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Abstract: Programmed cell death (PCD) is a genetically controlled suicide process present in all living
beings with the scope of eliminating cells unnecessary or detrimental for the proper development of
the organism. In plants, PCD plays a pivotal role in many developmental processes such as sex deter-
mination, senescence, and aerenchyma formation and is involved in the defense responses against
abiotic and biotic stresses. Thus, its study is a main goal for plant scientists. However, since PCD
often occurs in a small group of inaccessible cells buried in a bulk of surrounding uninvolved cells,
its study in whole plant or complex tissues is very difficult. Due to their uniformity, accessibility,
and reproducibility of application of stress conditions, cultured cells appear a useful tool to investi-
gate the different aspects of plant PCD. In this review, we summarize how plant cell cultures can be
utilized to clarify the plant PCD process.
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1. Introduction

Programmed cell death (PCD) is a genetically controlled suicide process present in
all living beings with the scope of eliminating cells unnecessary or detrimental for the
proper development of the organism. PCD plays a pivotal role in the plant lifestyle and it
is involved in several developmental (senescence, formation of tracheary elements, sex de-
termination, aerenchyma formation, endosperm and aleuron maturation) and pathological
contexts (response to stresses and to pathogen attack) [1,2]. Thus, its study is a main goal
for plant scientists. PCD process is organized in three phases. The first one is the induction
phase, where the cells receive a wide range of extra- or intracellular signals (developmental
input, pathogen attack, signals from neighboring cells, abiotic or biotic stresses). The second
one is the effector phase, where the signals are elaborated to activate the death machinery.
The third one is the degradation phase, where the activity of the death machinery causes
the controlled destructuring of fundamental cell components [3]. The degradation phase
shows a set of hallmarks that can be used to identify cells undergoing PCD. These hall-
marks include shrinkage of cellular and nuclear membrane, activation of specific cysteine
proteases called caspases, and activation of specific endonucleases able to cleave DNA in
controlled fragments (laddering) [3]. Unlike animals, where well-described forms of PCD
(for example apoptosis) are reported, in plants, the PCD process is still poorly understood
and the term PCD is widely used to describe cell death observed in different tissues and
organs. At present, in plants, at least three forms of PCD have been described and cataloged
on the basis of both cellular morphology and the main cellular compartment involved in
the process. The “nucleus first form” is observable during the hypersensitive response to
pathogen attack and it is similar to animal apoptosis for the presence of specific hallmarks,
involvement of mitochondria included. The “chloroplast first form” is observable during
foliar senescence, while the “vacuole first form” is observable during the maturation of
vascular elements and during aerenchyma formation [4].
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2. Main Advantages of Studying PCD in Plant Cell Cultures

The in-depth study of the mechanism of plant PCD can often be a hard work as this
process generally occurs in a small group of cells surrounded by the large number of
uninvolved cells present in whole plant and in complex tissues. For a number of reasons,
cultured cells appeared an attractive model to several plant biologists to face this matter.
For example, large quantities of cell material can be easily maintained or quickly generated
from stocks to furnish investigators with a great number of fast-dividing and relatively
homogeneous cells. In addition, the greater accessibility makes cell cultures a good system
to which different compounds or stress conditions can be easily furnished to or removed
from. Finally, with vital dyes such as Evans Blue or fluorescein diacetate, it is relatively
simple to follow the growth or death response of cells to different stressors by removing
them at time intervals from the culture batches or by observing the fate of single cells in
real time. To further characterize the PCD process, it is relatively easy to assess under
the microscope any visible morphological changes that occur in cultured cells induced
to undergo PCD [5]. For example, nucleus condensation, a modification often occurring
during PCD, is easily observable with 4′,6′-diamidino-2-phenylindole (DAPI). Thus, a large
set of cell cultures, in particular (but not only) those obtained from the model plants
Arabidopsis thaliana and Nicotiana tabacum, has been proposed and utilized to investigate
plant PCD [5]. After some early indications ([6] and references therein), in the last years,
several different conditions have been proven able to induce PCD in cell cultures. In this
review, we summarize the literature on PCD induced by biotic and abiotic stresses useful
to clarify the process in plants.

3. PCD Induced in Cell Cultures by Biotic Stress

Several toxins and metabolic products obtained by microorganisms and fungi can
induce PCD in cell cultures, as summarized in Table 1.

Table 1. Biotic programmed cell death (PCD) inducers in plant cell cultures.

Plant Species PCD Induced by Main Characteristics of Induced PCD Reference

Acer pseudoplatanus L.
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an inhibitor of protein trafficking from the Golgi apparatus produced by Eupenicillium
brefeldianum, induce a PCD with apoptotic features such as reactive oxygen species (ROS)
accumulation, changes in cell and nucleus morphology, and specific DNA fragmenta-
tion [7]. In the same experimental material, fusicoccin a well-known activator of the plasma
membrane H+-ATPase produced by Phomopsis amygdali induces PCD with similar character-
istics [8]. The well-identified target of these molecules permitted to test the role of specific
cell compartments or physiological functions in the induction, development, and execution
of plant PCD process. In particular, investigation conducted with fusicoccin showed that
the phytotoxin-induced PCD involves changes in actin cytoskeleton [24] and utilizes the
plant hormone ethylene as regulative molecule in addition to ROS and reactive nitrogen
species (RNS) [25]. Interestingly, inhibition of cytochrome c release from the mitochondrion
by cyclosporin A markedly prevents the fusicoccin-induced PCD [26], and recently a possi-
ble role as signaling molecule for peroxynitrite has been proposed [27]. These results also
sustain the fundamental role of cytochrome c and peroxynitrite in the induction of PCD
process in plants. In Arabidopsis thaliana cultures, thaxtomin A, an inhibitor of cellulose
biosynthesis produced by Streptomyces scabiei, induces a PCD dependent on active gene
transcription and de novo protein synthesis and that displays apoptotic-like features such
as specific DNA fragmentation [9]. Interestingly, addition of auxin to Arabidopsis cell cul-
tures prevents thaxtomin-induced PCD possibly by stabilizing the plasma membrane–cell
wall–cytoskeleton continuum [28]. In tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow
2) cell suspensions metabolic products present in the Alternaria alternata culture filtrate
induce a PCD dependent on ROS generation that shows cytoplasm shrinkage, chromatin
condensation, and DNA laddering [10]. Interestingly, the PCD induced in tobacco BY-2
cells by Pectobacterium carotovorum and Pectobacterium atrosepticum is reduced by culture
filtrate of non-pathogenic Streptomyces sp. OE7 that through cytosolic Ca2+ changes and
generation of ROS induces defense responses [29]. This highlights the complexity of the
interactions between microorganisms and plants and the need for further investigations.
In tobacco cv. NC89-cultured cells, fusaric acid, a non-specific toxin produced mainly by
Fusarium spp., causes PCD with mechanism that is not well understood that, however,
involves ROS overproduction and mitochondrial dysfunction [11]. In fact, pre-treatment
of tobacco cells with the antioxidant molecule ascorbic acid and with the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyl iodonium signifi-
cantly reduces the fusaric acid-induced accumulation of dead cells as well as the increase
in caspase-3-like protease activity. Moreover, oligomycin and cyclosporine A, inhibitors
of the mitochondrial ATP synthase and the mitochondrial permeability transition pore,
respectively, also reduce the rate of fusaric acid-induced cell death [11]. PCD induced in cell
cycle-synchronized tobacco BY-2 cells by application of culture filtrates of Erwinia carotovora
involves changes in vacuole shape and disassembly of endoplasmic actin filaments [12].
In tobacco BY-2 cultures, deoxynivalenol, a mycotoxin synthesized by Fusarium culmorum
and Fusarium graminearum, induces a PCD sustained by different cross-linked pathways
involving ROS generation linked, at least partly, to a mitochondrial dysfunction and to tran-
scriptional downregulation of the alternative oxidase (Aox1) gene and showing regulation
of ion channel activities participating in cell shrinkage [13]. Interestingly, this mycotoxin
is also able to induce PCD in animal cells, but with different characteristics. This sug-
gests the presence of different ways to induce PCD between animals and plants (original
articles cited in [13]). Some metabolites able to induce PCD in plant cultured cells can
originate from the degradation of cellular components or are produced by the primary and
secondary metabolism of microorganisms and plants. For example, ceramides, lipids de-
rived from the membranes of eukaryotic cells, can induce PCD in Arabidopsis cultures in a
Ca2+-dependent manner. In fact, the calcium channel-blocker lanthanum chloride substan-
tially reduces the amount of ceramide-induced cell death [14]. Interestingly, in the same
material, sphingolipids can reduce apoptotic-like PCD induced by different treatments,
ceramides and heat stress included [30]. Moreover, in tomato suspensions, cell death
induced by camptothecin, fumonisin B1, and CdSO4 is regulated by phosphatidic acid.
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This cell death involves ROS and ethylene, depends on caspase-like proteases, and ex-
presses morphological features of apoptotic-like PCD such as protoplast shrinkage and
nucleus condensation [15]. Reactive carbonyl species (namely, acrolein, shown in Table 1)
derived from lipid peroxidation can activate caspase-3-like proteases to initiate PCD in
tobacco BY-2 cultures [16]. In the same experimental material, narciclasine (NCS), a plant
growth inhibitor isolated from the secreted mucilage of Narcissus tazetta bulbs, can induce
typical PCD-associated morphological and biochemical changes, namely, cell shrinkage,
chromatin condensation, and nuclear DNA degradation [17]. Among primary and sec-
ondary metabolites, the triterpene saponins (namely, medicagenic acid, shown in Table 1)
from alfalfa (Medicago sativa) applied to Populus alba cell cultures induce a PCD dependent
on RNS and ROS production and showing changes in nucleus morphology and chro-
matin condensation [18]. In tobacco BY-2 cultures, juglone (5-hydroxy-1,4-naphthoquinone)
causes cell death with ROS overproduction accompanied by formation of apoptic-like
nuclear bodies (indication of DNA fragmentation) and DNA hypomethylation [19]. In Vitis
labrusca suspension cultures, L-alanine is the only amino acid able to induce PCD accom-
panied by DNA fragmentation, expression of defense-related genes, and accumulation
of phenolic compounds [20]. Plant phytoregulators can also activate PCD in plant cell
cultures. For example, high levels of cytokinins (namely, 6-benzylaminopurine, shown in
Table 1) induce PCD in Arabidopsis cultures by accelerating a senescence process character-
ized by DNA laddering and expression of specific senescence markers [21]. In the same
material acetylsalicylic acid, a derivative from the plant hormone salicylic acid induces typ-
ical PCD-linked morphological and biochemical changes, namely, cell shrinkage, nuclear
DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from
mitochondria, and induction of caspase-like activity [22]. Finally, in Acer pseudoplatanus
cultures, chitosan, the non-toxic and inexpensive compound obtained by deacetylation of
chitin, the main component of the exoskeleton of arthropods as well as of the cell walls
of many fungi, induces a PCD mediated by ROS and RNS accumulation and showing
changes in gene expression and specific DNA fragmentation [23].

4. PCD Induced in Cell Cultures by Abiotic Stress

Several abiotic stresses ranking from different chemicals such as heavy metals and
dyes to ambient growth conditions can induce PCD in plant cell cultures, as summarized
in Table 2.

Table 2. Abiotic PCD inducers in plant cell cultures.

Plant Species PCD Induced by Main Characteristics of Induced PCD Reference

Nicotiana tabacum L. cv.
Bright Yellow 2 Cadmium ions

Changes in cell and nucleus
morphology, appearance of

autophagic bodies
[31]

Nicotiana tabacum L. cv.
Bright Yellow 2 Aluminium oxide nanoparticles

Caspase-like protease activity,
mitochondrial dysfunction,

DNA fragmentation
[32]

Viola tricolor L. Zinc and lead ions

Changes in cell and nucleus
morphology, DNA fragmentation,

caspase-like and papain-like cysteine
protease activity

[33]

Nicotiana tabacum L. cv.
Bright Yellow 2
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Table 2. Cont.

Plant Species PCD Induced by Main Characteristics of Induced PCD Reference
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For example, cadmium is a potent inducer of PCD in plants and in tobacco BY-
2-cultured cells; this process involves alterations in cell and nucleus morphology and
appearance of autophagic bodies [31]. In the same experimental material, aluminum oxide
nanoparticles induce a PCD form closely connected to loss of mitochondrial potential, en-
hancement of caspase-like activity, and DNA fragmentation [32]. In Viola tricolor L.-cultured
cells, zinc and lead ions stimulate a PCD form showing DNA fragmentation and activation
of caspase-like and papain-like cysteine proteases [33]. Interestingly, the indoleamine
melatonin protects tobacco BY-2-cultured cells from lead stress by inhibiting cytochrome
c release, thereby preventing the activation of the cascade of processes leading to cell
death [46]. Other important environmental pollutants able to induce PCD in cultured plant
cells are aromatic compounds. In fact, fluoranthene causes DNA fragmentation and oxida-
tive stress in tobacco BY-2 suspension cultures [34]. Rose Bengal dye in Arabidopsis thaliana
cell suspension cultures requires functional chloroplasts to activate a PCD process showing
ROS accumulation and specific gene activation [35], and the herbicide dinitro-o-cresol in-
duces DNA fragmentation, activation of caspase-3-like proteins, and release of cytochrome
c from mitochondria in soybean (Glycine max) suspension cell cultures [36]. Other chemicals
able to induce PCD are 1-butanol, which in Populus euphratica cell cultures causes shrinkage
of the cytoplasm, DNA fragmentation, condensed or stretched chromatin, and the activa-
tion of caspase-3-like proteases [37] and ATP, which when externally added to the same
cell cultures causes elevation of cytosolic Ca2+ levels, ROS accumulation, and cytochrome c
release [38]. As far as environmental conditions are concerned, heat stress (HS) is a potent
inducer of PCD in plants, where it causes important yield losses. HS study in cultured cells
has permitted to elucidate some aspects of its induction, thus helping in the reduction of
losses. For example, in tobacco BY-2-cultured cells, HS induces PCD, showing apoptotic
features such as cytoplasmic shrinkage, DNA fragmentation, ROS accumulation, activation
of caspase-3-like proteases, and induction of defense-related genes [39,47]. Some of these ef-
fects of HS are prevented by selenium [47] and depend on peroxynitrite accumulation [48],
thus sustaining the fundamental role of oxidative stress in the induction of HS-dependent
PCD. This view is also sustained by the analysis of the soluble proteome of tobacco cells
subjected to HS and by custom microarray analysis of gene expression during PCD of
Arabidopsis thaliana-cultured cells. Both these molecular investigations show the induction
of genes related to oxidative stress resistance [49,50]. Another environmental condition
that is able to induce PCD is salinity. Interestingly, the comparison of the responses to salt
stress of suspension-cultured cells from the halophyte Cakile maritima and the glycophyte
Arabidopsis thaliana shows that both species present similar dysfunction of mitochondria
and caspase-3-like activation but the salt-tolerant C. maritima can better resist to stress due
to a higher ascorbate pool able to mitigate the oxidative stress generated in response to
NaCl [40]. O3 exposure also induces PCD dependent on ROS generation in cell suspensions
of Arabidopsis thaliana [41]. Light also seems to be an important environmental factor able
to regulate PCD. Darkness enhances cell death but flavonoids and darkness lower PCD
during senescence of Vitis vinifera cell suspensions [42], pointing out the complexity of PCD
regulation in plants. In tobacco BY 2-cultured cells, UV-B overexposure induces a PCD form
showing typical apoptotic morphological features such as cell shrinkage, condensation of
chromatin in perinuclear areas, and formation of micronuclei [43]. The nutritional aspect
is also important. In fact, simultaneous depletion of sugar and phosphate is associated
with PCD, showing nuclear DNA degradation in suspension cultures of maritime pine
(Pinus pinaster Ait.) [44].

Very interesting results have been obtained from experiments performed in a cell
cycle-synchronized Arabidopsis thaliana cell suspension culture treated with four physiolog-
ical stressors (polyethylene glycol, mannose, H2O2, ethylene) in the late G2 phase. In these
cultures, depending on the cell death inducer, there are significant differences in the ap-
pearance of specific PCD hallmarks. In fact, polyethylene glycol, mannose, and H2O2 cause
DNA fragmentation and cell permeability to vital stains, and produce corpse morphology
corresponding to apoptotic-like PCD. Instead, ethylene (a plant hormone associated with
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senescence) causes permeability of cells to vital stains without concomitant nuclear DNA
fragmentation and cytoplasmic retraction but with very high ROS production, leading to
severe oxidative stress [45]. Similarly, in tobacco BY 2-cultured cells, zinc oxide nanopar-
ticles cause cell death depending on oxidative stress and lipid peroxidation [51], and in
grapevine suspension cell cultures, different concentrations of silver ions cause cell death
with different characteristics [52]. Thus, depending on the genotype/species and level of
stress, the same factors may cause different responses. Low stress levels permit the repair
of cell damage, moderate stress levels may induce PCD, and uncontrollable stress levels
potentially lead to accidental cell death (necrosis, see also Section 5). This is particularly
evident with abiotic stressors such as heavy metals and externally added compounds such
as plant hormones and H2O2 (original articles cited in [53]).

5. Future Perspectives and Conclusions

The use of cultured cells, a simple and controllable system valuable for physiological
studies because it minimizes variability and facilitates the analysis of cellular features,
permits the investigation of some aspects of the induction and progression process of plant
PCD. In particular, the possibility to evaluate the effects of different inducers in a stable and
reproducible manner made it possible to investigate the existence of multiple pathways
to perform PCD in plants. For example, the comparison among the effect of tunicamycin,
brefeldin A and fusicoccin and the lack of additivity when these inducers are furnished
in combination to Acer pseudoplatanus cells, permitted to hypothesize for these inducers
the existence of the same or largely coincident pathways involving mitochondria and
endoplasmic reticulum to induce PCD [54]. On the other hand, the discrepancy between
the number of dead cells and the number of cells showing specific DNA fragmentation
suggests the presence of different types of PCD in these cultures [54]. This permits the
hypothesis of the existence of at least two ways to die in cultured plant cells (Scheme 1):
apoptotic-like PCD and necrosis.
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Scheme 1. Possible ways to die in plant-cultured cells.

The apoptotic-like PCD is probably the most present in cultured cells and occurs
during developmental processes and in response to pathogen attack (Tables 1 and 2).
The biotic and abiotic cell death inducers stimulate ROS and RNS production and changes
in cytosolic Ca2+ levels. These second messengers induce activation of specific genes,
leading to DNA fragmentation as well as mitochondrial dysfunction with activation of
caspase-like proteases, finally resulting in apoptotic-like PCD. The necrotic death involves
swelling of the protoplast and loss of the integrity of the plasma membrane and occurs
during the response to severe insults that cause an oxidative uncontrolled shock.

The absence of cellular differentiation in many suspension cultures is a main advan-
tage when the basal responses of cells during the induction and execution of cell death
programs are investigated. However, it is possible to obtain suspension cultures not totally



Int. J. Mol. Sci. 2021, 22, 2166 10 of 12

undifferentiated to study some developmental processes. In fact, the developmental cell
deaths that occur in culture are often more amenable to investigation than their in vivo
counterparts. A classic example was the use of the xylogenic Zinnia (Zinnia elegans) cell
culture as an efficient system for studies on xylogenesis, an example of the “vacuolar first”
form of PCD. The developmental program of xylem differentiation in planta is well pre-
served in this in vitro experimental model. This allows for easy identification of signaling
molecules and observations of the changes in the morphology of the cellular organelles [55].
The background provided by the xylogenesis research in Zinnia makes it possible to uti-
lize a similar approach to study, in a simplified model, cell cultures other fundamental
processes for the plant lifestyle such as embryogenesis, sex determination, or senescence.

In conclusion, the importance and complexity of the PCD process in plants needs
further investigation, and in this perspective, cell cultures appear a very useful tool.
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