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A subgroup of congenital disorders of glycosylation (CDGs) includes inherited

GPI-anchor deficiencies (IGDs) that affect the biosynthesis of

glycosylphosphatidylinositol (GPI) anchors, including the first reaction

catalyzed by the X-linked PIGA. Here, we show the first PIGA-CDG case

reported in Mexico in a male child with a moderate-to-severe phenotype

characterized by neurological and gastrointestinal symptoms, including

megacolon. Exome sequencing identified the hemizygous variant PIGA

c.145G>A (p.Val49Met), confirmed by Sanger sequencing and characterized

as de novo. The pathogenicity of this variant was characterized by flow

cytometry and complementation assays in PIGA knockout (KO) cells.
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Introduction

The glycosylphosphatidylinositol (GPI) structure is

ubiquitous among eukaryotes with a common minimal

backbone consisting of three mannoses, one non-N-acetylated

glucosamine (GlcN), and inositol phospholipid (PI). GPIs are

attached to proteins via an amide bond between the C-terminal

carboxyl group and an amino group of ethanolamine phosphate,

and their fatty chains of PI are inserted into the outer leaflet of the

plasma membrane. In this way, more than 150 different human

proteins with diverse functions are anchored through GPIs

(Stevens, 1995; Fujita and Kinoshita, 2012; Kinoshita and

Fujita, 2016). The biosynthesis of GPIs is a stepwise sequence

of 11 reactions (Kinoshita, 2020). The first reaction consists in

the transference of N-acetylglucosamine (GlcNAc) from UDP-

N-acetylglucosamine (UDP-GlcNAc) to the 6-position of inositol

to generate GlcNAc-PI and is catalyzed by GPI

N-acetylglucosaminyl transferase (GPI-GnT), a complex

monoglycosyltransferase, consisting of seven subunits, of

which the X-linked PIGA is a catalytic subunit (Miyata et al.,

1993).

Somatic mutations in PIGA can occur, leading to

paroxysmal nocturnal hemoglobinuria, an acquired clonal

disease of hematopoietic stem cells (Takeda et al., 1993; Hill

et al., 2017). Additionally, PIGA pathogenic germline variants

have been reported in humans and are part of a subgroup of

inherited GPI-anchor deficiencies (IGDs) classified as

congenital disorders of glycosylation (CDGs) (Freeze et al.,

2014; Tarailo-Graovac et al., 2015; Ng and Freeze, 2018).

Twenty-one out of 27 genes involved in GPI biosynthesis

have been reported with pathogenic germline variants, with

PIGA-CDG being the only X-linked IGD (Kinoshita, 2020).

In PIGA-CDG, only males have been found to be clinically

affected (Tarailo-Graovac et al., 2015).

The phenotypical spectrum in PIGA-CDG ranges from a

mild-to-moderate developmental delay (DD), treatable epilepsy,

with no dysmorphic features, and no organ malformations in the

milder end of the spectrum to profound DD/intellectual

disability, treatment-refractory epilepsy, dysmorphic features,

and multi-organ malformations in the most severe end of the

spectrum (Bayat et al., 2020). We report, herein, the first Mexican

child with PIGA-CDG presenting a previously uncharacterized

novel missense PIGA pathogenic variant, resulting in a

moderate-to-severe phenotype.

Materials and methods

Sequencing

Genomic DNA (gDNA) was extracted from the patient’s

saliva and enriched for targeted regions using a hybridization-

based in house Invitae® protocol for clinical exome sequencing

(CES) analysis and sequenced (NextSeq Instrument, Illumina,

San Francisco, CA, United States). Confirmation of the variant in

the patient and parental screening was performed by the gDNA-

based polymerase chain reaction (PCR) product covering exon 2

of PIGA obtained using forward primer 5′-GAGGAGGAGCTG
GGAATGG -3′ and reverse primer PIGA as 5′-CTGGTTGTA
CATGACTTTCAGAG-3′. The 290-bp amplicon was isolated

and sequenced using an ABI Prism 3130xl autoanalyzer (Applied

Biosystems, Foster City, CA, United States), and the results were

visualized using SnapGene Viewer 2.2.2 (GSL Biotech LLC,

Chicago, IL, United States).

Glycophosphatidylinositol anchored
protein expression and rescue analysis

The CD16 expression in granulocytes was performed on one

blood sample per individual. Granulocytes were stained with

0.2 μg of phycoerythrin-anti-CD16 (CD16-PE; clone DJ130c,

sc20052, Santa Cruz, United States) for 30 min at 4°C, washed

three times with PBS buffer supplemented with 0.5% BSA, and

stored in 2% of paraformaldehyde. The cells (20,000 events per

sample) were analyzed, and fluorescence data were recorded as

individual cellular events on a BD Accuri C6 Plus flow cytometer

(Becton Dickinson, Franklin Lakes, NJ, United States). Data were

analyzed with FlowJo software according to Neuhofer et al.,

(2020).

The HEK-293 PIGA knockout (KO) model was generated by

the CRISPR/Cas9 system. HEK293 PIGA KO cells were

transfected with wild and mutant PIGA cDNA driven by the

weak TATA box promoter (pTA). Two days later, the surface

expression of GPI-anchored proteins (GPI-APs) was determined

by staining cells with mouse anti-CD59 (5H8) and anti-DAF

(IA10), followed by a PE-conjugated anti-mouse IgG antibody

(BD Biosciences). The cells were analyzed by a flow cytometer

(MACSQuant Analyzer; Miltenyi Biotec) with Flowjo software

(BD Life Sciences). Lysates from transfectants of wild andmutant

pMEHA-PIGAwere applied to SDS PAGE, andWestern blotting

was performed. PIGA proteins were detected by rabbit anti-HA

polyclonal antibody (MBL), followed by HRP-conjugated anti-

rabbit IgG. For the loading control, GAPDH was detected by

mouse anti-GAPDH (AM4300, Invitrogen), followed by HRP-

conjugated anti-mouse IgG.

Case description

The patient is the second born of a healthy, young, non-

consanguineous couple; family history was unremarkable.

Pregnancy and vaginal delivery at term were uneventful; birth

weight was 3,500 g (Z-score = 0), height 51 cm (z-score = 0), and

Apgar 9/9. At delivery, a thick and copious layer of vernix caseosa

covered him. He was admitted to the NICU during his first week
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of life due to indirect hyperbilirubinemia (indirect

bilirubin <20 mg/dl but >14 mg/dl), requiring three cycles of

phototherapy and treatment with phenobarbital due to

Crigler–Najjar syndrome suspicion. Finally, jaundice resolved

when he was 3 months old, and molecular diagnosis of Gilbert’s

syndrome (MIM [143500]) was confirmed by identification of

the TA6/TA7 genotype in the UDP glucuronosyltransferase

family 1 member A1 gene (UGT1A1); phenobarbital was

stopped, triggering seizures 4 weeks later. A cerebral MRI and

two EEGs, performed at 4 and 9 months of age, respectively,

revealed a normal myelination process related to the patient’s age

and normal cerebral electrical activity.

From 7 months of age, axial hypotonia and limb hypertonia,

indifference to the environment, and severe constipation were

evident; he was unable to roll over, sit independently, grab objects,

and carry them to his middle line, and he only babbled

occasionally. Height 73.5 cm (z-score = 2), weight 9,620 g

(z-score = 2), and head circumference 45.4 cm (z-score = 1),

with a broad and bulging forehead, arched eyebrows, sunken

eyes, rough facies, thick and fleshy ears with “elfin” upper tip,

wide mouth with thin upper vermillion, short neck, wide thorax

without inverted nipples, deep palmar creases, deep-set toe nails,

and skin and adipose tissue “doughy” to the touch.

At 15 months of age, a neuropsychological evaluation was

executed, using the Battelle Developmental Inventory, 2nd

Edition (BDI-2), concluding a significant delay in global

developmental quotient (<0.1 percentile) in relation to the

patient’s chronological age.

Normal audition and vision were assessed by evoked

brainstem potentials. No congenital heart disease or

myocardiopathy were documented. Bilateral ureterocele,

predominantly right, left ureteropielectasis, and changes in the

left ureteral caliber, suggesting vesicoureteral reflux, were

identified. No other malformations were reported.

FIGURE 1
Barium enema. (A). Anteroposterior view showing chronic megarectum. (B). Oblique view showing severe dilatation of the sigmoid and rectum
with loss of haustral markings.

FIGURE 2
Sanger sequence chromatograms of gDNA showing the PIGA
variant NM_002641.4(PIGA):c.145G>A (p.Val49Met). The patient
shows the mutation at codon position 49 of exon 2. Both mother
and father are non-carriers.
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Partial seizures characterized by gaze deviation to the left

and motor orofacial automatisms as well as secondary

generalized myoclonic seizures presented at the time of

diagnosis. The EEG revealed generalized cerebral

dysfunction, characterized by epileptiform paroxysms

illustrated by periodic lateralized wave-spike discharges in

the right and left temporal and parietal regions that tended to

generalize. Treatment with levetiracetam was initiated, and

later valproate was added due to partial pharmacological

response; finally, clonazepam was warranted as rescue

treatment in case of sudden, uncontrolled seizures. Good

seizure control was achieved, but fever sensitivity and

febrile-induced seizures were observed upon upper

respiratory tract viral infections.

Currently, at 34 months of age, he is under neurologic and

metabolic surveillance and enrolled in a physical therapy

program. He still suffers from severe chronic constipation that

has caused a megacolon (Figures 1A,B), requiring treatment with

polyethylene glycol 3350 and/or sennosides and glycerine

enemas. Other invasive procedures, such as rectal manometry

and full-thickness rectal biopsy, were not performed since

Hirschsprung disease was unlikely due to response, still partial

and intermittent, to laxatives and the absence of typical barium

enema images, showing reduced caliber of the rectum, followed

by a transition zone to an enlarged-caliber sigmoid. He has no

expressive language, independent sitting or rolling over, and eye

contact has slightly improved. No abnormalities in coagulation,

endocrine, liver, and renal function tests have been documented.

He had a mild SARS-COV-2 infection, and no seizures were

triggered by a mild increase in temperature. Due to severe

constipation, pyridoxine (vitamin B6) and glucosamine

supplementation could not be started. Bilateral ureteroceles

and ureteropielectasis remain stable. The last EEG assessment

revealed a very high-voltage, asynchronic, slow wave-spike

pattern consistent with hypsarrhythmia, which clinically

correlated with infantile spasms illustrated by head bobbing

and nystagmoid eye movements; levetiracetam was withdrawn,

and vigabatrin and topiramate were started, achieving good

seizure control. According to the Nijmegen Pediatric CDG

Rating Scale (NPCRS) (Achouitar et al., 2011), the patient’s

score is 25, which scales him in the upper limit of the

moderate category.

FIGURE 3
CD16 expression in granulocytes and rescue analysis in the PIGA-KOHEK293 cells. (A)Histogram depictingmedian fluorescence intensity (MFI)
of CD16-PE in granulocytes from the patient (blue histogram) and healthy control (red histogram) (healthy control MFI = 5,130 vs. patient MFI =
4,450). (B) Rescue of CD59 andDAF expression on the PIGA-KOHEK293 cells using aweak TATA box only promoter (pTA). The histograms represent
the MFI for the rescue of CD59 and DAF expression by the wild type and Val49Met (V49M) variant using the pTA promoter. Values for three
independent experiments and their statistical significance were graphed. CD59: wild type MFI = 943 vs. variant MFI = 584. DAF: wild type MFI =
1,074 vs. variant MFI = 785. Representative Western blotting of the mutant (Val49Met) and wild type (Wild) PIGA protein expression showing that the
PIGAmutant protein was more expressed than the wild-type protein. (normalized with the intensities of GAPDH, the loading control, and luciferase
activities used for evaluating transfection efficiencies). PIGA protein was detected by anti-His mAb (arrow), and loading control was revealed with
anti-GAPDH. Empty vector = vector without insert gene. Histograms in (A) y axis show cell counts; the x axis shows fluorescence intensity.
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Exome sequencing of the child revealed the presence in exon

2 of the NM_002641.4(PIGA):c.145G>A (p.Val49Met) variant

with genomic location X:15331786 (GRCh38). Sanger

sequencing data identified that the variant is a de novo

mutation in view that sequencing of parental gDNA showed

that the mother was a non-carrier (Figure 2).

To determine the functional impact of the c.145G>A
(p.Val49Met) variant, granulocyte expression of CD16 was

determined by flow cytometry. CD16 is a GPI-anchored

protein, considered a biomarker for IGDs (Bruneel et al.,

2020). A 13% reduction in CD16 was observed in the patient

compared to the healthy control (Figure 3A). This degree of

reduction has been reported in other PIGA-CDG patients (Kim

et al., 2016).

Additionally, a rescue analysis of DAF and CD59 expression

was performed by flow cytometry in a HEK-293 PIGA KOmodel

generated by the CRISPR/Cas9 system (Guerrero et al., 2021).

DAF and CD59 are well-known GPI-anchored proteins used as

biomarkers for IGDs and that are expressed in HEK-293 cells.

CD16 is not expressed in this cell line.

HEK-293 PIGA KO cells were transfected with the wild type

and the c.145G>A (p.Val49Met) variant, driven by the weak

TATA box only promoter (pTA). Rescue of CD59 expression by

the variant was found to be significantly deficient (62% of wild

type; p < 0.001). Rescue of DAF expression was also found to be

significantly deficient (73% of wild type; p < 0.001) (Figure 3B).

Western blot from cell lysates showed similar expression of

both wild type and mutant protein (Figure 3B).

Discussion and conclusion

CDGs, including IGDs, are scarcely reported from Latin

America. Less than 90 cases of germline PIGA have been

reported worldwide, mostly in the severe phenotype spectrum.

We report the case of a male child that presented with a

predominantly neurological and gastrointestinal infection,

including moderate and prolonged neonatal jaundice that was

associated with Gilbert’s syndrome, caused by the TA6/

TA7 UGT1A1 (also named UGT1A1*28) polymorphism. The

UGT1A1 is related to autosomal recessive indirect

hyperbilirubinemia syndromes. While some authors report the

association of this polymorphism with mild-to-moderate

neonatal hyperbilirubinemia (Roy-Chowdhury et al., 2002;

Agrawal et al., 2009), others have failed to demonstrate its

clinical significance alone on jaundice risk (Ülgenalp et al.,

2003; Watchko and Lin, 2010). Nevertheless, the combination

of the TA6/TA7 genotype with other icterogenic conditions, such

as hemoglobinopathies, may increase the risk for

hyperbilirubinemia (Watchko and Lin, 2010) and may play an

additional role in the pathogenesis of hemolytic neonatal

hyperbilirubinemia (Yang et al., 2021) by interfering with the

bilirubin clearance pathway. Therefore, the occurrence of the

variant described previously with the PIGA mutation may

explain the prolonged neonatal hyperbilirubinemia, which is

not expected nor observed in CDG patients (Marques-da-Silva

et al., 2017; Bayat et al., 2020; Lipiński et al., 2021).

Exome sequencing of the patient’s gDNA revealed the presence

of the variant NM_002641.4(PIGA):c.145G>A (p.Val49Met)

ClinVar 623369 reported with conflicting interpretations of

pathogenicity. The variant in this case is considered de novo as

the mother was determined a non-carrier. The c.145G>A (p.

Val49Met) variant has been reported in the literature in three

male patients who acquired it through maternal inheritance

(mothers were not reported to be affected). The first reported case

was characterized by renal cysts with epileptic seizures and DD

(Knaus et al., 2018); the second case showed profound DD, epileptic

spasms, and focal seizures initiating at 2 months evolving to bilateral

tonic-clonic seizures of intractable prognosis, with the patient dying

at 12 years old suddenly and unexpectedly (Bayat et al., 2020); and the

third case exhibited epileptic spasms and non-motor onset seizures

with behavior arrest, myoclonic jerks, and apneas, developing

pharmacoresistance with severe status epilepticus (Cabasson et al.,

2020).

In contrast to the previous reports involving the 145G>A
(p.Val49Met) variant, the patient exhibits a moderate

neurological phenotype, perhaps related to the absence of

documented brain malformations, refractory epilepsy, and

multiorgan involvement. In a large number of PIGA-CDG

patients, it was reported that only 10% of patients born alive

belonged to the milder end of the spectrum, but only 3% of

deceased patients belonged to this part of the spectrum (Bayat

et al., 2021).

A distinctive feature in this case was the development of

megacolon, possibly originated by a deficient development of the

enteric nervous system. Reduction in the expression of GPI-

linked proteins could explain gastrointestinal symptoms in

PIGA-CDG, including megacolon. For example, the GPI-

linked protein GFRα1 is a co-receptor of the glial cell

line–derived neurotrophic factor (GDNF) that participates in

a signaling system involved in the migration of neural crest cells

into the gut, as well as regulation of neuronal survival and death

(Cacalano et al., 1998; Uesaka et al., 2007).

The 145G>A (p.Val49Met) variant is located in the

Rossmann A fold region, a hot spot for cluster pathogenic

PIGA variants (Knaus et al., 2018; Bayat et al., 2020; Cabasson

et al., 2020). The Val49Met change has been predicted to be

probably damaging by both PolyPhen-2 (Adzhubei et al., 2013)

and SIFT (Kumar et al., 2009) assessed with 29.4 as the score

using Combined Annotation–Dependent Depletion (CADD)

(Bayat et al., 2020) and a REVEL score of 0.702 (likely

disease-causing) (Ioannidis et al., 2016). This variant is absent

from the gnomAD database.

Although the Val49Met has the lowest Grantham-score of

PIGA variants studied in a huge number of patients (Bayat et al.,

2020), the Val residue is highly conserved in PIGA proteins from
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several organisms, which could explain the importance of this

amino acid residue in PIGA function and the functional impact

of the Val49M substitution, as was determined by the

significantly reduced rescue of CD59 and DAF expression

observed in the complementation assays using the

HEK293 PIGA KO cells. Taking into consideration the

experimental and theoretical data, we can conclude that the

145G>A (p.Val49Met) PIGA variant is pathogenic.

Unfortunately, there are no corrective treatments available

for PIGA-CDG. Improvement has been observed in some

patients upon initiation with ketogenic diets (Joshi et al.,

2016), probably through stimulation of γ-amino butyric acid

(GABA) production and reception, initiating an anti-epileptic

effect (Daci et al., 2018), and because of their high content in

omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) that

present modulatory effects on voltage-gated ion channels and

thus a potential anti-epileptic effect (Taha et al., 2010). More

recently, PIGA cell lines and mouse models have been used to

evaluate compounds or drugs that were originally developed to

address different diseases as an alternative to finding an effective

treatment for PIGA-CDG (Olsen et al., 2017; Guerrero et al.,

2021; Liu et al., 2021; Lukacs et al., 2021).

Patient perspective

The patient is currently enrolled in the Natural History Study

of the Frontiers in Congenital Disorders of Glycosylation

Consortium of the National Institutes of Health,

United States. The parents are working with other families

affected by CDG to advance diagnosis and treatment for

patients in Mexico and are actively seeking clinical trials for

their son to participate in.
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