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Abstract: Some seed-derived antioxidant peptides are known to regulate cellular modulators of
ROS production, including those proposed to be promising targets of anticancer therapy. Never-
theless, research in this direction is relatively slow owing to the inevitable time-consuming nature
of wet-lab experimentations. To help expedite such explorations, we performed structure-based
virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential.
The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox

was examined. We generated a virtual library of 677 peptides based on a database and literature
search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed
down the collection to five candidates. Molecular docking found LYSPH as the most promising
in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best
candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes
was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have
cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion.
Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding
to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve
deeper exploration in future.

Keywords: anticancer; cheminformatics; in silico; Keap1; molecular docking; molecular dynamics;
myeloperoxidase; NADPH oxidase; seed antioxidant peptide; xanthine oxidase

1. Introduction

The past decade has seen a surge in scientific interest towards the exploration of
bioactive peptides for potential applications in health promotion and disease management.
Bioactive peptides identified from plant food and other natural origins often range between
2 and 20 residues, although this is not a hard-and-fast definition as exceptions do exist [1–3].
Plant bioactive peptides, known to exhibit diverse bioactivities, such as antioxidant, antihy-
pertensive, antimicrobial, and antitumor activities, are often purified and identified from
enzymatic hydrolysates of edible plant sources and plant-based agricultural by-products.
The bioactive potency of some such peptides have also been demonstrated in cellular and
animal models [2,4,5]. To date, a growing body of research has shown that plant seeds are
a good source of antioxidant peptides [2,5,6]. While such peptides could be developed into
natural additive for food processing and nutraceuticals for health maintenance, they may
also be therapeutically relevant as some could modulate cellular and/or in vivo antioxidant
status [2]. Cellular redox homeostasis is connected to the initiation and/or progression
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of certain cancers [7,8]. Perturbation in reactive oxygen species (ROS) homeostasis re-
sulting from unchecked ROS production is associated with carcinogenesis; scavenging of
excessive ROS accumulation may prevent early neoplasia [9]. Significant reduction in the
antioxidant activity of the blood serum of patients with malignant neoplasms has also been
reported [10].

In the body, cellular redox status is regulated by oxidative and antioxidative en-
zymes, non-enzymatic antioxidants, and certain protein-protein interactions involved in
regulating antioxidant gene expression. Myeloperoxidase (MPO), xanthine oxidase (XO),
and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) are three
examples of such oxidative enzymes. MPO, an abundant heme-containing enzyme in
the human neutrophils, catalyzes the reaction between hydrogen peroxide and chloride,
generating hypochlorous acid, a potent oxidant. MPO-mediated oxidative burst has been
linked to the initiation and progression of cancer, including tumor cell metastasis. No-
tably, downregulation of MPO gene expression is connected to reduction in the risk of
lung, breast, and ovarian cancers [7,8]. XO is an enzyme that catalyzes the conversion
of hypoxanthine to xanthine and ultimately to uric acid, producing ROS during the reac-
tion. The importance of XO as an anticancer target is highlighted by the discovery that
XO inhibitor febuxostat could repress breast cancer cell migration and the metastasis of
breast cancer to the lung in animal models [11,12]. Six isoforms of NADPH oxidase are
known to date. NADPH oxidase is a membrane-bound enzyme complex in phagocytes,
whose primary function is the production of superoxide anion radicals. The assembly and
activation of NADPH oxidase requires protein-protein interaction between the cytosolic
factor p47phox and transmembrane component p22phox [13,14]. Due to the importance of
p47phox-p22phox interaction in NADPH oxidase activation, the interaction can be targeted
in structure-based virtual screening for NADPH oxidase inhibitors [15]. Notably, enhanced
NADPH oxidase expression in multiple malignant diseases supports the recognition of
the NADPH oxidase family as potential targets in cancer therapies [13,16]. The Kelch-like
ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway is one
of the major signaling cascades involved in protecting cells against oxidative stress. The
Nrf2 transcription factor can activate the transcription of cytoprotective genes implicated in
protection against cancer. However, Keap1-Nrf2 protein-protein interaction could trigger
Nrf2 degradation mediated by the ubiquitin–proteasome pathway. Hence, there has been
strong interest among researchers to discover inhibitors of Keap1-Nrf2 protein-protein
interaction. Such inhibitors may preserve or enhance the transcription-activating role of
Nrf2, counteracting ROS-mediated damage in cancers [17,18].

Although a growing number of seed-derived antioxidant peptides has been docu-
mented in the literature, knowledge of their ability to modulate cellular regulators of
oxidative status (i.e., MPO, XO, NADPH oxidase, and Keap1-Nrf2), which are also promis-
ing targets of anticancer therapy, is still limited. A recent report of watermelon seed-derived
antioxidant peptides targeting the Keap1-Nrf2 system [19] suggests that seed-derived an-
tioxidant peptides should be explored more intensively as potential modulators of cellular
regulators of ROS balance. Thus, this in silico study was undertaken to virtually screen
the numerous seed-derived antioxidant peptides in the literature for their potential as
anticancer peptides that can target two oxidative enzymes (MPO and XO) and two protein-
protein interactions (Keap1-Nrf2 and p47phox-p22phox). In silico or virtual screening is a
less costly and less time-consuming strategy to screen for desirable bioactive peptides
and other compounds when compared with wet-lab screening [20]. In bioactive peptide
screening, this approach can benefit from various freely available peptide databases (e.g.,
PlantPepDB [21], and other online tools, such as AntiCP 2.0 [22] and MLCPP [23], which
are anticancer peptide and cell-penetrating potential prediction servers designed from
machine learning models). Moreover, different molecular modelling and simulation meth-
ods [24–26] may also be used to clarify the mechanisms of action between the peptides
and the protein targets of interest. Although virtual screening cannot replace wet-lab
experimentation, the aforementioned benefits have driven increasing popularity of in
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silico research on bioactive peptides [20,27]. Notably, by narrowing down a large set of
candidate peptides to a small number, in silico screening can facilitate a more focused
research strategy in future wet-lab experimentation; this also allows more efficient use of
limited research resources [20].

The goal of this in silico study was three-fold: (a) to compile a virtual library of
seed antioxidant peptides from the literature, followed by screening for non-toxic, non-
allergenic, and non-hemolytic anticancer peptides; (b) to perform structure-based screening
of the predicted anticancer peptides for ability to target Keap1-Nrf2, MPO, XO, and p47phox-
p22phox, followed by molecular dynamics validation of peptide-target interactions; and
(c) to further characterize the predicted anticancer peptides based on computational alanine
mutagenesis and prediction of cell- and blood-brain barrier penetrating potential, as well
as plasma and gastrointestinal (GI) stability.

2. Results and Discussion

A virtual library consisting of 677 seed-derived antioxidant peptides was generated
(Table S1), based on peptide sequences collected from Scopus and PlantPepDB databases,
as outlined in Materials and Methods. The collection encompassed antioxidant peptides of
2–57 residues in length and 192–5338 Da in molecular mass. Seed sources in the virtual
library included legumes, such as faba bean and soybean; cereals, such as wheat and rye;
and seeds of plantation crop species, such as oil palm and coconut. The types of antioxidant
activities reported for the seed-derived peptides included in vitro free radical scavenging
activities, lipid peroxidation inhibitory activity, cellular antioxidant activity, and in vivo
antioxidant activity (Table S1). Based on Figure 1a, 52% of the seed-derived antioxidant
peptides contain five to ten residues. By contrast, seed-derived antioxidant peptides with
more than 20 residues comprised only 0.15–0.59% of the virtual antioxidant peptide library.
Among the 63 Scopus-indexed publications we examined for the preparation of the virtual
library, 42 (67%) reported peptides of 5–10 residues. The prevalence of such peptide
length could be accounted by many seed-derived antioxidant peptides being purified and
identified from protein fractions of a relatively low molecular mass range, such as <3 kDa
fractions [28–30].
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Next, we proceeded to screening the virtual library for potential anticancer peptides.
Only 592 peptides were screened since dipeptides, tripeptides, peptides with more than
50 residues, and peptides with unnatural or modified amino acid residues could not be
analyzed by the AntiCP 2.0 tool. Among the 592 peptides, only 123 (21%) were predicted as
anticancer (Figure 1b). We carefully examined the publications reporting the 123 peptides
and found that none of the peptides had been tested for anticancer activity experimentally.
The 123 predicted anticancer peptides averaged 6 residues in length and 750 Da in mass
(data not shown). Safety is an important consideration in the design or discovery of
anticancer peptides. A functional anticancer peptide should not exhibit toxicity, elicit
immune response, and induce the lysis of erythrocytes [31–33]. Our screening found
that at least 50% of the 592 seed-derived antioxidant peptides were predicted to be safe
(i.e., non-toxic, non-allergenic, and non-hemolytic) (Figure 1b). Among the 592 peptides
screened, only 0.7% (4 peptides) were predicted to be toxic (Figure 1b). An in silico study
also predicted that all 253 antioxidant peptides liberated from the flaxseed proteome
were non-toxic [34]. This agrees with our observation of high abundance (99%) of non-
toxic peptides in our antioxidant peptide virtual library (Figure 1b). In comparison with
toxicity prediction, 47–48% of our antioxidant peptide virtual library comprised allergenic
and hemolytic peptides. In an in silico study of 26 antimicrobial peptides of rapeseed,
54% were predicted as non-allergenic and 46% allergenic [35]. This relative distribution of
allergenicity and non-allergenicity resembles that observed in our virtual screening. Among
the 308 non-hemolytic peptides (Figure 1b), the greatest proportion (41%) originated from
legumes, which included soybean and chickpea (data not shown). Fourteen soybean-
derived multifunctional cationic peptides were shown to have no hemolytic effect on sheep
red blood cells [36]. Meanwhile, two chickpea-derived antioxidant peptides also did not
cause any hemolysis in bovine red blood cells [37]. These findings support our observation
of legumes being a potential source of non-hemolytic peptides.

Based on our in silico screening, five seed-derived antioxidant peptides were predicted
to be anticancer, non-toxic, non-allergenic, and non-hemolytic. The two-dimensional (2D)
structures and molecular weight of the five peptides are shown in Figure 2. The five
peptides, identified from chickpeas, cherry seeds, and tomato seeds, are 5–9 residues in
length and 615–1016 Da in mass. The five peptides each contain at least one imidazole
functional group or one aromatic ring among their amino acid side chains. Notably,
LPHFNS and LYSPH each contain both an imidazole functional group and an aromatic
ring in their structures. This is characteristic of many food-derived antioxidant peptides;
imidazole groups and aromatic rings are associated with the ability of the peptides to
scavenge free radicals by electron transfer/proton donation [38]. On the other hand,
among the five peptides (Figure 2), FGPEMEQ has Phe (F) at the N-terminus, whereas Leu
(L), His (H), and Phe (F) are present in four, three, and two of the peptides, respectively.
The N-terminal preference for Phe and the abundance of Leu, His, and Phe are both
characteristics of experimentally validated anticancer peptides [22].

In this in silico study, to investigate whether the five predicted anticancer peptides
(Figure 2) could modulate cellular targets of cancer treatments, we docked the five peptides
on Keap1, MPO, XO, and p47phox. To the best of our knowledge, structure-based virtual
screening of the five peptides on the four targets has not been reported. Molecular docking
analysis found that LYSPH, a cherry seed peptide, had the strongest binding affinity to
Keap1, whereas PSYLNTPLL, a tomato seed peptide, had the weakest (Table 1). LYSPH,
LPHFNS, and AEHGSLH also had binding affinity values more negative than that of ETGE
(−7.1 kcal/mol) (data not shown). ETGE is the key motif of the co-crystalized 16-mer
Nrf2 peptide that is involved in Keap1-Nrf2 interaction [39]. Thus, LYSPH, LPHFNS, and
AEHGSLH could form similarly stable or more stable binding to Keap1 when compared
with Nrf2. Furthermore, all five peptides could bind to the key residues of Keap1 that are
required for stable Keap1-Nrf2 complex formation, mostly accomplished via hydrogen
bonds and hydrophobic interactions (Table 1). Two tripeptides (DKK and DDW) that could
bind to the key residues of Keap1 have been shown experimentally to inhibit Keap1-Nrf2



Molecules 2021, 26, 7396 5 of 21

interaction in vitro [40]. DKK, which possessed a stronger activity than DDW, was reported
to bind to key residues Arg380 and Asn382 [40]. Similar to DKK, all five seed-derived
peptides in Table 1 were predicted to bind to Arg380 and Asn382. Thus, our binding affinity
and intermolecular interaction results suggest that LYSPH, LPHFNS, and AEHGSLH may
serve as potential inhibitors of Keap1-Nrf2 interaction. Specifically, at the molecular level,
LYSPH was predicted to bind with the same Keap1 residues as did ETGE, namely, Arg380,
Arg415, Arg483, and Ser508 [39]. This observation, in addition to LYSPH having the most
negative binding affinity to Keap1 among the five peptides, suggests that the peptide is
the most promising for targeting Keap1-Nrf2 interaction. A graphical representation of
a LYSPH-Keap1 docked model and the intermolecular interactions between LYSPH and
Keap1 is shown in Figure 3.
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Table 1. Intermolecular interactions between seed-derived antioxidant peptides and Keap1.

Peptide Binding Affinity
(kcal/mol)

Interaction with Keap1 a

Hydrogen Bond Hydrophobic Interaction Salt Bridge

LYSPH −7.6 Arg380, Arg415(2), Arg483,
Ser508

Tyr334, Ser363, Arg380, Asn382,
Arg415, Ser508, Tyr525, Gln530,
Ala556, Tyr572, Phe577, Ser602

-

LPHFNS −7.4 Ser363, Arg380, Asn414,
Arg415(2), Gln530

Tyr334, Ser363, Arg380, Asn382,
Asn414, Arg415, Arg483, Tyr525,
Gln530, Ser555, Ala556, Tyr572,

Phe577, Ser602

-
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Table 1. Cont.

Peptide Binding Affinity
(kcal/mol)

Interaction with Keap1 a

Hydrogen Bond Hydrophobic Interaction Salt Bridge

AEHGSLH −7.2 Tyr334(2), Arg380,
Asn382(2), Arg415

Tyr334, Arg336, Ser363, Arg380,
Asn382, Ser383, Pro384, Arg415, Ile461,

Arg483, Ser508, Tyr525, Gln530,
Ala556, Tyr572, Ser602

-

FGPEMEQ −7.0 Ser363, Arg380(2),
Asn382(2), Asn387, Asn414

Tyr334, Ser363, Arg380, Asn382,
Asn387, Asp389, Arg415, Gly433, Ile461,

Ser555, Ala556, Tyr572, Phe577
Arg380(2)

PSYLNTPLL −6.4 Arg380(2), Asn382, Arg415,
Arg483, Ser555, Tyr572

Tyr334, Ser363, Gly364, Arg380,
Asn382, Arg415, Arg483, Tyr525,

Gln530, Ser555, Ala556, Tyr572, Phe577
-

a Number in brackets indicates the number of hydrogen bonds or salt bridges formed with the same residue of Keap1. Keap1 residues that
were reported to bind to ETGE (the key motif of Nrf2 peptide) [39] are marked in boldface type. Residues in the Keap1 binding pocket that
were reported to contribute to stability of the Keap1:Nrf2 complex as evidenced by mutagenesis studies [39] are underlined.
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green dashed lines and red spoked arcs represent hydrogen bonds and hydrophobic interactions, respectively. Residues of
LYSPH are shown in purple bonds, whereas residues of Keap1 are shown in brown bonds and also represented by the red
spoked arcs.

LYSPH showed the strongest binding to MPO, whereas PSYLNTPLL the weakest
(Table 2), similar to our observations when the five peptides were docked to Keap1 (Table 1).
None of the peptides showed better binding affinity to MPO than did 7-benzyl-1H-1H-[1–
3]triazolo[4,5-b]pyridin-5-amine (7GD)(−7.1 kcal/mol) (data not shown), a co-crystalized
inhibitor of MPO [41]. However, all five peptides could form hydrophobic interactions
with one of the catalytic residues (Arg239) of MPO. Besides, all five peptides could interact
with the heme group (Hec606) through hydrophobic interactions (Table 2); the heme group
is a cofactor in the active site of MPO [42]. Based on the interactions with both catalytic
residue Arg239 and the heme group of MPO, all the five peptides are potential MPO
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inhibitors. Supporting this possibility is the finding that two experimentally-validated
anti-MPO peptides (TDY and FAPQY) could also bind to Arg239 and the heme group
of MPO [43]. Analysis of intermolecular interactions revealed that LYSPH could form
hydrophobic interactions with Phe99, Thr238, Arg239, Glu242, Phe366, Phe407, and Hec606
of MPO (Table 2), resembling to the binding pattern of 7GD [41]. Hence, LYSPH is the
most promising MPO inhibitor among the five peptides as it showed the best binding
affinity to MPO and could interact with MPO similarly as 7GD. A graphical representation
of LYSPH-MPO docked model and the intermolecular interactions between LYSPH and
MPO is depicted in Figure 4.

Table 2. Intermolecular interactions between seed-derived antioxidant peptides and MPO.

Peptide Binding Affinity
(kcal/mol)

Interaction with MPO

Hydrogen Bond Hydrophobic Interaction

LYSPH −7.1 - Phe99, Glu102, Phe146, Pro220, Thr238, Arg239, Glu242,
Phe366, Phe407, Leu415, Leu420, Hec606

LPHFNS −6.9 - Phe99, Glu102, Glu116, Phe147, Pro220, Thr238, Arg239,
Phe366, Phe407, Met411, Hec606

FGPEMEQ −6.8 Glu102
Phe99, Thr100, Glu102, Glu116, Pro145, Phe147, Leu216, Pro220,

Thr238, Arg239, Glu242, Phe366, Phe407, Met411, Leu415,
Arg424, Hec606

AEHGSLH −6.3 -
Phe99, Thr100, Glu102, Glu116, Pro145, Phe146, Phe147,

Thr238, Arg239, Glu242, Phe366, Phe407, Val410, Met411,
Leu415, Arg424, Hec606

PSYLNTPLL −3.0 Thr100
Phe99, Glu102, Glu116, Pro145, Phe147, Leu216, Pro220,

Thr238, Arg239, Phe366, Phe407, Val410, Met411, Arg412,
Leu415, Hec606

MPO residues that were observed to interact with 7GD (co-crystalized inhibitor) based on LigPlot+ analysis of the crystal (PDB ID: 6WYD)
are marked in boldface type. MPO residues that were reported to be involved in catalysis [44] are underlined.

Comparison of binding affinities found LYSPH (−6.2 kcal/mol) to have the most stable
binding to XO among the five peptides analyzed (Table 3). Nevertheless, all of the five
peptides had less negative binding affinities to XO than quercetin (−8.2 kcal/mol) (data not
shown), a co-crystalized inhibitor of XO [12]. This implies that none of the peptides could
bind more stably to XO when compared with quercetin. On the other hand, analysis of
intermolecular interactions showed that all five peptides could bind to at least nine of the
XO residues known to bind to quercetin, mainly through hydrophobic interactions. Each of
the peptides could also bind to at least one catalytic residue (Glu802 or Arg880) of XO [12]
through hydrophobic interactions. FGPEMEQ and PSYLNTPLL could also hydrogen bond
to Glu802 and Arg880, respectively. However, despite additional interactions with Glu802
and Arg880, FGPEMEQ-XO interaction was predicted to be slightly less favorable than
LYSPH-XO interaction based on comparison of their binding affinity values. Meanwhile,
PSYLNTPLL-XO interaction was likely non-favorable or non-spontaneous considering
the positive value predicted for its binding affinity (Table 3). Previous studies found that
experimentally-proven XO-inhibitory peptides, KGFP [45] and EEAK [46] could both bind
to the catalytic residue Glu802. Thus, the aforementioned binding patterns of the five seed
peptides to XO, particularly their binding to XO catalytic residues, suggest that the peptides
are potential XO inhibitors. LYSPH could be the most promising XO inhibitor among the
five peptides considering its strongest binding affinity and its binding to XO residues that
known XO inhibitors bind to (Table 3). A graphical representation of a LYSPH-XO docked
model and the intermolecular interactions between LYSPH and XO is shown in Figure 5.
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Table 3. Intermolecular interactions between seed-derived antioxidant peptides and XO.

Peptide Binding Affinity
(kcal/mol)

Interaction with XO

Hydrogen Bond a Hydrophobic Interaction Salt Bridge External Bond

LYSPH −6.2 Ser876

Leu648, Phe649, Glu802, Leu873,
His875, Ser876, Glu879, Phe914,

Phe1009, Thr1010, Val1011, Pro1012,
Phe1013, Leu1014, Ala1078, Ala1079

- -

FGPEMEQ −5.9 Glu802, Ser876(2),
Ala1079

Leu648, Phe649, Gln767, Phe798,
Gly799, Glu802, Thr803, Leu873,
His875, Ser876, Glu879, Arg880,
Ala910, Phe911, Arg912, Phe914,

Phe1009, Thr1010, Val1011, Pro1012,
Leu1014, Pro1076, Ala1078, Ala1079,

Ser1080, Glu1261

His875 -
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Table 3. Cont.

Peptide Binding Affinity
(kcal/mol)

Interaction with XO

Hydrogen Bond a Hydrophobic Interaction Salt Bridge External Bond

LPHFNS −4.7 His875, Ser876

Leu648, Phe649, Glu802, Leu873,
His875, Ser876, Glu879, Arg880,

Phe914, Phe1009, Thr1010, Val1011,
Pro1012, Phe1013, Leu1014, Ala1078,

Ala1079, Glu1261

- -

AEHGSLH −3.4 Glu879

Leu648, Phe649, Leu712, Glu802,
Leu873, His875, Ser876, Glu879,

Phe914, Phe1009, Thr1010, Val1011,
Pro1012, Phe1013, Leu1014, Pro1076,

Tyr1140, Phe1142

His875 -

PSYLNTPLL 3.0
Asn768, Asp872,

Ser876(2), Arg880,
Thr1010(2)

Leu648, Phe649, Leu712, Asn768,
Glu802, Thr803, Arg871, Asp872,
Leu873, Ser874, His875, Ser876,

Glu879, Arg880, Phe914, Ser1008,
Phe1009, Thr1010, Val1011, Pro1012,
Phe1013, Leu1014, Pro1076, Ala1079,

Tyr1140, Phe1142, Glu1261

- Ala1079

a Number in brackets indicates the number of hydrogen bonds formed with the same residue of XO. XO residues that were reported to
bind to quercetin (co-crystalized inhibitor in the crystal PDB ID 3NVY) [12] are marked in boldface type. XO residues that were reported to
be involved in catalysis [12] are underlined.
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Figure 5. (a) 3D diagram of LYSPH; (b) 3D diagram of LYSPH-XO docked model; (c) 2D LYSPH-XO
interaction diagram. In (a,b), LYSPH is displayed in a blue-stick style. In (b), XO is displayed as red
ribbon. In (c), green dashed line and red spoked arcs represent hydrogen bond and hydrophobic
interactions, respectively. Residues of LYSPH are shown in purple bonds, whereas residues of XO are
shown in brown bonds and also represented by the red spoked arcs.

In the molecular docking to p47phox, tomato seed-derived PSYLNTPLL had the best
docking score, whereas the cherry seed-derived FGPEMEQ had the worst (Table 4). All pep-
tides had docking score less negative than that of proline-rich peptide derived from p22phox
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(−309.862) (data not shown). Thus, none of the five peptides could bind more stably to
p47phox than the p22phox-derived peptide. Nevertheless, the potential of the five pep-
tides as inhibitors of p47phox-p22phox interaction could not be completely ruled out solely
based on this. Supporting this proposition is the observation that four peptides (RRSSIR-
NAHSIHQRSRKRLS, ISNSESGPRGVHFIFNKENF, RSRKRLSQDAYRRNSVRFLQQR, and
AGGPPGGPQVNPIPVTDEVV) that were experimentally demonstrated to inhibit p47phox-
p22phox interaction [47,48] were also predicted to bind less strongly to p47phox than was
p22phox (Table S4). In short, a peptide predicted to bind less strongly to p47phox than
p22phox may still inhibit p47phox-p22phox interaction.

Table 4. Intermolecular interactions between seed-derived antioxidant peptides and p47phox.

Peptide Docking Score
Interaction with p47phox

Hydrogen Bond Hydrophobic Interaction

PSYLNTPLL −216.493 Trp193, Trp263
Thr170, Ser171, Ser173, Glu174, Gly192, Trp193, Trp204, Pro206,

Ser208, Phe209, Lys235, Tyr237, Asp261, Gly262, Trp263,
Met278, Tyr279

LPHFNS −195.377 Tyr279 Tyr167, Thr170, Ser191, Trp193, Pro206, Tyr237, Asp243,
Glu244, Asp261, Gly262, Trp263, Tyr274, Pro276, Tyr279

LYSPH −185.715 Thr170, Ser208 Tyr167, Thr170, Ser171, Ser173, Glu174, Trp193, Trp204, Pro206,
Ser208, Phe209, Trp263, Met278

AEHGSLH −181.729 Trp263 Tyr167, Thr170, Ser171, Glu174, Trp193, Glu241, Asp243,
Trp263, Tyr274, Pro276, Met278

FGPEMEQ −175.680 Thr170, Trp193 Thr170, Ser173, Glu174, Gly192, Trp193, Trp204, Pro206,
Phe209, Asp261, Met278, Tyr279

p47phox residues that were reported to bind to the ligand p22phox-derived proline-rich peptide in the crystal (PDB ID: 1WLP) [14] are marked
in boldface type. Key residues that were reported for high-affinity binding between p47phox and p22phox as evidenced by mutagenesis
studies [14] are underlined.

As shown in Table 4, each of the peptides could bind to at least six of the 17 p47phox

residues known to bind to the p22phox-derived peptide. However, only PSYLNTPLL,
LYSPH, and FGPEMEQ could interact with Phe209, a key residue of p47phox which accounts
for high-affinity binding between p47phox and p22phox (Table 4). Furthermore, PSYLNTPLL
could bind to p47phox in a similar manner as the co-crystalized p22phox-derived peptide,
by binding to Trp193, Trp204, Pro206, Phe209, Tyr237, Trp263, Met278, and Tyr279. Hence,
PSYLNTPLL is the most promising among the five peptides to target p47phox-p22phox

interaction considering its docking score and pattern of binding to p47phox. A graphical
representation of PSYLNTPLL-p47phox docked model and the intermolecular interactions
between PSYLNTPLL and p47phox is shown in Figure 6.

Based on binding affinities and similarity of binding patterns to those of co-crystalized
inhibitors/ligands and reported peptide-based inhibitors, our analyses found LYSPH and
PSYLNTPLL to have the greatest potential as modulators of the four targets of cancer
treatments that we investigated. Specifically, LYSPH may be a multi-target peptide which
could bind to, thus inhibiting the activity of MPO and XO, as well as interrupting Keap1-
Nrf2 complex formation. On the other hand, PSYLNTPLL is the most promising peptide
that could bind to p47phox, thus precluding p47phox-p22phox interaction and the subsequent
activation of NADPH oxidase. Inhibition of the four targets could potentially dampen
ROS overproduction which is associated with the initiation and/or progression of certain
cancers [11,49–52]. To our knowledge, the Keap1-, MPO-, XO-, and p47phox-binding activity
of the two peptides have not been previously reported. Considering the in silico evidence
presented here, future investigations of the effectiveness of LYSPH and PSYLNTPLL in
modulating the four targets, thus repressing ROS production and even cancer initiation
and/or progression are warranted.
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The five anticancer peptides predicted from our virtual library were also screened
for cell-penetrating potential, blood-brain barrier penetrating potential, plasma half-life,
and tolerance to in silico GI digestion, which can shed light on their potential as anticancer
agents. Among the five peptides, LYSPH and PSYLNTPLL had the top two best plasma half-
life (Table 5). The two peptides predictably had cell- and blood-brain barrier penetrating
potential, although both were susceptible to GI digestion. The predicted cell-penetrating
potential of the two peptides supports their potential in entering body cells and binding to
the four intracellular targets: MPO, XO, Keap1, and p47phox, modulating the functions of
the four proteins. The predicted ability of LYSPH and PSYLNTPLL to cross the blood-brain
barrier may also facilitate their development as brain-tumor targeting peptides. Plasma
half-life and tolerance to in silico GI digestion are related to the bioavailability of a peptide.
Our results suggests that the two peptides were similar in their level of susceptibility to
plasma peptidases, thus not differing much in their stability during systemic circulation.
When compared with other natural anticancer peptides, such as KENPVLSLVNGMF
identified from the giant barrel sponge Xestospongia testudinaria (half-life of 3.2 h in human
serum in vitro) [53], the half-life of LYSPH and PSYLNTPLL was relatively short (about
14 min). Meanwhile, LYSPH and PSYLNTPLL were similarly susceptible to degradation
by GI proteases. So, poor stability in blood and susceptibility to GI digestion is a key
potential weakness of the two peptides, despite their ability to target MPO, XO, Keap1, and
p47phox, as well as predictably having cell- and blood-brain barrier penetrating potential.
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The stability issue may limit the potential effectiveness of LYSPH and PSYLNTPLL as
anticancer agents in the body, whether introduced into the body through oral or non-
oral routes. To enhance the in vivo bioavailability of LYSPH and PSYLNTPLL, structural
modifications that could improve their resistance to plasma and GI peptidases, such
as cyclization of peptides [54] could be considered in future research. Moreover, the
application of innovative technology such as mucoadhesive nanoparticles [55] may also
be explored for oral delivery of the peptides with reduced risk of GI degradation and
enhanced bioavailability.

Table 5. The predictions of the cell-penetrating potential, blood-brain barrier penetrating potential, plasma half-life, and
tolerance to in silico GI digestion of the five selected seed-derived antioxidant peptides.

Peptide Cell-Penetrating
Potential

Blood-Brain Barrier
Penetrating Potential

Plasma Half-Life
(Seconds)

Tolerance to In Silico
GI Digestion

AEHGSLH No No 828.91 No
FGPEMEQ No Yes 796.21 No
LPHFNS Yes Yes 823.51 No
LYSPH Yes Yes 832.41 No

PSYLNTPLL Yes Yes 833.41 No

Based on computational alanine scanning, Tyr played the most significant role in the
binding and stabilizing of peptide-protein complexes for Keap1, MPO, XO, and p47phox.
This can be observed from the drastically elevated ∆∆G values after the substitution of Tyr
to Ala in both LYSPH and PSYLNTPLL (Table 6). This suggests that the hydrophobic inter-
actions between Tyr and the residues of Keap1 (Tyr572), of XO (Glu879, Thr1010, Phe1013),
of MPO (Phe99, Glu102, Phe146, Leu415, Leu420) and of p47phox (Gly192, Asp261, Gly262,
Met278) (Figures 3–6) are critical to the formation of stable peptide-protein complexes.
In line with our findings, Wu and co-workers [56] found that the only Tyr-containing
peptide in their study had the highest XO inhibitory activity; Tyr in the peptide also inter-
acted hydrophobically with Phe1013 of XO. On the other hand, Ala substitution of His in
LYSPH also led to the second largest increase in ∆∆G by 14.2670 kJ/mol (Table 6) when
the LYSPH-XO complex was analyzed. By contrast, Ala substitution of His in LYSPH led
to only a minor increase in ∆∆G of the LYSPH-Keap1 and LYSPH-MPO complexes. A
possible explanation is that the His residue of LYSPH could bind to more key residues in
XO (Glu802, Phe914, Phe1009, and Leu1014) (Figure 5c). By contrast, the His residue of
LYSPH interacted with only one key residue (Arg380) in Keap1 (Figure 3c) and with none
in MPO (Figure 4c). Our analysis suggests that future research that considers re-designing
LYSPH and PSYLNTPLL for enhanced interactions with Keap1, MPO, and p47phox should
avoid replacing or removing the Tyr residue. For stable binding to XO, the Tyr and His
residues of LYSPH both should not be replaced or removed.

Molecular dynamics (MD) is a simulation technique which applied to derive the
statements about the structural, dynamical, and thermodynamic properties of a molecular
system [57]. The approach is able to observe minor conformational changes corresponds to
the residue side chains which affect the binding site of a protein and ligand complemen-
tarity [57]. In the current study MD was applied to observe the dynamic level stability of
each peptide ligand against the targeted proteins, as the peptides can functions either as
the receptor inhibitors [58,59] or as the mediator such as the peptide mediated interactions
in cell signaling [60].
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Table 6. Changes in the binding free energies (∆∆G) of the LYSPH- and PSYLNTPLL-protein
complexes as revealed by the computational alanine scanning of the peptide residues.

Peptide Residue
∆∆G (kJ/mol)

Keap1 MPO XO p47phox

LYSPH

Leu 8.4596 7.7764 6.3704 -
Tyr 14.3232 23.0458 16.8951 -
Ser 2.5540 −0.1909 −0.1396 -
Pro 5.0370 5.2764 6.3965 -
His 0.6399 3.1014 14.2670 -

PSYLNTPLL

Pro - - - 0.0856
Ser - - - 0.5437
Tyr - - - 27.1615
Leu - - - −0.4367
Asn - - - 0.7800
Thr - - - 1.1903
Pro - - - 2.9660
Leu - - - 2.7811
Leu - - - 0.4836

The MD simulations results in Figure 7a–d determines the protein-ligand complexes
stability during the 50 ns duration. In Figure 7a, the all-atom averaged root mean square
deviation (RMSD) value for protein target Keap1, XO and MPO (chain A and B) in the com-
plex were shown to be low at 2.14 ± 0.11 Å, 3.15 ± 0.33 Å, 2.59 ± 0.18 Å and 3.17 ± 0.36Å,
respectively. In comparison, Figure 7b shows the all-atom averaged RMSD value of lig-
and LYSPH docked on each Keap1, XO and MPO were 1.73 ± 0.26 Å, 3.07 ± 0.33 Å and
3.34 ± 0.47 Å, respectively. This shows that RMSD values of both the docked proteins and
the ligands are below the allowed limit [61], confirming that the protein-ligand complexes
are stable over time. The plotted RMSD graphs also shows that receptor p47phox took
longer time to reach complex stability compared to the other docked proteins with the
averaged RMSD value of 5.14 ± 0.13 Å, while all-atom averaged RMSD for its ligand,
PSYLNTPLL was 4.36 ± 0.45 Å. The high p47phox RMSD value was contributed by the
flexibility of the N- and also C-terminal residues of the protein which reached up to 6.00 Å
due to the loop structure of both terminals, visible by the root mean square fluctuations
RMSF plot (Figure S1). The ligand interacted residues, however, were not affected and
gave relatively low fluctuations during the 50 ns duration. In addition, the RMSD of
PSYLNTPLL was also similarly low with LYSPH docked on other protein target (Figure 7b)
during the 50 ns duration.

The dynamic intermolecular hydrogen bonds formed between the docked peptide
and receptor protein were summarized in Figure 7c. The figure shows that highest number
of intermolecular hydrogen bonds formed was in between LYSPH-XO (ave: 7), followed
by PSYLNTPLL-p47phox (ave: 5) and LYSPH-Keap1 (ave: 3). MPO protein was consists of
chain A and chain B domain, where chain A formed only one intermolecular hydrogen
bond with the ligand in average while chain B has the average of three intermolecular
hydrogen bonds formed within the 50 ns duration. The polar group of the XO hot-spot
region, and LYSPH peptide both contributed to the higher number of hydrogen bonds
formed making the complex more stable [62]. Higher surface of interactions between
PSYLNTPLL-p47phox due to the longer sequence of the peptide had stabilized its docking
on the active site of p47phox [63]. The intermolecular hydrogen bonds formed in the
complex had also correlated with the distance formed between each ligand and protein, as
summarized in Figure 7d. The result shows that all complexes were tightly packed with
the average protein-ligand distance of 1.43 Å–1.82 Å, except for LYSPH and the chain A of
MPO which varied from 1.43 Å up to 5.31 Å. This was contributed by the binding site of
the ligand which located closer to the chain B of MPO. Overall, the duration 50 ns were
shown to be sufficient to evaluate the stability of protein-ligand complex formation where
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most of the ligand tends to reach conformational stability after 3 ns. The RMSF and radius
of gyration (Rg) plots of each complex are available in Figures S1 and S2.
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tein, as summarized in Figure 7d. The result shows that all complexes were tightly packed 
with the average protein-ligand distance of 1.43 Å–1.82 Å, except for LYSPH and the chain 
A of MPO which varied from 1.43 Å up to 5.31 Å. This was contributed by the binding 
site of the ligand which located closer to the chain B of MPO. Overall, the duration 50 ns 
were shown to be sufficient to evaluate the stability of protein-ligand complex formation 
where most of the ligand tends to reach conformational stability after 3 ns. The RMSF and 
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3. Materials and Methods
3.1. Compilation of a Virtual Library of Seed-Derived Antioxidant Peptides

Seed-derived antioxidant peptides were compiled from the publications in the Scopus
database by using the search words listed in Table S2 (Accessed: 5–7 October 2021). A total
of 63 publications were carefully examined to find antioxidant peptides identified from
different seed sources. In addition, peptides were compiled from the PlantPepDB database
(http://14.139.61.8/PlantPepDB/index.php) [21] by using “Simple Search”, searching
“Antioxidant” and selecting “Peptide Activity” as search field (Accessed: 5–6 October 2021).
Following the exclusion of redundant sequences, the resulting collection of seed-derived
antioxidant peptide sequences was used in subsequent screening and molecular modelling
analyses, as depicted in Figure 8.

http://14.139.61.8/PlantPepDB/index.php
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3.2. Virtual Screening for Anticancer Potential, Toxicity, Allergenicity and Hemolyticity

Anticancer potential was predicted by using AntiCP 2.0 (https://webs.iiitd.edu.in/
raghava/anticp2/index.html) [22] with the default SVM threshold of 0.45. Seed-derived
antioxidant peptide sequences that were predicted as anticancer peptides by both Model 1
and Model 2 in the AntiCP 2.0 tool were noted. Toxicity was predicted by using ToxinPred
(https://webs.iiitd.edu.in/raghava/toxinpred/index.html) [33] with the SVM threshold
of 0.0, by using two methods: (i) SVM (Swiss-Prot) + Motif, and (ii) SVM (TrEMBL) +
Motif. Only peptide sequences that were predicted as non-toxic by both of the aforemen-
tioned methods are regarded as non-toxic. Allergenicity was predicted by using AllerTOP
v. 2.0 (https://www.ddg-pharmfac.net/AllerTOP/index.html) [32]. Hemolyticity was
predicted by using HemoPI (https://webs.iiitd.edu.in/raghava/hemopi/index.php) [31]
with the SVM + Motif (HemoPI-1) method. The aforementioned tools were accessed on
8–9 October 2021. Only seed-derived antioxidant peptides of 4–50 residues were screened
as the peptides outside this range cannot be analyzed by AntiCP 2.0. The 2D structures
of selected anticancer peptides were drawn by using the ACD/ChemSketch freeware
(ACD/ChemSketch, version 2019.2.1, Advanced Chemistry Development, Inc., Toronto,
ON, Canada, www.acdlabs.com, 2019). The molecular masses of peptides were calculated
by using PepDraw (https://pepdraw.com/) (Accessed: 9 October 2021).

https://webs.iiitd.edu.in/raghava/anticp2/index.html
https://webs.iiitd.edu.in/raghava/anticp2/index.html
https://webs.iiitd.edu.in/raghava/toxinpred/index.html
https://www.ddg-pharmfac.net/AllerTOP/index.html
https://webs.iiitd.edu.in/raghava/hemopi/index.php
www.acdlabs.com
https://pepdraw.com/
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3.3. Molecular Docking Analysis

The 3D structures of peptides predicted to be anticancer, non-toxic, non-allergenic,
and non-hemolytic were constructed by using PEP-FOLD 3 (https://bioserv.rpbs.univ-
paris-diderot.fr/services/PEP-FOLD3/) [64–66] (Accessed: 9 October 2021). Two hundred
simulations were run and the resulting models were sorted by the sOPEP method. The
best output model of each peptide was downloaded and used in molecular docking.

The crystal structures of human Keap1 complexed with 16-mer peptide of Nrf2 (PDB
ID: 2FLU) [39], human MPO complexed with 7GD (PDB ID: 6WYD) [41], bovine XO
complexed with quercetin (PDB ID: 3NVY) [12], and p47phox complexed with p22phox-
derived proline-rich peptide (PDB ID: 1WLP) [14] were downloaded from the RCSB Protein
Data Bank (https://www.rcsb.org/) [67] (Accessed: 9 October 2021). The separation of
proteins and ligands from the crystals were performed by using BIOVIA Discovery Studio
Visualizer (BIOVIA, Dassault Systèmes, BIOVIA Discovery Studio Visualizer, Version
20.1.0.192, San Diego: Dassault Systèmes, CA, USA, 2020).

For Keap1, MPO, and XO, the proteins were prepared as receptors in the PDBQT
format after deleting water, adding polar hydrogen, and adding Kollman charges by using
the AutoDock Tools 1.5.6 [25]. The prepared receptors were used for molecular docking on
Webina 1.0.3 (https://durrantlab.pitt.edu/webina/) [24]. The co-crystalized ligands and
the selected seed-derived peptides to be docked to the proteins were prepared as ligands
and saved in the PDBQT format by using AutoDock Tools 1.5.6. Redocking of the co-
crystalized ligands to Keap1, MPO and XO was performed using Webina 1.0.3 and RMSD
was predicted by using LigRMSD v1.0 (https://ligrmsd.appsbio.utalca.cl/) [68]. For Keap1,
redocking was performed by using tetrapeptide ETGE, the key motif of the 16-mer peptide
of Nrf2, as recommended previously [40]. The coordinates of box center and box size
used in molecular docking on Webina 1.0.3 were tabulated in Table S3. Molecular docking
between p47phox and the peptide ligands was performed by using the HPEPDOCK Server
(http://huanglab.phys.hust.edu.cn/hpepdock/) [69–73]. Redocking of the co-crystalized
p22phox-derived proline-rich peptide (GPLGSKQPPSNPPPRPPAEARKKPS) to p47phox was
also performed on HPEPDOCK and RMSD was predicted by using LigRMSD v1.0. Webina
1.0.3 and HPEPDOCK were accessed between 9 and 12 October 2021. Intermolecular
interactions between proteins and peptides in selected docked models were analyzed and
2D interaction diagrams were generated by using LigPlot+ v.2.2.4 [74,75].

3.4. Prediction of Cell-Penetrating Potential, Blood-Brain Barrier Penetrating Potential, Plasma
Half-Life, and Tolerance to In Silico GI Digestion

Cell-penetrating potential was predicted by using MLCPP (http://www.thegleelab.
org/MLCPP/MLCPP.html) [23]. Blood-brain barrier penetrating potential was predicted by
using B3Pred (https://webs.iiitd.edu.in/raghava/b3pred/index.html) [76] with Random-
Forest (RF)-based prediction model and RF probability threshold of 0.1. Plasma half-life
was predicted by using PlifePred (https://webs.iiitd.edu.in/raghava/plifepred/index.
php) [77]. Tolerance to in silico GI digestion was predicted using the “enzyme(s) action”
tool on BIOPEP-UWM (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) [78]
as previously reported [29]. The aforementioned tools were accessed on 18 October 2021.

3.5. Computational Alanine Scanning Mutagenesis

To assess the energetic contribution of individual residues in the selected seed-derived
antioxidant peptides in conferring stability of binding to Keap1, MPO, XO, and p47phox,
computational alanine scanning was performed by using BUDE Alanine Scan (https:
//pragmaticproteindesign.bio.ed.ac.uk/balas/) [79,80] (Accessed: 18–19 October 2021) as
previously reported [27].

3.6. Molecular Dynamics Simulation

For a comprehensive analysis of the biomolecular dynamics, molecular dynamics (MD)
simulation has evolved as the most powerful technique [26]. The detailed MD simulations

https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
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http://huanglab.phys.hust.edu.cn/hpepdock/
http://www.thegleelab.org/MLCPP/MLCPP.html
http://www.thegleelab.org/MLCPP/MLCPP.html
https://webs.iiitd.edu.in/raghava/b3pred/index.html
https://webs.iiitd.edu.in/raghava/plifepred/index.php
https://webs.iiitd.edu.in/raghava/plifepred/index.php
http://www.uwm.edu.pl/biochemia/index.php/en/biopep
https://pragmaticproteindesign.bio.ed.ac.uk/balas/
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of the complexes were conducted in GROMACS 2020 using the GROMOS96 54a7 force
field [81]. The 54a7 force field was shown to improve the stability of α-helical structures in
proteins and widely used in peptide simulations [82]. Molecular dynamics simulation was
performed on each peptide ligand and protein complex of LYSPH-Keap1, LYSPH-MPO,
LYSPH-XO, and PSYLNTPLL-p47phox for 50 ns duration. In the MD, each complex was
solvated in a cubic box with the distance of 1.2 nm between the complex and each side of the
solvated box [83]. Sodium and chloride ions were added to neutralize the total charge of the
system. The complex then was energy-minimized using the steepest descent algorithm [84].
The simulation condition was set at the room temperature (300 K) and the atmospheric
pressure (1 bar) to closely mimic the general experiment conditions. The NVT thermal
equilibration was carried out with a constrained structure and a velocity rescale thermostat
specific to GROMACS, followed by NPT pressure equilibration was applied with the
same velocity-rescale temperature coupling in addition to the Parrinello−Rahman pressure
coupling [85]. The fully temperature and pressure equilibrated system was then used as
the initial configuration for the MD production dynamic analysis. All simulations were
conducted using a 2 fs time step [86]. The results were then analyzed using GROMACS
functions such as RMSD and RMSF, while the formation of hydrogen bonds between each
peptide and target proteins were analyzed using GROMACS “gmx_hbond” functions.
Additionally, the distance between each protein and its ligand peptide was measured using
the “gmx_pairdist” function.

4. Conclusions

Our computational study narrowed down the 677 peptides in the virtual library to
five candidates predicted to have anticancer potential, in addition to non-toxicity, non-
allergenicity and non-hemolyticity. Structure-based virtual screening found that LYSPH
was the most promising peptide in targeting MPO, XO, and Keap1. On the other hand,
PSYLNTPLL was the candidate that interacted most stably with p47phox. LYSPH and
PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential.
Taken together, LYSPH and PSYLNTPLL are two potential candidates of anticancer peptides
that deserve more in-depth explorations, particularly wet-lab experimental validations,
in future.

Supplementary Materials: Table S1: Seed-derived antioxidant peptides compiled from Scopus and
PlantPepDB databases; Table S2: Search words used in Scopus to compile seed-derived antioxidant
peptides; Table S3: Coordinates of box center and box size for different targets in molecular docking,
and RMSD values; Table S4: Docking scores for peptides that were experimentally demonstrated to
inhibit p47phox-p22phox interaction and NADPH oxidase, in comparison with p22phox; Figure S1:
RMSF plots for (a) PSYLNTPLL-p47phox, (b) LYSPH-Keap1, (c) LYSPH-XO, and (d) LYSPH-MPO;
Figure S2: Gyration (Rg) plots of each complex.
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