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Bioactive plant derived compounds are important for a wide range of therapeutic
applications, and some display promising anticancer properties. Further evidence
suggests that phytochemicals modulate autophagy and apoptosis, the two crucial
cellular pathways involved in the underlying pathobiology of cancer development and
regulation. Pharmacological targeting of autophagy and apoptosis signaling using
phytochemicals therefore offers a promising strategy that is complementary to
conventional cancer chemotherapy. In this review, we sought to highlight the molecular
basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology
of cancer, and explore this fundamental cellular process as a druggable anticancer target.
We also aimed to present recent advances and address the limitations faced in the
therapeutic development of phytochemical-based anticancer drugs.
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INTRODUCTION

Cancer is responsible for 9.6 million deaths in 2018 and is listed as the second leading cause of death
globally. Cancer thus poses a pivotal public health concern worldwide (WHO, 2018). During the 20th
century, the cancer death rate was found to markedly increase, primarily because of abnormal
lifestyles, such as excessive tobacco use (Siegel et al., 2020), physical and chemical carcinogens
(Bhatia et al., 2020), alcohol use (Sanford et al., 2020), unhealthy diet (Khaltaev and Axelrod, 2020),
and biological carcinogens (Hartwig et al., 2020). Delaying cancer treatment initiation increases
patient mortality (Hanna et al., 2020). However, increased awareness about the need for lifestyle
modification, early detection, and treatment may have contributed to a decline in cancer prevalence
(i.e., by 1.5%, on average, per year from 2013 to 2017) (Henley et al., 2020). Cancer treatment options,
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such as chemotherapy, radiation therapy, hormone therapy, gene
therapy, immunotherapy, photodynamic therapy, targeted
therapy, surgery, palliative care, and a combination of these,
are increasing in both number and efficiency across multiple
types of cancer and for various patients (Markham et al., 2020).
The main goal of cancer therapy is to stimulate the death of
abnormal cells and preserve normal cells (Schirrmacher, 2019).
Chemotherapy is the backbone of many cancer treatments. It aids
in the reduction of tumor size and kills cancer cells at primary
sites or metastasizing sites (Sak, 2012; Alfarouk et al., 2015).
However, response to treatment varies substantially according to
the type of cancer or even with the same type of cancer (Sak,
2012). Resistance to chemotherapeutic agents poses a major
problem in cancer treatment, ultimately limiting the efficiency
of anticancer drugs, which causes therapeutic failure and
eventually death (Alfarouk et al., 2015). Chemotherapy
resistance can be attributed to numerous mechanisms,
including multi-drug resistance, alterations of cell death
mechanisms (autophagy and apoptosis), changes in drug
metabolism, epigenetic and drug targets, enhanced DNA
repair and gene amplification, tumor cell heterogeneity, drug
efflux and metabolism, and tumor microenvironment stress-
induced genetic or epigenetic alterations as a cellular response
to drug exposure (Wang et al., 2019). Among these mechanisms,
alterations in autophagy (‘self-eating’) and apoptosis (‘self-
killing’), which are two self-destructive processes that have
propelled scientific innovation, are the vital causes of
chemotherapy resistance (Thorburn et al., 2014). Autophagy,
an evolutionarily conserved and regulated cellular recycling
mechanism, has emerged as a key player in metabolic and
therapeutic stresses. In fact, this mechanism attempts to
maintain or restore metabolic homeostasis via the catabolic
degradation of unnecessary proteins and injured or aged
organelles (Santana-Codina et al., 2017). The role of
autophagy in cancer treatment is paradoxical; it may act as a
pro-survival or pro-death mechanism to counteract or mediate
the cytotoxic effect of anticancer agents (Santana-Codina et al.,
2017). Autophagy primarily functions as a tumor suppressor by
modulating reactive oxygen species (ROS) within cells and
maintaining genetic instability (Levine and Kroemer, 2008).
Moreover, accumulating evidence suggests that faulty
autophagy is linked to malignant transformation of cancer
stem cells (Moosavi et al., 2018). Under these conditions,
autophagy stimulation might be a critical approach to halt
early tumor formation and development (Moosavi et al.,
2018). However, autophagy can promote the growth and
survival of current tumors during migration and epithelial-to-
mesenchymal transition. Further, this process can help cancer
stem cells escape immune surveillance and make cancer cells
resistant to anoikis (Moosavi et al., 2018; Rahman et al., 2020). In
this regard, inhibition of autophagy increases chemotherapy-
induced cytotoxicity. Therefore, autophagy, a double-edge
sword that works in a context-dependent manner, blocks the
early stages of tumorigenesis while becoming a driver of tumor
invasion and metastasis at later stages (Moosavi et al., 2018). The
molecular mechanisms regulating the switch between these
different modes of action are poorly understood (Kardideh

et al., 2019). Nonetheless, the interplay between apoptosis and
autophagy can be leveraged to improve cancer therapy
(Tompkins and Thorburn, 2019). Cancer cells become
chemotherapy-resistant by escaping some of the potential
apoptotic mechanisms, such as downregulated pro-apoptotic
signals, upregulated anti-apoptotic signals, and faulty apoptosis
initiation and implementation. However, the functional
relationship between apoptosis and autophagy is complex and
has recently been deciphered at the molecular level. Therefore,
modulating the key factors in the autophagic and apoptotic
pathways may be a novel therapeutic strategy for enhancing
chemotherapy efficiency.

The potential roles of phytochemicals in the modulation of
autophagy and apoptosis have recently been reviewed (Deng
et al., 2019). However, autophagy and apoptosis induction
and/or inhibition are extremely complex processes that require
thorough exploration. Nevertheless, a better understanding of the
crosstalk between autophagy and apoptosis will enable further
developments of novel anticancer therapeutic strategies. In this
review, we summarize the molecular mechanisms of autophagy
and apoptosis in cancer. Given the pivotal role of phytochemicals
in cancer therapy, we sought to discuss various phytochemicals
that could regulate autophagy and apoptosis-related signaling
pathways to enhance cancer chemotherapy outcomes.

METHODS

A literature-based search was accomplished to collect published
databases and relevant methodological contributions of the
molecular mechanism of phytochemicals in autophagy-
apoptosis modulation and cancer prevention has been
conducted using PubMed, Scopus, Google Scholar, Web of
Science, and Google that includes all original research articles
written in English on multifunctional role of phytochemicals.
Searching was conducted using various keywords including
autophagy, apoptosis, natural compounds, cancer,
phytochemical, neurodegenerative diseases, solid tumors and
lymphomas, heart/cardiovascular diseases, perspectives role
autophagy in cancer therapy and so on. All figures were
generated using Adobe Illustrator software.

MOLECULAR MECHANISM OF
AUTOPHAGY IN CANCER

Autophagy is a cellular process that breaks down or degrades
unwanted or aggregated dysfunctional cellular components
through fusion with lysosomes; this cellular process is known to
play an essential role in maintaining cellular function as well as
homeostasis (Krishnan et al., 2020). Autophagy preserves an active
interlink in cell defense as well as a cytostatic link in cancer cell
progression (Rahman and Rhim, 2017). Generally, the process of
autophagy might be introduced by the generation of pre-
autophagosomal structures known as phagophore assembly sites
(PAS) (Hurley and Young, 2017; Rahman and Rhim, 2017).
Phosphatidylinositol 3-phosphate (PI3K), which is associated with
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the endoplasmic reticulum (ER), plays an essential role in the
initiation of PAS formation (Kotani et al., 2018). AMP-activated
protein kinase (AMPK), mammalian target of rapamycin (mTOR),
and unc-51 like autophagy activating kinase-1 (ULK1) have been
demonstrated to facilitate phagophore formation during autophagy
induction (Alers et al., 2012), with Vps34, Vps15/p150, and Beclin-1
as recruiters for phagophore formation (Velazquez and Jackson,
2018). After phagophores are formed, phagocytosis occurs. This
process is subsequently followed by expansion and sealing to
elongate the membrane for autophagosome formation
(Rubinsztein et al., 2012). Mature autophagosomes bind to
lysosomes, resulting in autolysosome formation (Kardideh et al.,
2019). Eventually, autolysosomes containing inner cargos are
degraded by acid hydrolases and produce nutrients; other
recycling metabolites subsequently preserve cellular homeostasis
(Figure 1). The fate of cancer cells is thus dependent on
autophagy (Wei and Huang, 2019). Autophagy decides whether
the cancer is suppressed or promoted under certain conditions.
mTOR plays an important role in protecting or activating oncogenic
cells through the induction of autophagy. However, chemotherapy
drugs have been found to suppress tumor cells by modulating
autophagic pathways. Furthermore, inhibition of this pathway
regulates cancer progression, and the influence of autophagy
becomes either a cellular survival or death function (Jung et al.,
2020). The metabolism of malignant cells is intensely altered to
retain their proliferation and survival under adverse
microenvironmental conditions. Autophagy plays an essential role
in maintaining metabolic adaptations in cancer cells (Goldsmith
et al., 2014). Although autophagy is recognized to sustain neoplastic
cell metabolism under stress, the mutual association between cancer
cell metabolism and autophagy remains unknown. mTOR and
AMPK have been identified as the main signaling components
that modulate autophagy via the regulation of amino acid and
glucose levels (Alers et al., 2012). However, specific metabolites,
ROS, growth factors, palmitate, oxygen concentration, ATP to ADP

ratio, specific amino acid levels, and oncogenes regulate autophagy
initiation and autophagosome formation. Further, they regulate this
fine balance by assimilating these autophagy-related signals in cancer
(Singh and Cuervo, 2011; Panda et al., 2015). Prominently,
autophagy has been frequently identified to play a “dual role” as
it can either hinder or stimulate cancer initiation and progression
(Patra et al., 2020; Rahman et al., 2020a). In the present review, we
outline the dual role of autophagy in tumorigenesis and emphasize
our recent understanding of autophagy regulation of cancer cell
activation andmetabolism to control tumor growth and progression.

MOLECULARMECHANISMOF APOPTOSIS
IN CANCER

Apoptosis or programmed cell death is one of the predominant
strategies for blocking or avoiding cancer or cancer formation (Lopez
and Tait, 2015). Focusing on apoptosis is most effective for different
cancer types because escaping apoptosis is a trademark of cancer and
is indifferent to the type of cancer. Apoptosis is generally a central
pathway that is associated with intrinsic and extrinsic pathways
(Elmore, 2007). However, these extrinsic and intrinsic pathways
could be involved in the same station, which is known as the
execution pathway (Goldar et al., 2015) (Figure 2). To initiate
apoptosis in apoptotic cells, the extrinsic pathway uses
extracellular signals to induce apoptosis via stimulation of Fas
ligand, tumor necrosis factor (TNF), and TNF-related apoptosis-
inducing ligand (TRAIL), which interact with the extracellular
transmembrane domain of death receptors (DR) (Guicciardi and
Gores, 2009). Finally, caspases participate in the extrinsic pathway
and are generally typified as starter, stimulator, or executioner
caspases owing to their involvement and participation in the
apoptotic signaling pathways. The intrinsic apoptotic pathway is
directly involved in mitochondria-mediated proteins. Different
stimuli, such as adequate Ca2+, impaired DNA molecules,

FIGURE 1 | Molecular mechanism of the autophagic pathway. Autophagy is initiated by the formation of a pre-autophagosomal structure. PI3K-AMPK and
mammalian target of rapamycin (mTOR) contribute to the formation of the pre-autophagosomal structure. ULK1, Vps34 and the Beclin-1 complex help to activate
phagophore formation. After phagophore nucleation is elongated, subsequent binding to autophagosome occurs. Binding between mature autophagosome and
lysosome results in autolysosome formation. Finally, autolysosomes are eliminated through acid hydrolases, which produce nutrients and recycling metabolites.
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oxidative stress (OS), surplus oxidants, deprivation of growth factors,
and drug treatment and irradiation, have been associated with this
pathway (Ghavami et al., 2004; Hassan et al., 2020). When Bax/Bak
is incorporated into the mitochondrial membrane, it triggers the
release of cytochrome c from the mitochondrial inner membrane
into the cytosol (Kim, 2005). The intrinsic pathway of cell death is
caused by Bcl-2 family proteins, which are pro-apoptotic and anti-
apoptotic proteins, including Bcl-2 and Bcl-xL (Ghobrial et al.,
2005). Apaf-1 and procaspase-9 combine with cytochrome c to
form an apoptosome. Both mitochondria-dependent (intrinsic) and
independent (extrinsic) pathways are connected at the same point,
called the execution pathway (Elmore, 2007). The extrinsic and
intrinsic phases are linked at the same point after caspase-8 is
triggered. Activated caspase-8 in the extrinsic mechanism
regulates the activation of BH3 interacting-domain (BID), a

pro-apoptotic protein alternatively called BH3-only protein. BID
then stimulates and oligomerizes the pro-apoptotic proteins, BAX
and BAK, resulting in an intrinsic apoptotic phase (Green and
Llambi, 2015).

PHYTOCHEMICALS MODULATE
AUTOPHAGY-APOPTOSIS SIGNALING IN
SEVERAL CANCERS
Autophagy plays an essential role in cancer treatment, especially
in chemotherapy, by removing dysfunctional organelles and
intracellular components and inducing lysosomal degradation.
This self-digestion mechanism strengthens cellular defense to
protect cells from various intracellular and extracellular stresses

FIGURE 2 |Mechanism of the apoptotic pathway in cancer. To initiate apoptosis, two central pathways are involved in this mechanism: the intrinsic pathway and
extrinsic pathway. The extrinsic pathway of apoptosis is well defined by the TNF-α/TNFR1 and FasL/FasR models. Herein, the death receptor is induced by an adaptor
protein; adaptor proteins are comprised of FADD (Fas-associated death domain) and TRADD (TNF receptor-associated death domain). The signaling that occurs
through the extrinsic pathway causes the attachment of DRs to specific death ligands (DLs), thereby forming a death-inducing signaling cascade (DISC). The
complex pathway of caspase-8 activation follows a predefined system that actively enables caspase-8 to detach from the DISC, whether or not the pro-domain of
caspase-8 is retained as part of the DISC to initiate the signaling phases of apoptosis. However, in most apoptotic cells, proteins are customarily engaged in intrinsic
phases that involve caspase-9, SMAC/DIABLO, Bcl-2, Bcl-w, Aven, Nox, and MYC. Mitochondrial dysfunction is followed by the loss of inner membrane mitochondrial
potential, adequate formation of superoxide ions, impaired mitochondrial biogenesis formation, release of intra-membrane proteins, and matrix calcium glutathione
burst, which enumerate the important potential for cancer therapeutic strategies by triggering the intrinsic phases of apoptosis in tumor cells. The execution phase of
apoptosis initiator caspases, such as caspase-8/-9 or caspase-activated dnase (CAD), Poly (ADP-ribose polymerase (PARP), and other caspases such as caspase-3,
-6, -7, and caspase-10, are typified as upregulator or executioner caspases. Caspase-3 is the most essential and effective of all effector caspases because it can be
activated by all initiator caspases.
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and regulate redox balance to provide genomic and cytoplasmic
stability. Emerging evidence supports the dual role of autophagy
in cancer (i.e., as a promoter and an inhibitor of tumor
development). However, the induction of autophagy in cancer
is still a potential strategy; this is because it induces type II
programmed cell death. During cancer initiation, autophagy
regulators, such as mTOR and AMPK, are negatively
modulated by tumor-suppressing factors, which cause
autophagy induction (Comel et al., 2014). However, these
autophagy regulators are activated by several oncogenes that
suppress autophagy and promote cancer formation (Choi
et al., 2013). Autophagy also suppresses carcinogenesis by
regulating ROS, and excessive ROS production promotes
tumor generation (Ávalos et al., 2014; Filomeni et al., 2015).
Owing to their multifaceted therapeutic activities,

phytochemicals have proven to be promising for treating
many cancers (Mitra and Dash, 2018). In some cases,
metabolites and synthetic products from natural compounds
have demonstrated better chemopreventive effects than their
original compounds (Aung et al., 2017). Our model and
emerging evidence indicate that phytochemicals targeting the
autophagic-apoptotic pathways are promising agents for cancer
treatment for both pathways, or are dependent- and
-independent of target-specific molecular mechanisms in
cancer cells (Figure 3). Several phytochemicals and their
autophagic-apoptotic effects are summarized in Table 1.

Phytochemicals in Autophagy Signaling
Apigenin is a flavonoid derivative that modulates several kinase
pathways and inhibits the cell cycle at the G2/M phase. Studies

FIGURE 3 |Major phytochemicals induce the signal transduction pathways that regulate autophagic and apoptotic cell death in cancer. Phytochemicals have been
found to activate both the intrinsic and extrinsic apoptotic pathways by inducing a dysfunction in mitichrondria-caspase-9 and FAS-ligand-caspase-8 mediated
apoptotic cell death, respectively. Phytochemicals induce ER stress and apoptotic cell death. However, some phytochemicals modulate mitichrondrial biogenesis and
ensure apoptosis-autophagic cell death. Phytochemicals regulate the cell cycle and microRNA as well as cause apoptosis-autophagic cell death in cancer cells.
Some phytochemicals activate autophagic signaling and inhibits cell growth and autophagy. For a detailed explanation, see the text.
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TABLE 1 | Phytochemicals that activate autophagy and apoptosis in various in vitro and in vivo cancer models.

Phytochemicals Doses/
Conc

Cancer model Molecular effects References

Resveratrol 10–100 μM Human colon carcinoma cell lines
SW480, SW620, B103, and
HCT116

Activate procaspase-3, 8/FADD Delmas et al. (2003); Rahman et al. (2012a)

Eriocalyxin B (EriB) 1.4 μM Human pancreatic cancer
cellPANC-1, SW1990 CAPAN-2,
and CAPAN-1

Caspase 8,9 activation and
downstream regulation of caspases
3, 7, PARP

Li et al. (2012)

β-Elemene 10 μM Human breast cancer cell lines
Bcap37, MBA-MD-231

Conservation of LC3-I to LC3-II Guan et al. (2014)

Oblongifolin C 15 μM Human breast carcinoma cell lines
HeLa or MEF

Activation of CASP3 and cleaved
PARP

Lao et al. (2014)

Apigenin 10 μM Colorectal cancer cells HCT-116,
SW480, HT-29 and LoVo

Activate NAG-1, p53, p21 Zhong et al. (2010)

Allicin 1 μg/ml Human gastric cancer cell line
MGC-803, BGC-823 and SGC-
7901

Increase expression of p38 and
cleaved Of caspase 3

Zhang et al. (2015)

Anthocyanins 50 µM Breast cancer cell lines MCF-MDA-
MB-231 and MDA-MB-453

Inhibit the expression of VEGF,
suppressed the MMP-9,MMP-2 and
uPA expression

Hui et al. (2010)

Aspalathin 0.2 µM Ovarian cancer cell Caov-3 Inhibit Dox, decrease expression of
p53 and induce AMPK and Foxo1

Lin et al. (2017)

Baicalein 200 µM Human HCC cell lines SMMC-772
and Bel-7402

Downregulate Bcl 2, increase ER
stress

Wang et al. (2014)

Berberine 100 nM Human glioma cell lines U251 and
U87 GBM

Inhibition of AMPK/mTOR/ULK1 Peng et al. (2008); Wang et al. (2010); Yu et al.
(2014); Guamán Ortiz et al. (2015); Wang et al.
(2016a)

Capsaicin 150 µM Human nasopharyngeal
carcinoma cell line NPC-TW01

Downstream of PI3K/Akt/mTOR,
increase caspase-3 activity

Lin et al. (2017b)

Celastrol 1.5 μM Human prostate cancer cell lines
LNCaP, 22Rv1, DU145 and PC-3

Upstream of miR-101 Guo et al. (2015)

Cordycepin 200 µM Human brain cancer cellSH-SY5Y
and U-251

Upregulates ROS, p53, and LC3II Chaicharoenaudomrung et al. (2018)

Curcumin 25 µM Malignant mesotheloma cancer
cell line MM-B1, H-Meso-1, and
MM-F1

Increase Bax/bcl-2 ratio, p53
expression, activation of caspase 9,
cleavage of PARP-1

Masuelli et al. (2017)

Epigallocatechin gallate
(EGCG)

100 nM Vascular endothelial cell line U-937 Reduce TNF-α, inhibit VCAM1, LC3A,
LC3B

Yamagata et al. (2015)

Evodiamine 10 µM Gastric cancer cell line SGC-7901 Activates beclin-2, Bax,
downregulates Bcl-2

Rasul et al. (2012)

Fisetin 40–120 µM Prostate cancer cell lines PC3 and
DU145

Supressed Mtor and inhibit Akt,
activate AMPK

Suh et al. (2010)

Genistein 50–100 µM Ovarian cancer cell line A2780 Reduces Akt/mTOR phosphorylation Gossner et al. (2007)
Gingerol 300 µM Human colon cancer cell lines SW-

480 and HCT116
Inhibition of JNK, ERK1-2, and P38
MAPK

Shukla and Singh, (2007); Baliga et al. (2011);
Radhakrishnan et al. (2014)

Ginsenoside F2 100 µM Breast cancer cell lines MCF-7 Elevated Atg-7 Mai et al. (2012)
Cleaved PARP

Hispolon 25–100 µM Cervical cancer cell lines Hela and
SiHa

Downregulated lysosomal protease
Cathepsin S(CTSS)

Chen et al. (2012)

3′-hydroxydaidzein
(3′-ODI)

100 µM Mouse melanoma cell line B16F1 Reduce the α-MSH Kim et al. (2013)

Toxicarioside O 50 nM Human colorectal cancer cell lines
HCT116 and SW480

Inhibition of the Akt/mTOR Huang et al. (2017)
Upstream SIRT1↑

Falcarindiol 6 µM Human breast cancer cell lines
MDA-MB-231,MDA-MB-468 and
Her2

FAD induce expression of GRP78 Minto and Blacklock, (2008); Jin et al. (2012);
Lu et al. (2017)

Oleanolic acid 100 μg/ml Human pancreatic cancer cell line
Panc-28

Modulate JNK and mTOR pathway Pollier and Goossens, (2012); Liu et al. (2014)

Honokiol 40 μM Human glioblastoma cell lines
LN229, GBM8401 and U373

Reduction of p-PI3K, p-Akt and Ki67 Cheng et al. (2016)

Magnolol 40 μM Human glioblastoma cell lines
LN229, GBM8401 and U373

Reduction of p-PI3K, p-Akt and Ki67 Cheng et al. (2016)

Alisol B 30 μM Breast cancer cell lines MCF-7,
SK-BR-3, and HeLa

Activation of Ca2+/AMPK/Mtor Law et al. (2010)

(Continued on following page)
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TABLE 1 | (Continued) Phytochemicals that activate autophagy and apoptosis in various in vitro and in vivo cancer models.

Phytochemicals Doses/
Conc

Cancer model Molecular effects References

Luteolin 100 µM Human liver cancer SMMC-7721 Increase expression of caspase-8,
decrease bcl-2

Cao et al. (2017)

α-Mangostin 5–10 µM Human brain cancer cell lines,
GBM8401 and DBTRG05MG

Activation of AMPK Chao et al. (2011)

Oridonin 8–32 μmol/L Human hepatocellular carcinoma
cell line BEL-7402

Activation of caspase-3 Zhang et al. (2006)
Down-regulation of Bcl-2 and Up-
regulation of Bax

Quercetin 15 µM Lymphoma cell lines BC3, BCBL1
and BC1

Inhibits PI3K/Akt/mTOR and Wnt/
β-catenin

Granato et al. (2017)

Rottlerin 1–2 µM Breast cancer cell lines CD44/
CD24

Enhance expression of LC3 Kumar et al. (2013)

6-Shogaol 55.4 μM Lung cancer cell line A549 Inhibition af Akt and mTOR
downstream

Hung et al. (2009)

Silibinin (silybin) 50 µM RCC cell lines ACHN and 786-O Inhibit mTOR and activate AMPK Li et al. (2015)
Sulforaphane 40 µM Human pancreatic cancer cell lines

MIA PaCa-2,Panc-1
Increase ROS level Naumann et al. (2011)

γ-tocotrienol 10 μmol/L Breast cancer cell lines MCF-7 and
MDA-MB-231

Activate AMPK, down regulate Ang-
1/Tie-2

Ling et al. (2012); Tang et al. (2019)

Thymoquinone 40–60 µM Oral cancer cell lines
SASVO3,SCC-4, OCT,SAS

Increase expression of LC3-II, Bax
expression

Chu et al. (2014)

Tripchlorolide 200 nM Lung cancer cell line A549/DDP Inhibition of PI3K/Akt/mTOR Chen et al. (2017a)
Tetrandrine 0–4 μM Hepatocellular carcinoma cell lines

Huh7, HCCLM9 and Hep3B
Inhibits Wnt/β-catenin Zhang et al. (2018)
Decreases MTA1

N-desmethyldauricine 150 μM Lung cancer cell line H1299 Inhibition of Ulk-1/PERK/AMPK/
mTOR

Law et al. (2017)

Quinacrine 15 μM Colon cancer cell lines HCT-116/
HCT-116/HCT-116

Activation of p53, p21, and inhibition
of topoisomerase

Mohapatra et al. (2012)

Chloroquine 50 μM Pancreatic cancer cell line
MiaPaCa2 and S2VP10

Decrease the level of O2 Frieboes et al. (2014)

Tangeritin 10 μM Breast cancer cell lines MCF7,
MDA–MB–468 and MCF10A

Induce CYP1 and CYP1A1/CYP1B1
protein expression

Surichan et al. (2018)

Myricetin 100 μM/L Prostate cancer cell lines PC3,
DU145

Knockdown the interaction between
P1M1/CXCR4

Ye et al. (2018)

Galangin 15 μM Human kidney cancer cell line
A498

Inhibition of PI3K/Akt/mTOR signaling Zhu et al. (2018)

Isorhamnetin 100 μM Colon cancer cell lines HCT116
and SW480

Increase ROS Wu et al. (2018)

Hesperetin 350 μM Lung cancer cell line H522 Knockdown caspase-3/9,p53,Bax Elango et al. (2018)
Upregulate Fas, FADD and
caspase-8

Delphinidin 80 μM Breast cancer cell lines MDA-MB-
453 and BT474

Suppression of mTOR Chen et al. (2018)
Activation of the AMPK

Epigallocatechingallate
(EGCG)

500 μM Human glioblastoma cell lines
T98G and U87MG

Increase ROS Grube et al. (2018)

Epicatechin-3-
O-gallate (ECG)

36 µM Prostate cancer cell lines LNCaP
and PC-3

Diminished the progression of
carcinofenic cell

Siddiqui et al. (2011); Stadlbauer et al. (2018)

Cyanidin-3-
glucoside (C3G)

20 μM Human breast cancer MDA-MB-
231 and Hs-578T

Inhibiting STAT3/VEGF and miR124
mediated downregulation STAT3

Ma and Ning, (2019)

Benzyl isothiocyanate
(BITC)

6.5 μM Pancreatic cell lines BxPC-3 and
PanC-1

Decrease the phosphorylation of
PI3K/Akt/FOXO1/PDK1/mTOR/
FOXO3a

Boreddy et al. (2011)

Phenethyl isothiocyanates
(PEITC)

10 μM Breast cancer cell lines MDA-MB-
231 and MCF-7

Reduction of HER2, EGFR and
STAT3 expression

Gupta and Srivastava, (2012)

Piperlongumine (PL) 6 µM Lung cancer cell lines A549 and
A549/DTX

Regulate PI3K/Akt/mTOR Bezerra et al. (2008); Raj et al. (2011); Wang et al.
(2015)

Saikosaponin-d 10 µM Breast cancer cell lines HeLa and
MCF-7

Calcium mobilization, induce
CaMKKβ-AMPK-mTOR

Hsu et al. (2004); Tundis et al. (2009); Wong et al.
(2013)

Guttiferone K 20 µM Human HCCs HuH7 and HepG2 Reduce phosphorylation of Akt
/mTOR, increase ROS

Xu et al. (2008)
Wu et al. (2015)

Licochalcone A 20 or 50 µM Breast cancer cell line MCF-7 Suppression of PI3K/Akt/mTOR
pathway

Xue et al. (2018)

Ophiopogonin B 10 μM Lung cancer (NSCLC) cell lines
NCI-H157 and NCI-H460

Inhibition of PI3K, Akt, mTOR Chen et al. (2013a)

(Continued on following page)
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have shown that apigenin can inhibit cell growth and induce
autophagy in time-and dose-dependent manners in HepG2 cells
(Zhong et al., 2010). Autophagy was also found to bemediated via
the inhibition of the PI3K/Akt/mTOR pathway in HepG2 cells
(Yang et al., 2018). An organic sulfur compound, allicin, acts as an
antitumor agent that activates autophagic cell death by inhibiting
the PI3K/mTOR signaling pathway (Sak, 2012). Allicin also
inhibits the expression of p53 and Bcl-2, and upregulates the
Beclin-1 signaling and AMPK/TSC2 signaling pathways (Chu
et al., 2012). Anthocyanins (ACNs) present in black soybeans
induce autophagy; however, their underlyingmechanism have yet
to be determined (Choe et al., 2012). Aspalathin is a polyphenolic
dihydrochalcone C-glucoside that plays a critical role in
inhibiting Dox-induced cardiotoxicity and decreasing P53
expression. Aspalatin triggered autophagy-related genes and
decreased p62 by inducing the AMPK and Fox pathways
(Johnson et al., 2017). Berberine is an isoquinoline alkaloid
that exerts anticancer activity for autophagy induction by
inhibiting the AMPK/mTOR/ULK1 pathway (Wang et al.,
2016a). Celastrol is another triterpenoid that is effective
against human prostate cancer. Celastrol blocks the AR
signaling pathway, which induces autophagy and
downregulates the expression of miR-101 (Guo et al., 2015).
Cordycepin generates ROS in cancer cells and enhances p53 and
LC3I/II expression, thereby modulating autophagy
(Chaicharoenaudomrung et al., 2018). Cordycepin inhibits
renal carcinoma in the migration of the Caki-1 cell line by
reducing microRNA-21 expression and Akt phosphorylation,
and increasing PTEN phosphatase levels (Yang et al., 2017). In
addition, cordycepin induces autophagy via Bax activation in
ovarian cancer cell lines, including SKOV-3 and OVCAR-3 (Jang
et al., 2019). Curcumin has been shown to increase ROS andDNA
damage in cancer cells. Further, curcumin increased the
phosphorylation of ERK1/2 and p38 MAPK, inhibited Akt and
P54 JNK (Masuelli et al., 2017), and eventually induced
autophagy in NSLCA549 cells (Liu et al., 2018). Evodiamine, a
quinolone alkaloid, mediates autophagy activation by
upregulating Beclin-1 and Bax expression and downregulating

Bcl-2 (Rasul et al., 2012). Fisetin is a naturally occurring flavonoid
that is reported to suppress the mTOR signaling pathway via the
inhibition of Akt and activation of AMPK, and autophagic
programmed cell death in prostate cancer cells (Suh et al.,
2010). Similarly, genistein displayed chemopreventive and
chemotherapeutic effects in cancer cells. Treating ovarian
cancer cells with genistein led to a reduction in Akt
phosphorylation and induced autophagy, thereby contributing
to glucose uptake reduction in cancer cells (Gossner et al., 2007).
Ginsenoside F2 showed anti-proliferative activity and initiated
the autophagic process in breast cancer stem cells. Concurrently,
ginsenoside F2 elevated Atg-7 levels, induced the formation of
acidic vascular organelles, and recruited GFP-tagged LC3-II to
autophagosomes (Mai et al., 2012). Hispolon, a phenolic
compound isolated from Phellinus igniarius (L.) Quél.,
exhibited apoptotic and anti-tumor effects in cervical cancer
cell lines and notably induced autophagy. Treatment with
hispolon inhibited metastasis by downregulating lysosomal
protease cathepsin S (CTSS) (Chen et al., 2012). Further,
hispolon was found to mechanistically block the ERK pathway
and enhance LC3 conversion and acidic vesicular organelle
formation (Hsin et al., 2017). 3′-hydroxydaidzein (3′-ODI) is
another phytochemical derivative that induces autophagy. In fact,
it was found to significantly reduce α-MSH-mediated
melanogenesis in melanoma cells (Kim et al., 2013).
Toxicarioside O, a natural product derived from the Antira
toxicaria Lesch., showed anticancer potency through
autophagy induction via the subsequent reduction of the Akt/
mTOR pathway (Huang et al., 2017). Falcarindiol (FAD), a
natural polyene (Minto and Blacklock, 2008) promotes
autophagy in response to ER stress (Jin et al., 2012) while
α-mangostin mediates autophagic cell death via AMPK
activation in human glioblastoma cells (Chao et al., 2011). The
bioflavonoid, quercetin, possesses anticancer and anti-
inflammatory properties. In hyperactive primary effusion
lymphoma (PEL), quercetin reduced the release of cytokines
and inhibited PI3K/Akt/mTOR and STAT3 pathway-induced
autophagy, ultimately resulting in PEL cell death (Granato

TABLE 1 | (Continued) Phytochemicals that activate autophagy and apoptosis in various in vitro and in vivo cancer models.

Phytochemicals Doses/
Conc

Cancer model Molecular effects References

Norcantharidin 40 μM Human MHCC-97H (97H) and
HepG2 HCC cells

Inhibition of c-Met, mTOR Sun et al. (2017a)

Juglanin 10 μM Breast cancer cell lines MCF-7 and
SKBR3

Regulation of ROS, JNK Sun et al. (2017b)

Isoliquiritigenin 25 μM Human ovarian cancer cell lines,
OVCAR5 and ES-2

Cleaved caspase-3, increased LC3B-
II, and Beclin-1 level

Chen et al. (2017b)

Cucurbitacin B 200 μM Breast cancer cell line MCF-7 Increase γH2AX, phosphorylation of
ATM/ATR, ROS

Chen et al. (2005); Ren et al. (2015)

Carnosol 25 µM Human breast cancer cell line
MDA-MB-231

Increase p21/WAF1 and
downregulate p27

Al Dhaheri et al. (2014)

Kaempferol 50 or
100 μM

Colorectal cancer cell lines
HCT116, HCT15, and SW480

Generated ROS and p53 signal Choi et al. (2018)

Ursolic acid 10–40 µM Prostate cancer cell lines PC3 Increases Beclin-1/Atg5 and inhibits
Akt/mTOR

Shin et al. (2012)

Triptolide 200 nM Human pancreatic cancer cell line
S2-013, S2-VP10, and Hs766T

Inhibits of Akt-mTOR-P70S6K Mujumdar et al. (2010)
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et al., 2017). In breast cancer steam cells, rottlerin (Rott)
enhanced the expression of LC3, Beclin-1, and Atg12
aggregation during autophagy. Silibinin (silybin) is a
chemoprotective flavonoid that might exhibit anti-metastatic
effects on renal cell carcinoma (RCC). Silibinin increased the
expression of LC3-II, which not only suppressed mTOR
regulation but also activated the AMPK pathway (Li et al.,
2015). Sulforaphane (SFN) is a group of phytochemicals that
are referred to as isothiocyanates (Uddin et al., 2020). Multiple
studies have shown that autophagy in SFN-induced cell death
eliminates highly resistant pancreatic carcinoma cells by releasing
ROS, without exhibiting cytotoxic effects (Naumann et al., 2011;
Uddin et al., 2020). Gintonin has been found to stimulate
autophagic flux via the Akt/mTOR/p70S6K-mediated pathway
in primary cortical astrocytes (Rahman et al., 2020b). Ursolic acid
(UA), a pentacyclic triterpenoid, showed anti-proliferative effects
via G1 phase arrest and induced autophagy regulation through
the beclin-1 and Akt/mTOR pathways (Shin et al., 2012).
Tripchlorolide is present in tripterygium. Treatment with
tripchlorolide was found to attenuate the expression of the
PI3K/Akt/mTOR signaling pathway (Chen et al., 2017a).
Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from
the Chinese medicinal herb, Stephania tetrandra S. Moore.
Tetrandrine plays an important role in the suppression of
human hepatocellular carcinoma, inhibits the Wnt/β-catenin
pathway, and reduces MTA1 expression, which eventually
causes autophagy (Zhang et al., 2018). N-desmethyldauricine
is a novel inducer of autophagy that is mediated by the
inhibition of Ulk-1/PERK/AMPK mTOR and causes calcium
accumulation, leading to autophagic cell death (Law et al.,
2017). Quinacrine displayed anticancer properties in breast
cancer cells by enhancing p53 and p21 regulation and
inhibiting topoisomerase activity (Mohapatra et al., 2012). The
anti-proliferative activity of tangeritin initiates anticancer activity
by modulating autophagy and inducing the CYP1 enzyme and
CYP1A1/CYP1B1 proteins in MDA-MB-468 and MCF-7 cells
(Surichan et al., 2018). Multiple studies have indicated that
licochalcone A treatment activates the LC3-II signaling
pathway and suppresses the PI3K/Akt/mTOR pathway to
promote autophagy in MCF-7 cells (Xue et al., 2018). In
addition, ophiopogonin B was found to induce autophagy by
inhibiting the PI3K/Akt/mTOR signaling pathway (Chen et al.,
2013a). Anticancer activity was also exhibited by juglanin, which
is generally extracted from green husks. Juglanin-mediated
treatment attenuated G2/M phase arrest and induced
autophagy by regulating the ROS/JNK signaling pathway in
human breast cancer (Sun et al., 2017a). Cucurbitacin B (Cuc
B) is another natural tetracyclic triterpene compound that is
generally used as an anti-inflammatory drug (Chen et al., 2005).
Treatment with Cuc B increases γH2AX protein expression,
promotes DNA damage through phosphorylation of ATM/
ATR, and concurrently increases the level of ROS that induces
autophagy in MCF-7 cells (Ren et al., 2015).

Phytochemicals in Apoptosis Signaling
Angelica polymorphaMaxim, which contains angelicin, increases
cellular cytotoxicity and induces apoptosis by decreasing the

expression of anti-apoptotic proteins, including Bcl-xL, Bcl-2,
and Mcl-1 in SH-SY5Y human neuroblastoma cells (Rahman
et al., 2012b; Rahman et al., 2012b). As FAD-induced cell death is
known to be caused by caspase-dependent modulation, FAD is
suggested to have a synergistic effect on several approved cancer
drugs designed to kill cancer cells (Lu et al., 2017). Alisol B
induces autophagy by modulating the CaMKK-AMPK-mTOR
signaling pathway, calciummobilization, and enhanced ER stress,
leading to apoptotic cell death (Law et al., 2010). Luteolin is a
flavonoid found in various plants and is known to play a leading
role in hepatocellular carcinoma cell lines through G0/G1 phase
cell cycle arrest. Studies have shown that treatment with luteolin
induces apoptosis by increasing caspase-8 expression, reducing
Bcl-2 at the mRNA level, improving the conversion of LC3B-I to
LC3B-II, and decreasing the viability of SMMC-7721 cells (Cao
et al., 2017). In the human carcinoma BEL-7402 cell line,
oridonin-mediated apoptosis was found to be driven by the
activation of caspase-3 as well as reduced Bcl-2 expression and
Bax upregulation, which can inhibit cell growth (Zhang et al.,
2006). Prolonged treatment with Rott in breast CSCs suppressed
the phosphorylation of Akt and mTOR, and upregulated the
phosphorylation of AMPK, eventually upregulating apoptosis
(Kumar et al., 2013). Several natural plant extracts derived
from Dioscorea nipponica Makino, Melandrium firmum (Sieb.
& Zucc.) Rohrb., and Saussurea lappa (Decne.) Sch. Bip. have
been found to induce anti-proliferative effects and apoptotic cell
death in human neuroblastoma cells (Rahman et al., 2013;
Rahman et al., 2014; Rahman et al., 2015). γ-Tocotrienol, a
vitamin E isomer (Ling et al., 2012), is known to target Ang-
1/Tie-2 and exert anti-cancer effects through the activation of
AMPK signaling, leading to apoptotic cell death in human
prostate cancer cell lines (Tang et al., 2019). Triptolide
induced apoptosis in pancreatic cancer cells, causing the
inactivation of Akt/mTOR/p70S6K and upregulation of the
ERK1/2 pathway (Mujumdar et al., 2010). Kaempferol is a
flavonoid compound that generates ROS and p53 signals and
regulates p38 phosphorylation as well as caspase activation,
thereby inducing apoptosis of colorectal cancer cells (Choi
et al., 2018). Myricetin is a natural flavonoid found in various
fruits and vegetables. A previous report suggested that myricetin
attenuated tumor cell growth by promoting apoptotic cell death
(Cao et al., 2018). Myricetin exerts pro-apoptotic and cytotoxic
effects on prostate cancer cells by inhibiting P1M1 and
downregulating the interaction between P1M1 and CXCR4
(Ye et al., 2018). Galangin induced apoptosis in kidney cancer
cells by increasing the expression of Bax and Cyt-c and decreasing
Bcl-2 expression (Zhu et al., 2018). In a human breast cancer cell
line, isorhamnetin inhibited tumor growth by inducing cell cycle
arrest in the S-phase and displayed strong cytotoxic effects via the
ROS-dependent apoptotic pathway (Wu et al., 2018). In H522
cells, Hesperet induced apoptotic cell death by downregulating
caspase-3/9, p53, and Bax expression and upregulating Fas,
FADD, and caspase-8 expression (Elango et al., 2018).
Cyanidin-3-glucoside (C3G) is an ACN found in fruits. C3G
exerts anti-inflammatory properties and induces miR-124
expression. Concurrently, miR-124 regulation downregulates
STAT3 and inhibits angiogenesis induced by C3G in human
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breast cancer (Ma and Ning, 2019). Benzyl isothiocyanate (BITC)
is present in cruciferous vegetables. Administering BITC to mice
caused decreased phosphorylation of PI3K/Akt/FOXO1/PDK1/
mTOR/FOXO3a, which suppressed pancreatic cancer cell growth
and induced apoptosis (Boreddy et al., 2011). Several studies have
reported that glucosinolate-derived phenethyl isothiocyanates
(PEITC) are promising anti-tumorigenic agents. In fact,
PEITC-treated mice were found to exhibit reduced expression
of HER2, EGFR, and STAT3, and enhanced apoptosis through
the cleavage of caspase 3 and PARP (Gupta and Srivastava, 2012).
NCTD inhibits c-Met and mTOR and exhibits anticancer
properties (Sun et al., 2017b).

Phytochemicals in Autophagic-Apoptotic
Signaling
β-Elemene is a natural chemical compound collected from
different medicinal plants, such as Curcuma WenYuJin (Edris,
2009). β-Elemene exerts cytoprotective activity by converting
LC3-I into LC3-II to form autolysosomes that activate
autophagy and significantly reduce the in vitro growth of
human breast cancer cells via apoptosis (Guan et al., 2014).
Capsaicin is another naturally occurring phytochemical that
exerts antitumor potency by downregulating the PI3K/Akt/
mTOR pathway. Capsaicin instigates the autophagy process by
increasing the expression of the autophagy markers, LC3-II and
Atg5, and enhances the degradation of p62 and Fap-1, while
increasing caspase-3 activity (Lin et al., 2017a). TheMorus alba L.
root extract containing oxyresveratrol was previously found to
accumulate ROS and induce autophagic and apoptotic cell death
via the FOXO-Caspase-3 pathway in human neuroblastoma cells
(Kwon et al., 2015; Rahman et al., 2017). Gingerol possesses
antioxidant, anti-inflammatory, and anti-tumor properties
(Shukla and Singh, 2007; Baliga et al., 2011), and inhibits
colon cancer cell proliferation by activating the caspase-
dependent pathway and concurrently cleaving PARP, which
induces autophagy (Radhakrishnan et al., 2014). Concurrent
treatment with honokiol (Hono) and magnolol (Mag)
decreased the expression of cyclin A, D1, and cyclin-
dependent kinase, which arrests cell cycle progression and
reduces p-PI3K, p-Akt, and Ki67 expression in U87MG and
LN229 human glioma cells. Both Hono-and Mag-mediated
treatments exert synergistic anti-tumor effects by inhibiting
cell proliferation. Accordingly, they induce autophagy and
apoptosis in human GMB cells (Cheng et al., 2016). 6-Shogaol
disrupts the Akt/mTOR mediated signaling pathway; blocking of
Akt is beneficial to apoptotic cell death. 6-Shogaol induces
autophagy through the inhibition of Akt overexpression and
exhibits anticancer activity against non-small cell lung cancer
(Hung et al., 2009). Thymoquinone (TQ), a major component of
black cumin, exhibits potent cytotoxic effects in several cancer cell
lines. In SASVO3 cells, TQ was found to mediate cell death
caused by the enhancement of Bax expression and increase
autophagic vacuoles and LC3-II protein expression following
apoptosis and autophagy (Chu et al., 2014). In our previously
published study, we revealed that the gap-junction inhibitor, 18α-
Glycyrrhetinic acid (18-GA), induces apoptosis and autophagy.

18-GA-induced autophagy has been shown to induce Atg5, Atg7,
and LC3II accumulation through p62 degradation (Rahman et al.,
2016b). 18-GA was also found to destabilize the Bcl-2/Beclin-1
interaction and the cleavage of Beclin-1, ultimately highlighting
the occurrence of mitochondrial-mediated apoptosis in SH-SY5Y
cells (Figure 4). 18-GA is also known to activate several MAPKs
and arrest the cell cycle, which leads to the activation of apoptosis.
18-GA may thus be used as a therapeutic target for the apoptosis-
autophagy pathway in neuroblastoma.

Delphinidin is an anthocyanidin monomer with strong anti-
oxidative characteristics. In HER-2 positive breast cancer cells,
delphinidin enhances apoptosis and autophagy by suppressing
mTOR and activating the AMPK signaling pathway (Chen et al.,
2018). Emerging evidence has shown that epicatechin-3-O-
gallate (EGCG) promotes autophagy and apoptosis in different
cancer lines (Siddiqui et al., 2011; Grube et al., 2018; Stadlbauer
et al., 2018). Previously, OxyR was found to simultaneously
activate apoptosis and autophagy in NB. OxyR also reduces
PI3K/Akt/mTOR signaling and enhances cytotoxicity by
increasing autophagy levels (Figure 5) (Rahman et al., 2017).
OxyR-induced cell death was found to occur independent of
apoptosis induction due to alterations in the levels of PI3K/Akt/
mTOR and p38 MAPK activity in SH-SY5Y cells.

Saikosaponin-d is reported to induce intracellular calcium
accumulation and autophagy by activating the CaMKKβ-
AMPK-mTOR pathway. Nonetheless, ER stress and UPR
activation by saikosaponin-d have been demonstrated to
trigger apoptosis and autophagic cell death (Wong et al.,
2013). Isoliquiritigenin (ISL) hinders the viability of ovarian
cancer cell lines (OVCAR5) and the ES-2 model. ISL also
induced autophagy in OVCAR5 via cell cycle arrest at the G2/
M phase, cleaved caspase-3, and increased LC3B-II and Beclin-1
expression (Chen et al., 2017b). Guttiferone K (GUTK) isolated
from garcinia yunnanensis Hu (Xu et al., 2008) was found to
reduce Akt phosphorylation and inhibit the mTOR pathway.
GUTK also enhanced ROS and triggered the phosphorylation of
JNK in EBSS, which induced autophagy and apoptosis under
nutrient-deficient conditions (Wu et al., 2015).

PHYTOCHEMICALS MODULATE
AUTOPHAGY-APOPTOSIS THROUGH ROS
SIGNALING
ROS, such as O2

•−, H2O2, and
•OH, are generated as metabolic

by-products by biological systems; such generation may trigger
detrimental as well as useful health outcomes (Covarrubias et al.,
2008; Sena and Chandel, 2012). An optimum level of ROS is
required for different biological processes, such as cell signaling,
activation of proteins, immune function and transcriptional
factors, and the regulation of apoptosis and differentiation
(Rajendran et al., 2014). However, overproduction of ROS
may have damaging effects on various proteins, lipids, and
nucleic acids (Wu et al., 2013). Thus, an imbalance in ROS
levels may be the cause of several diseases, such as cancer.
Cellular ROS levels are also critical for cancer progression
(Aggarwal et al., 2019). ROS-mediated DNA damage may play
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a critical role in the initiation and progression of carcinogenesis.
Reversible DNA damage may allow an internal repair system to
normalize the adverse effects of ROS. However, irreversible
damage may not permit the proper functioning of the repair
system. As a result, the cells undergo apoptosis, which has a
considerable effect in cancer therapy (Aggarwal et al., 2019).

As antioxidant phytochemicals can inhibit the growth of different
cancer cells, they could serve as good candidates for anticancer
therapy (Barrajón-Catalán et al., 2010; Sak, 2014). Depending on the
concentration, exposure time, and ability of oxidative stress-inducing
compounds, ROS signaling may act as an autophagic activator or
apoptotic initiator in target cancer cells (Chirumbolo et al., 2018).
EGCG is the most abundant polyphenol in green tea. EGCG has
been found to induce apoptosis and autophagy in human
mesothelioma cell death through prompting ROS (Satoh et al.,
2013). Ha et al. represented that ROS generation is important in
quercetin-meiated apoptotic cell death in Jurkat T cells has been
targeted via BCL-XL antiapoptotic action protein (Ha et al., 2019).
Epicatechins as shown to modulate autophagy and endoplasmic
reticulum (ER) stress-induced apoptostic cell death of human
various diseases (Zhang et al., 2020a). Gallic acid, 3,4,5-
trihydroxy-benzoic acid found in red wine and grapes, acts as an
auto-oxidation in addition to produceH2O2 andO2

− lead to intrinsic

mitochondria-mediated apoptosis in prostate cancer cells (Russell Jr
et al., 2012). Gallic acid prevents lung cancer cell growth via elevating
ROS level as well as GSH depleting (Wang et al., 2016b). Gallic acid
additionally encourages apoptosis through ROS-mediated activation
of JNK pathways (Chen et al., 2013b). Oxidation of catechin-derived
quinone has also been observed to result in anti-tumor activities in
several human cancer cells through apoptotic as well as autophagic
cell death via modulating ROS (Saibu et al., 2014; Lee et al., 2017).
Thus, activation of oxidative stress signaling may not always be
associated with unexpected side effects. A high dose of EGCG exerts
pro-oxidant effects, which ultimately leads to autophagy activation
and increased antitumor activity (Yang et al., 1998; Tsai et al., 2018;
Bimonte et al., 2019). EGCG induces apoptosis in cancer cells
through different mechanisms, including the suppression of
PI3K/Akt signaling (Liu et al., 2016), reduction in mitochondrial
membrane potential (Li et al., 2009) and expression of anti-apoptotic
proteins, including Bcl-2, xIAP, and Bcl-xl (Wu et al., 2009).
Previously, quercetin was found to promote ROS-stimulated
apoptosis and autophagy in different cancers (Choi et al., 2008;
Bi et al., 2016) by activating caspase-3 and inhibiting anti-apoptotic
proteins, such as Bcl-2 and Bcl-xl. Additionally, quercetin reduces
apoptosis in addition to decrease intervertebral disc degeneration
through SIRT-mediated autophagy induction (Wang et al., 2020). In

FIGURE 4 | Anticancer effects of 18-GA in autophagy-apoptosis modulation in neuroblastoma cells. 18-GA encouraged caspase-induced apoptosis by
depolarizing the mitochondria membrane potential (MMP). 18-GA also induced early autophagy through Atg5 and Atg7 activation and converted LC3I to LC3II. The
autophagy inhibitor, 3-MA, inhibited 18-GA-mediated autophagy. Nonetheless, 18-GA caused the downregulation of ERK1/2, JNK, and cyclinD1 protein and the
upregulation of p38 MAPK, which activated apoptosis in neuroblastoma cancer.
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cancer cells, curcumin enhances TRAIL-induced apoptosis viaROS-
mediated DR5 upregulation (Jung et al., 2005) and activates
autophagy through the ROS-ERK1/2-p38 MAPK signaling
pathway (Lee et al., 2011). Resveratrol has also been
demonstrated to possess beneficial effects (Moni et al., 2018) it
promotes apoptosis via ROS-dependent caspase activation (Shankar
et al., 2007) and Bax/caspase-3 (Whitlock and Baek, 2012) and
induces apoptosis associated with mitochondrial dysfunction in
cancer cells (Lin et al., 2012). As depicted in Figure 6,
phytochemicals are important modulators of cancer cell control
owing to the autophagy-apoptosis pathways.

THERAPEUTIC TARGETS OF
PHYTOCHEMICALS IN
AUTOPHAGY-APOPTOSIS MODULATION
FOR CANCER PREVENTION

Phytochemicals and naturally occurring compounds are well-
known to ameliorate several human diseases owing to their
pharmacological activities (Hannan et al., 2020; Rahman et al.,
2020b). The most well-known anticancer agents, including taxol,

resveratrol, vincristine, quercetin, vinblastine, tetrandrine, and
arteannuin, modulate the autophagy-apoptosis pathway (Sun
et al., 2019). Polyphenolic compounds and alkaloids are
particularly dominant among all other cancer therapeutics
(Newman and Cragg, 2016). Polyphenols play a greater role in
apoptotic, autophagic, and cytostatic activities owing to their
antioxidant properties, thereby serving as preventative cancer
therapies (Focaccetti et al., 2019). Polyphenols can easily bind to
cell membranes and trigger numerous signaling pathways,
including caspases, epidermal growth factor (EGF), Bcl-2
family proteins, mitogen-activated protein kinase (MAPK),
microRNAs (miRNAs), nuclear factor (NF)-κB,
phosphatidylinositol-3-kinase PI3K/Akt/mTOR, and epidermal
growth factor receptor (EGFR) (Sun et al., 2019). MicroRNAs
(miRNAs) have also been demonstrated to regulate gene
expression and are targeted as novel therapeutic approaches to
control cancer; phytochemicals, such as resveratrol, silibinin,
curcumin, genistein, and EGCG can be employed as apoptotic
inducers, autophagy modulators, and cell cycle inhibitors
(Lancon et al., 2012; Estrela et al., 2017; Jahanafrooz et al.,
2018). miRNAs have been predicted to be critical for
modulating cancer cell differentiation, invasion, proliferation,
autophagy, and apoptosis via the regulation of oncogenic gene

FIGURE 5 |Oxyresveratrol controls the autophagy-apoptosis signal to modulate neuroblastoma cells. OxyR activates PI3K/Akt/mTOR and the inhibition of mTOR
by rapamycin blocks autophagy, indicating an mTOR-dependent autophagic pathway. OxyR led to arrest at the G2/M phase of the cell cycle and activated
mitochondria-mediated caspase-3 dependent apoptosis. OxyR was also revealed to increase Bax/Bcl-2 ratio without generating ROS or activating p53. When the p38
inhibitor, SB203580, was applied, OxyR was found to activate autophagy-apoptosis signaling in neuroblastoma cells.
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expression (Karius et al., 2012). Further, the MAPK and PI3K/
Akt/mTOR signaling pathways have been shown to activate NF-
κB in numerous cancer cell lines by modulating several
phytochemicals in the autophagy-apoptosis pathway (Chao
et al., 2017). Matrix metalloproteinase (MMP)-2 and MMP-9
modulate the autophagy-apoptosis pathway and control cancer
through the action of different polyphenols (Balli et al., 2016).

Based on scientific evidence, phytochemicals present
substantial anticancer potential for bench to bedside drug
development. In fact, preclinical screening models can be used
to assess their preliminary toxicity, safety, pharmacokinetics, and
efficacy, which may serve as useful information for clinical trials
(Zhang et al., 2020b). The preclinical efficacy of several
phytochemicals, including ursolic acid, baicalein, genistein, 6-
Shogaol, apigenin, thymoquinone, allicin, dicumarol,
epigallocatechin, alpinumisoflavone, sulforaphane, curcumin,
emodin, withaferin A, resveratrol, gingerol, physapubescin B,
nimbolide, licochalcone A, glycyrrhizin, and hispidulin, has
been demonstrated using numerous animal models
(Choudhari et al., 2020). Despite several assessments of
phytochemicals against cancer in the clinical trial setting, most
trials continue to be in the early stage as numerous anti-cancer
chemicals are currently being investigated. The most important
phytochemicals under clinical trial investigation for various
cancers include sulforaphane, resveratrol, lycopene,
epigallocatechin, curcumin, and berberine; these

phytochemicals aim to target the autophagy-apoptosis pathway
(Choudhari et al., 2020).

LIMITATIONS OF TARGETING THE
AUTOPHAGY-APOPTOSIS CROSSTALK
USING PHYTOCHEMICALS IN
ANTICANCER DRUG DEVELOPMENT

Increasing evidence suggests that phytochemicals could exhibit
anticancer effects bymodulating various signaling pathways, such
as autophagy and apoptosis (Figure 3). These two significant
cellular pathways are largely responsible for determining the fate
of cancerous cells (Su et al., 2013). However, such finding is
mainly based on in vitro and preclinical in vivo investigations that
may not necessarily guarantee clinical outcomes. Moreover,
many phytochemicals target multiple signaling pathways that
may be shared among multiple cellular systems. These
multitargeted effects of phytochemicals may generate positive
outcomes, but can also lead to unanticipated effects, thereby
challenging the development of phytochemical-based anticancer
drugs. Although many phytochemicals are not specific in their
action and exert multitarget effects, it is uncertain whether their
anticancer effects are autophagy-dependent or merely a response
to mitigate the adverse conditions that support the survival of

FIGURE 6 | Schematic representation of the mechanism of action of phytochemicals and reactive oxygen species (ROS), which lead to the control of several
signaling pathways. ROS is produced by several internal and external stimuli. Extranally, ROS is activated through growth factors, LPS, TNF-α, thrombin, and
inflammation. Different phytochemicals have been found to scavenge or decrease cellular ROS level by inhibiting or stimulating their action. Internally, phytochemicals
inhibit PI3K or mTOR, which activates autophagy and reduces ROS production. Some phytochemicals have also been found to activate mitochrondrial ROS
production while other phytochemicals scavenge ROS and protect against DNA damage. ROS production mediated by ER and inflammation activators is also reduced
by phytochemicals, which modulate the autophagy-apoptosis pathways.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 63962813

Rahman et al. Phytochemicals Modulate Autophagy and Apoptosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


cells in the tumor microenvironment (Patra et al., 2020).
Although autophagy and apoptosis are two critical cellular
pathways in cancer biology, their specific roles remain unclear.
However, because autophagy plays a critical role in cellular
protein homeostasis and other quality control systems,
modulating this crucial pathway may hamper cellular
physiology. As autophagy is considered to be a double-edge
sword, targeting this pathway may result in unprecedented
outcomes.

CONCLUSION AND FUTURE
PERSPECTIVES

As the incidence of cancer increases on a daily basis, new
strategies are being discovered to ensure this fatal disease is
managed therapeutically. The major challenge in developing
target-specific anticancer drugs is inextricably linked to the
complexity of cancer pathobiology. Autophagy and apoptosis
are two vital cellular pathways involved in cancer development
and regulation. In addition, crosstalk is known to occur across
signaling pathways, including those associated with autophagy
and apoptosis. Many cancer types are becoming resistant to
chemotherapy due to defects in signaling pathways,
particularly apoptosis. As an alternative cell fate mechanism,
autophagy could be explored for the development of target-
specific anticancer drugs. Further investigations, both in vitro
and in vivo, are however necessary to better understand cancer
pathobiology, which will enable the full potential of autophagy-
apoptosis-targeted drug design to be exploited.

Scientists have always been interested in the use of plant
products and their derivatives as successful sources of
anticancer therapeutics. In fact, there is increasing evidence
suggesting the emerging anticancer potential of
phytochemicals that modulate several signaling pathways,
including autophagy and apoptosis. The anticancer effects of
phytochemicals have been observed to be selective and specific to
cancer cells, and involve the modulation of autophagy and
apoptosis. As a result, many phytochemicals are promising
sources of anticancer drugs. The most notable phytochemicals
that have exerted their anticancer potential in vitro and in vivo
through modulating the autophagy-apoptosis pathway
(i.e., sulforaphane, resveratrol, lycopene, epigallocatechin,
curcumin, and berberine) are currently being investigated in
clinical trials for different cancer types.

Because autophagy plays a context-dependent role in cancer
patients, targeting this crucial cellular pathway may not always be
beneficial. Furthermore, several phytochemicals target multiple
signaling pathways that may be shared among multiple cellular
systems, thereby posing a challenge to the development of
phytochemical-based anticancer drugs. This issue could
however be resolved through in vitro and in vivo studies on

phytochemical-mediated autophagy-apoptosis modulation. In
addition, an integrated system pharmacology and
computational approach could be employed to better
understand the anticancer effects of phytochemicals. As the
clinical application of phytochemicals is limited by their poor
bioavailability, improvements can be achieved by employing
nanotechnology-based drug delivery. Based on the highlights
in this review, the potential as well as the challenges of
phytochemical-mediated targeting of autophagy and apoptosis
could unravel new approaches and strategies for the development
of novel anticancer therapeutics to treat several cancer types.

Eventually, upcoming challenges as well as possible
perspectives have been demonstrated in the hope of improving
anticancer effectiveness in addition to accelerate the translational
improvement of precise nanomedicine or nanotechnology for
targeted cancer therapy based on autophagy-apoptosis pathway.
Nanoparticle-based drug delivery systems (NDDSs) have been
comprehensively used in the diagnosis, therapy, as well as cancer
imaging because of their features of extraordinary cancer-
targeting efficiency and low toxic properties. Nevertheless,
because of the problems of poor patient prognosis, high
variability, as well as multidrug resistance (MDR), NDDSs
have currently been challenged remarkable experiments.
Indeed, combined targets of nanoscience along with naturally
occurring bioactive compounds are very attractive as well as
developing rapidly in recent times in combination with
conventional drugs for improving clinical outcomes. Therefore,
it would be urgently required to necessary with designing novel
treatment approaches to investigate in-depth the early diagnosis
and pathogenesis of cancer thereby targeting phytochemicals
through autophagy-apoptosis pathway.
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