x4


and the further computations become much more complicated:∣∣∣XTX

∣∣∣ = n(Σx2Σx4 −
(

Σx3)2
)
− Σx

(
ΣxΣx4 − Σx2Σx3

)
+ Σx2(ΣxΣx3 −

(
Σx2)2

)
(

XTX
)−1

=

 Σx2Σx4 −
(
Σx3)

2 Σx2Σx3 − ΣxΣx4 ΣxΣx3 −
(
Σx2)

2

Σx2Σx3 − ΣxΣx4 nΣx4 −
(
Σx2)

2 ΣxΣx2 − nΣx3

ΣxΣx3 −
(
Σx2)

2 ΣxΣx2 − nΣx3 nΣx2 − (Σx) 2

·
 1∣∣∣XTX

∣∣∣


The main idea is the same, however we have now three optimal concentrations: zero,
maximum and the middle. The optimal solutions can be summarized as follows:

1. D-optimal design puts equal (1/3) number of measurements to these three points
2. To minimize the uncertainty of intercept, one should measure one sample at maxi-

mum, one in the middle, then the rest at zero (this also minimizes covariance between
uncertainties of the intercept and the linear coefficient).

3. Minimizing the uncertainty of the linear coefficient needs placing half of the samples
in the middle and about 1/8 at the maximum concentration.

4. To minimize quadratic coefficient error, half of the samples should still lie in the
middle, but the rest divided equally (1/4) to zero and the maximum concentration
(this is also very close to A-optimality).

5. A totally different design should be used to minimize the covariances between
quadratic coefficient and both other ones: one zero, one in the middle, all other
at maximum concentration.

Among the above criteria, D-optimality looks in the most serious way, because it can
be perceived as a “compromise” in minimizing all uncertainties with a strong geometrical

interpretation: the determinant of covariance matrix
(

XTX
)−1

is a measure of a “volume”
of the uncertainty cloud in the multivariate space [31,32].

So let us focus on D-optimality criteria, but for a polynomial of any higher order.
Surprisingly, the optimal design is then not equal-spaced, but the points are placed more
closely to the boundaries of the calibration range.

2.5. Fedorov Nonuniform D-Optimal Designs

The analytical solutions can be derived by patient readers inside a computer algebra
systems, however the whole problem was solved in general way by Fedorov in 1970s
(in the recent edition of his book [33], see Theorem 2.3.3 or take a look at [34]; for other
methods of generating D-optimal designs see [35,36]). He discovered that the optimal
place of regression points in range <−1, 1> for the fitted equation of m-th degree are the
roots of

(
1− x2)P′m(x), where Pm(x) is the m-th Legendre polynomial (and the apostrophe

operator means the derivative). For the quadratic regression, we have
(
1− x2)x = x− x3

with roots at −1, 0 and 1 (already known case: the boundaries and the middle). For cubical
regression, the polynomial becomes

(
1− x2

)[
−15(1− x) +

15(1− x)2

2
+ 6

]
= −

3(x− 1)(x + 1)
(
5x2 − 1

)
2
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with nonequally spaced roots x = ±1, x = ±1/√5 , which are equal to 0,
(√

5± 1
)

/
(

2
√

5
)

and 1 after transforming to the range 0–1. Table 1 gives numerical values of D-optimal
concentrations computed in analogous way for polynomials up to 9 calibration points on
interval 0–1. They were derived by authors with Maxima 5.45.1, using built-in “legendre_p”
functions to generate polynomials for solving. They should be transformed to a desired
concentration range according to the formula

c = cmin +
x

cmax − cmin

Table 1. D-optimal nonuniform designs for standardized interval 0–1.

Concentrations

2 0 1

3 0 0.5000 1

4 0 0.2764 0.7236 1

5 0 0.1727 0.5000 0.8273 1

6 0 0.1175 0.3574 0.6426 0.8825 1

7 0 0.0849 0.2656 0.5000 0.7344 0.9151 1

8 0 0.0641 0.2041 0.3954 0.6046 0.7959 0.9359 1

9 0 0.0501 0.1614 0.3184 0.5000 0.6816 0.8386 0.9499 1

The most important question now is: when should one use higher levels of polynomial
for calibration? The answer is: practically never, but the optimal points for higher degrees
are in general always better than equally spaced concentrations, even when performing
linear or quadratic regression.

2.6. Uncertainty of Prediction

Another important idea is to design the calibration experiment to minimize not
the uncertainty of the estimators, but the uncertainty of prediction [37–40], at least at

interesting concentrations. The already mentioned hat matrix H = X
(

XTX
)−1

XT can be
used to calculate the variance of the prediction of y for each x value. For xi, it can be
expressed as σ2(1 + hii), where hii is the i-th diagonal entry and σ2 is variance of residuals.
In matrix form, this can be expressed for all calibration points as σ2[I + X

(
XTX)−1XT

]
,

where I is the identity matrix (ones on diagonal, zeros in the other cells–it is equivalent to
add one to each element of the diagonal).

In analogous way to the covariance matrix, we can use three main criteria for optimal-
ity in context of the predicted variance [41]:

1. G-optimality minimizes the maximal value of the hat matrix diagonal (thus minimiz-
ing the maximal uncertainty)

2. I-optimality minimizes the average uncertainty (expressed for example as the trace of
hat matrix)

3. V-optimality minimizes the average uncertainty for the specific range or set of con-
centrations.

4. Other criteria based on Kiefer approximation theory [42] or Bayesian theory [43] are
interested for the enhancement of the reader’s knowledge, but rarely used in the
calibration practice.

The prediction variance can be computed in this way for any x value, not only these
used in calibration. To achieve this goal, we should replace the first and the last elements in
hat matrix formula with (analogous to X) matrix containing appropriate x values. The num-
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ber of these values does not matter, so we can form the following formula for computing
the predicted variance of one particular x in linear calibration [44]:

σ2
x = σ2(1 + [1 x](XTX)

−1
[
1 x]T

)
= σ2

(
1 +

1
n
+

(x− x)2

Sxx

)

The most important conclusions from this formula are:

1. The prediction uncertainty is modeled by quadratic (parabolic) dependence, so it is
symmetric and unimodal (having exactly one optimal minimum)

2. The minimum occurs when (x− x)2 is equal to zero. This occurs for the arithmetic
mean of all calibration concentrations

3. To minimize prediction error (across the whole calibration range) we should maximize
Sxx. Again, we end up with half of points located at zero, the other at the maximal
concentration.

For quadratic calibration, the formula becomes analogous in the matrix way:

σ2(1 +
[
1 x x2](XTX)

−1[
1 x x2]T

)
, but much more complex when we see its expansion:

σ2
x = σ2

(
1 +

x4Σx2−2Σx2Σx3Σx−2Σx3Σx2Σx+2Σx4xΣx−Σx2nx4+2Σx3nx3−Σx4nx2+3(Σx2)
2
x2−2Σx2Σx3x−Σx2Σx4+(Σx3)

2

Σx4Σx2−2Σx2Σx3Σx−Σx2Σx4n+(Σx3)
2n+(Σx2)

3

)
It can be concluded that it is a fourth-degree polynomial, which can have up to

three extrema. To see the example, let us consider 6 point uniform calibration curve with
concentrations 1/6, 2/6, . . . , 5/6 and 1. Then:

XTX =

 6 7
2

91
36

7
2

91
36

49
24

91
36

49
24

2275
1296

, (XTX)
−1

=


16
5 − 117

10 9

− 117
10

6903
140 − 81

2

9 − 81
2

243
7


and we end up with the polynomial (see Figure 1):

(
1 x x2 )


16
5 − 117

10 9

− 117
10

6903
140 − 81

2

9 − 81
2

243
7


 1

x
x2

 =
243

7
x4 − 81x3 +

9423
140

x2 − 117
5

x +
16
5
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To obtain its minima, we search for roots of its derivative:

972
7

x3 − 243x2 +
9423
70

x− 117
5

= 0

The roots are:
(√

185± 35
)

/60, which corresponds to two minima, as well as 7/12,
which corresponds to the maximum between them. The main conclusion is that in a typical
design we do not achieve the lowest prediction uncertainty in the middle of the curve. The
solution is to redesign the calibration or at least to add several replicates in the interesting region.

3. Putting All Together in a Comparison

The reader is now probably significantly confused, as there is no clear answer as to
what to do. To compare trends and differences between uncertainty and optimality values,
we have chosen 24 samples, as the lowest possible number with rich factorization (giving
many combinations of concentration numbers and replicates). We did not consider 2–12
design (two concentrations with twelve replicates of each) as this design can be useful only
in linear regression. Therefore, the considered designs are: 3–8, 4–6, 6–4, 8–3 and 12–2. We
also did not consider 24–1 combination as its use in practice would be strange.

GNU R 4.1.2 was used as the environment for programming all simulations and
for creating graphs. For each design we compared concentrations uniformly spaced
between 0 and 1 (including 0 and 1) denoted as U (for example 12–2–U) and nonuniform
concentrations satisfying Fedorov theorem, taken from Table 1 and denoted in analogous
way with letter L (for example 12–2–L). It should be emphasized, that 3–8–L and 3–8–U are
the same design. Table does not contain the concentrations for 12–2 to avoid its widening,
they are: 0, 0.0276, 0.0904, 0.1836, 0.3002, 0.4317, 0.5683, 0.6998, 0.8164, 0.9096, 0.9724 and 1.
In this way we obtained 10 designs: 5 uniform and 5 nonuniform. They must be shifted in
practice to cover range between minimal and maximal concentrations, the formula for this
process was given above.

For each of 10 designs we computed: D-optimality for linear and quadratic regression
(D-L and D-Q), T-optimality (T-L and T-Q), E-optimality (E-L and E-Q), variance of intercept
(S0-L and S0-Q), variance of linear term (S1-L and S1-Q), variance of quadratic term (S2-Q),
covariance between the intercept and the linear term (S01-L, S01-Q), covariance between the
intercept and the quadratic term (S02-Q) and covariance between the linear and quadratic
term (S12-Q). Additionally, we computed maximum prediction variance in the calibration
range (G-L and G-Q), average prediction variance in the calibration range (I-L and I-Q) and
average prediction variance for range 0.2–0.8 (V-L and V-Q). This gave us 21 measures of
optimality for each considered design. Thus, the final optimality matrix had 10 rows and
21 columns.

The best tool to compare the designs and to visualize trends inside is Principal Com-
ponent Analysis (PCA). We have computed scaled PCA on this matrix and the results is
visualized in Figure 2. As the first two PCs contain 99.4% of variance, almost everything
is visualized on two-dimensional PC1-PC2 plot. The following conclusions can be made
from this graph:

1. The second PC, containing 11.76% of variance, represents mainly the V-, T- and I-
optimality for quadratic regression, together with uncertainty of linear and quadratic
coefficient in quadratic regression, as well as covariance between them. They are
quite intercorrelated. Designs located at the bottom of the plot are the best ones in
this trend.

2. The first PC contains the average optimality for all the other criteria (87.61% variance).
This trend contains all criteria for linear model and intercept term for the quadratic
one, as well as correlation of the intercept with linear and quadratic term in quadratic
regression. Designs located at the left side are the best ones regarding this trend.

3. In general, contrary to the intuitive perception, a design is better when it uses less con-
centrations and more replicates. The best one is 3–8 design (in the bottom-left corner).



Molecules 2021, 26, 7035 10 of 13

4. The difference between uniform and nonuniform version of each design changes with
number of concentrations.

5. For 4 concentrations, the difference is almost vertical, and they are located at the
left side of the graph. Therefore, they perform equally well for linear model, but for
quadratic model the uniform design is significantly better.

6. For 6 concentrations, the difference for linear model appears, so nonuniform design is
visibly better in this case, the difference on vertical axis is analogous.

7. For 8 and 12 concentrations, the difference is more horizontal, and the nonuniform
design is much more better than the uniform one.

8. The worst among the considered designs is 12–2-U.
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The shapes of predicted variances along the calibration range are presented in Figure 3
(for linear model) and Figure 4 (for quadratic model). For the linear curve, it can be seen
that the minimal prediction uncertainty is always obtained in the middle of the graph (the
arithmetic mean of the concentrations) and its value does not differ among designs. The
curve is unimodal, so all three prediction criteria rank the designs in the same way (that is
why the loading arrows for these criteria in Figure 2 are pointing in the same direction).
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For the quadratic curve, the situation is more complex. The lowest prediction un-
certainty is achieved around concentrations 0.2 and 0.8 and it increases in the middle
of the calibration range. Lowering uncertainty in the middle causes substantial increase
in the boundaries of calibration range. Therefore, minimizing the average or maximal
uncertainty along the whole prediction range is not equivalent to minimizing uncertainty
in the middle. The V-optimality (for the range 0.2–0.8) is the most reasonable criterion here,
as the prediction is done mainly in this range. The rankings of designs are consistent with
these done with PCA.

4. Conclusions

Concluding, if an analyst can perform 24 calibration samples, the best possible design
is 3–8, however it does not allow to detect more complex than quadratic nonlinearity [45].
Therefore, it can be used only in routine calibration, when the shape of the calibration
dependence was detected in the earlier calibration routines. The best compromise could
be considered as 6–4-L. If more concentrations are required for some reason, one should
consider 8–3-L or 12–2-L. Uniform designs for larger number of concentrations perform
visibly worse, so one should not consider 6–4-U, 8–3-U and 12–2-U.
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