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Abstract

We use the qualitative insight of a planar neuronal phase portrait to detect an excitability switch in arbitrary conductance-
based models from a simple mathematical condition. The condition expresses a balance between ion channels that provide
a negative feedback at resting potential (restorative channels) and those that provide a positive feedback at resting
potential (regenerative channels). Geometrically, the condition imposes a transcritical bifurcation that rules the switch of
excitability through the variation of a single physiological parameter. Our analysis of six different published conductance
based models always finds the transcritical bifurcation and the associated switch in excitability, which suggests that the
mathematical predictions have a physiological relevance and that a same regulatory mechanism is potentially involved in
the excitability and signaling of many neurons.
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Introduction

Detailed computational conductance-based models have long

demonstrated their ability to faithfully reproduce the variety of

electrophysiological signatures that can be recorded from a single

neuron in varying physiological or pharmacological conditions.

But the predictive value of a computational model is limited unless

its analysis sheds light on the core mechanisms at play behind a

computer simulation. Because conductance-based models are

nonlinear dynamical models, their analysis often requires a drastic

reduction of dimension. The reduced model is amenable to the

geometric methods of dynamical systems theory, but the

mathematical insight is often gained at the expense of physiolog-

ical interpretability; hence the need for methodological tools that

can relate mathematical predictions of low-dimensional models to

physiological predictions in detailed conductance based models.

In recent work [1], we used phase plane analysis and dynamical

bifurcation theory to characterize in reduced-order neurodynamics

models a switch of excitability that is consistent with many

physiological observations. More precisely, a transcritical bifurca-

tion governed by a single parameter was shown to organize a

switch from restorative excitability, extensively studied in most

models inspired from the Hodgkin-Huxley model, to regenerative

excitability whose distinct electrophysiological signature include

spike latency, plateau oscillations, and afterdepolarizeation poten-

tials.

The main contribution of the present paper is to show that this

transcritical bifurcation, and the associated excitability switch,

exist in a number of high-dimensional conductance-based models and

that the resulting mathematical predictions have physiological

relevance. Although purely mathematical in nature, the detection

of the transcritical bifurcation relies on an ansatz that leads to a

simple physiological interpretation: the switch of excitability is

determined by a balance between restorative (those providing a

negative feedback) and regenerative (those providing a positive

feedback) ion channels at the resting potential. Because this simple

balance equation can take many different physiological forms, it is

potentially shared by very different neurons.

We use the balance equation to provide an algorithm to trace

the transcritical bifurcation in arbitrary conductance-based

models. We apply the algorithm to detailed conductance-based

models of six neurons known to exhibit drastic changes in their

electrophysiological signatures depending on environmental con-

ditions: the squid giant axon [2], the dopaminergic neuron [3], the

thalamic relay neuron [4], the thalamic reticular neuron [5], the

aplysia R15 model [6], and the cerebellar granule cell [7]. In each

case, the algorithm identifies a transcritical bifurcation that occurs

close to the nominal model parameters and its predictions are

consistent with experimental observations.

After defining a novel classification of ion channels based on

their restorative or regenerative nature, we briefly review the

planar model presented in [1] and how its transcritical bifurcation

qualitatively captures the switch between restorative and regener-

ative excitability. As a generalization of this low-dimensional case,

we mathematically construct the same bifurcation in generic

conductance based models and derive the balance condition

determining the regenerative or restorative nature of the model.

This construction and its electrophysiological predictions are firstly
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illustrated on the squid giant axon. An algorithm for generic

conductance-based models is subsequently derived and different

models analysed.

Results

Slow restorative and slow regenerative ion channels
Conductance-based models of neurons describe the dynamic

interaction between the membrane potential V and - possibly

many - gating variables that control the ionic flow through the

membrane. The gating of ion channels occurs on many different

timescales. However, gating timescales can be grouped in three

families, according to their influence on neuronal excitablity [8]:

(i) Fast gating variables: These variables have a time-

constant in the millisecond range. They generate the rapid

regenerative upstroke of an action potential. Prominent

representatives of this family are the activation gating

variables of fast voltage-gated sodium channels (NaV1:1 to

NaV1:9).

(ii) Slow gating variables: These variables have a time

constant 5 to 10 times larger than fast gating variables. They

influence the spike initiation, downstroke, and the afterspike

period. They are key players of neuronal excitability.

Prominent representatives of this family are the activation

gating variables of delayed rectifier potassium channels

(KV1:1 to KV1:3, KV1:5 to KV1:8, KV2:1, KV2:2, KV3:1,

KV3:2, KV7:1 to KV7:5, KV10:1) and the activation gating

variables of all calcium channels (CaV1:x, CaV2:x, CaV3:x).

(iii) Ultra-Slow (adaptation) variables: These variables

gate too slowly to be strongly activated by single action

potentials. They modulate neuronal excitability only over

periods of many action potentials. Prominent representative

of this family are the inactivation gating variables of

transient calcium channels (CaV2:x, CaV3:x). Ultra-slow

variables might also include non gating variables. For

instance, the intracellular calcium concentration ½Ca2z�in,

which modulates the conductance of calcium-regulated

channels.

In view of their importance for neuronal excitability, we focus

only on slow gating variables to classify ion channels: when the

slow channel provides a negative feedback on membrane potential

variations, we term the associated channel a slow restorative ion

channel. When the slow variable instead enhances a potential

variation by positive feedback, the associated ion channel is

termed slow regenerative (a characterization in terms of partial

derivatives is postponed to the next sections). Ion channels that do

not possess a slow gating variable are neither restorative nor

regenerative and are called neutral. Neutral ion channels solely

regulate the ‘‘quantity’’ of excitability without affecting its

‘‘quality’’.

Table 1 shows a classification of many known ion channels

according to this criterion. Not surprisingly, potassium channels

are the main representatives of slow restorative ion channels. By

increasing the total outward current, their activation induces a

negative feedback on membrane potentials variations that is

responsible for neuron repolarization. On the other hand,

physiologically described calcium channels are all slow regener-

ative. Their activation induces an increase of the total post-spike

inward current, in contrast to potassium channels. This is the

source, for instance, of afterdepolarization potentials (ADP).

Interestingly, sodium channels can be either restorative, regener-

ative, or neutral according to their fast transient, resurgent, or

persistent behavior, respectively.

Table 1. Classification of ion channels according to their
gating kinetics.

Ion Channel Gating Kinetics Classification

Sodium Channels

Transient FA, SI - Negative
feedback via SI

Slow restorative

Persistent FA - No slow
gating variable

Neutral

Resurgent SA, USI - Positive
feedback via SA

Slow regenerative

Calcium Channels

L-type SA - Positive
feedback via SA

Slow regenerative

T-type SA, USI - Positive
feedback via SA

Slow regenerative

N, P/Q, R-type SA, USI - Positive
feedback via SA

Slow regenerative

Potassium Channels

Delayed Rectifiers SA - Negative
feedback via SA

Slow restorative

KCNQ USA - No slow
gating variable

Neutral

eag/erg USA - No slow
gating variable

Neutral

A-type FA, SI - Positive
feedback via SI

Slow regenerative

BK SA - Negative
feedback via SA

Slow restorative

HCN SA - Negative
feedback via SA

Slow restorative

Activation and inactivation variables are distributed in three groups: fast, slow,
and ultra-slow (adaptation). Slow variables are defined as restorative (resp.
regenerative) if they induce a negative (resp. positive) feedback on membrane
potential variations. An ion channel that posses a slow restorative variable is
called ‘‘slow restorative channel’’, and similarly for slow regenerative channels.
Channels that do not posses a slow variable are called ‘‘neutral channels’’. This
classification might change for a given channel for some channel subtypes.
FA: fast activation, FI: fast inactivation, SA: slow activation, SI: slow inactivation,
USA: utraslow activation, USI: ultraslow inactivation.
doi:10.1371/journal.pcbi.1003040.t001

Author Summary

Understanding the changing electrophysiological signa-
tures of neurons in different physiological and pharmaco-
logical conditions is a central focus of experimental
electrophysiology because a key component of cell
signaling in the nervous system. Computational modeling
may assist experimentalists in this quest by identifying
core mechanisms and suggesting pharmacological targets
from a mathematical analysis of the model. But a
successful interplay between experiments and mathemat-
ical predictions requires new analysis tools adapted to the
complexity of high-dimensional computational models
nowadays available. We use bifurcation theory to propose
a mathematical condition that can detect an important
switch of neuronal excitability in arbitrary conductance-
based neuronal models and we illustrate its physiological
relevance in six published state-of-the art models of
different neurons.

A Balance Equation for Neuronal Excitability
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It is important to observe that the restorative (resp. regenerative)

nature of channels is not solely linked to the outward (resp. inward)

nature of the current. For instance, transient sodium channels

(although responsible for the regenerative spike upstroke) are slow

restorative, because their slow variable inactivates an inward

current, inducing a negative-feedback on membrane potential

variations. Similarly, potassium channels can be slow regenerative

when their slow inactivation massively decreases the outward

current, like in the case of A-type potassium channels.

Although elementary, the classification above seems novel. It is

motivated by the central message of this paper, that the balance

between regenerative and restorative ion channels in slow

timescale determines its neuronal excitability type. In the

remainder of the paper, we simply write restorative (resp.

regenerative) for slow restorative (resp. slow regenerative) chan-

nels.

Restorative and regenerative excitability in planar models
Planar models - that only consist of two state variables - have

been instrumental to study excitability since the early days of

neurodynamics [9,10]. Empirical planar reductions of conduc-

tance based models only retain the (fast) voltage variable V and

one slow gating variable n. Fast gating variables are set to steady-

state (i.e. their fast variation is approximated as instantaneous),

adaptation variables are treated as slowly varying parameters, and

the sole gating variable n aggregates all slow variables, expressing

each of them as a (curve-fitted) static function of n.

Motivated by the phase portrait of such an empirical reduction

of the Hodgkin-Huxley model augmented with a calcium channel

[11], our recent study [1] explores the neuronal excitability of the

planar model

_VV~V{
V3

3
{n2zIapp ð1aÞ

_nn~e n? V{V0ð Þzn0{nð Þ ð1bÞ

whose phase portraits are reproduced in Fig. 1 for two distinct

values of the parameter n0 (an indirect representation of the

calcium conductance in the high-dimensional model). The

parameter ew0 characterizes the time-scale separation between

V and n. The function n?(:) has the standard sigmoid shape of

conductance-based models and V0 is the half-activation potential.

The typical step responses of (1) are also reproduced in Fig. 1.

The spike generation mechanism in the phase portrait of Fig. 1

left is reminiscent of the of FitzHugh-Nagumo model and of the

physiologically grounded planar reduction of Hodgkin-Huxley

model by Rinzel [10]. It is associated to a reversible and sudden

switch from resting to spiking and has been studied extensively, with

finer distinctions depending on the mathematical nature of the

underlying bifurcation [12]. For further reading, see [13], [14,

Section 7.1.3], and references therein.

The phase portrait in Fig. 1 right is in sharp contrast in that the

electrophysiological response to a current input exhibits spike

latency, plateau oscillations, and after depolarization potential

(ADP). This specific signature, experimentally observed in many

families of neurons, is fundamentally associated to the bistability

illustrated in the phase portrait: namely, the robust coexistence of

two stable attractors (a hyperpolarized resting potential and a limit

cycle of periodic action potentials) and a saddle-separatrix that

sharply separates their basins of attraction. The time evolution

shown in the top figure is a consequence of this phase portrait and

cannot be observed in FitzHugh-Nagumo like phase portraits. The

distinction between the two phase portraits, the associated

excitability types, and their relation with Hodgkin’s excitability

classification [15] are further discussed in [1] and later in the paper.

A simple mathematical distinction between the two phase

portraits shown in Fig. 1 is drawn from the Jacobian linearization

of the model at the stable resting point ( �VV ,�nn):

J~
L _VV
LV

L _VV
Ln

L _nn
LV

L _nn
Ln

 !�����
�VV ,�nnð Þ

~

1{ �VV2 {2�nn

e
Ln?

LV
�VV{V0ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

w0

{e

0
BB@

1
CCA:

The product of the partial derivatives
L _VV

Ln

L _nn

LV
~

{2�nne
Ln?

LV
( �VV{V0) is negative on the left phase portrait (�nnw0),

capturing the restorative nature of the gating variable, whereas it is

positive on the right phase portrait (�nnv0), capturing the

regenerative nature of the gating variable. This difference is

schematized in the block diagrams of Fig. 2. Accordingly,

excitability in planar models is called restorative (resp. regenera-

tive) when the gating variable provides negative (resp. positive)

feedback close to the resting point:

Planar restorative excitability. The model is said to be

restorative at steady state if:

L _VV

Ln

Ln?

LV

����
SS

v0

Planar regenerative excitability. The model is said to be

regenerative at steady state if:

L _VV

Ln

Ln?

LV

����
SS

w0

The planar model (1) can smoothly switch from restorative to

regenerative excitability, with a transition occurring for �nn~0, or,

in algebraic terms,

L _VV

Ln

Ln?

LV
~0 ð2Þ

A convenient way to algorithmically track this excitability switch

is to use bifurcation analysis and to impose that the critical

condition (2) coincides with a bifurcation of the model, which

imposes the additional algebraic condition

det J~{e
L _VV

LV
z

L _VV

Ln

Ln?

LV

� �
~0:

ð3Þ

Simultaneously imposing (2) and (3) implies

L _VV

LV
~0, ð4Þ

A Balance Equation for Neuronal Excitability

PLOS Computational Biology | www.ploscompbiol.org 3 May 2013 | Volume 9 | Issue 5 | e1003040



which, in geometrical terms, corresponds to the transcritical

bifurcation obtained for Iapp~
2

3
and illustrated in Fig. 3.

The theory of bifurcation unfolding is further exploited in [1] in

order to classify all excitability types associated to the planar model

in Fig. 1. This analysis results in five different types of excitability

obtained by varying the two parameters (V0, n0) around the

singular phase portrait of Fig. 3, center. The parameter n0 acts in

particular as the sole regulator of the balance between regenerative

and restorative excitability by shifting the n-nullcline up and down:

a positive n0 corresponds to a phase portrait as in Fig. 3 left,

whereas the phase portrait of Fig. 3 right is obtained for sufficiently

negative n0. An early graphical manifestation of such phase

portraits in conductance-based models is in [16, Figs. 17,18, and

19]. Figure 4 delineates the two types of excitability in a two

parameter chart. It contains the two types of excitability discussed

above. The transition from restorative to regenerative excitability

is always through a transcritical bifurcation. In addition, some

paths traverse a small mixed region where a down regenerative

steady state and an up restorative steady state coexist.

Our main contribution in the present paper is to show that the

diagram in Fig. 4 is not an artifact of planar reduction but captures

excitability transitions that can be algorithmically tracked in

conductance-based models of arbitrary dimension by imposing a

simple physiologically relevant algebraic condition.

Restorative and regenerative excitability in conductance
based models

We start by grouping gating variables of a given conductance-

based model according to their time scales. The family

GF ~fmNa,f , mNa,p, mK ,A, . . .g collects fast gating variables. The

gating variable xf [½0,1� denotes an arbitrary member of this

family. Similarly, the family GS~fhNa,f , mK ,DR, mCa,L, . . .g col-

lects slow gating variables xs, whereas GA~fhCa,T , hNa,R,
mK ,M , . . .g collects adaptation variables xa. For a given ion

channel type i, the standard notation mi (resp. hi) is adopted for

the activation (resp. inactivation) gating variable of the associated

ionic current Ii. With these notations, a general neuron

conductance-based model reads

Figure 1. The bottom figures illustrate the typical phase portrait of restorative (left) and regenerative (right) excitability. The dark
(resp. light) blue circle denotes a stable restorative (resp. regenerative) steady state ( �VV ,�nn). The thin full (resp. dashed) curve is the voltage (resp. slow
variable) nullcline. The saddle point in the right phase portrait is represented by a cross and its separatrix as the green oriented curve. The stable limit
cycle surrounding the unstable fixed point (represented as a circle) is represented by the blue oriented curve. The thick curve in the left phase portrait
represents the typical trajectory associated to the generation of an action potential. The top figures illustrate the typical accompanying
electrophysiological responses to step variations of current.
doi:10.1371/journal.pcbi.1003040.g001

Figure 2. Block diagram illustration of restorative and regenerative excitability in planar models.
doi:10.1371/journal.pcbi.1003040.g002

A Balance Equation for Neuronal Excitability
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Cm
_VV~{

X
i

�ggim
ai
i h

bi
i V{Eið ÞzIapp, ð5aÞ

t f Vð Þ _ f ~ f
? Vð Þ{ f

� �
, ð5bÞ

t s Vð Þ _ s~ s
? Vð Þ{ s

� �
, ð5cÞ

t a Vð Þ _ a~ a
? Vð Þ{ a

� �
, ð5dÞ

where the sum in (5a) is over all ion channels in the model, and

(5b),(5c),(5d) hold for all the associated fast, slow, and adaptation

variables, respectively. The activation (resp. inactivation) functions

xf
?,xs

? are strictly monotone increasing (resp. decreasing)

sigmoids. In the forthcoming analysis, all adaptation variables

are treated as constant parameters, that is, their slow evolution is

neglected.

We will detect a switch from restorative to regenerative

excitability by mimicking the two-dimensional algorithm of the

previous section. We first impose the bifurcation condition

det J~0, where J denotes the Jacobian of the subsystem

(5a),(5b),(5c). The algebraic condition writes

L _VV

LV
z
X

f

L _VV

L f

L f
?

LV
z
X

s

L _VV

L s

L s
?

LV
~0, ð6Þ

where the sums are over all fast and slow variables, respectively.

The particular form of equation (6) is a direct consequence of the

specific structure of conductance-based models, that is, parallel

interconnection of two-dimensional feedback loops involving the

voltage dynamics (6a) and one of the gating variable dynamics

(6b),(6c).

As for the planar model (1), we track the switch between

restorative and regenerative excitability by imposing the high-

dimensional equivalent of the balance condition (2). We therefore

look for solutions of (6) satisfying the ansatz

X
s

L _VV

L s

L s
?

LV
~0: ð7Þ

Figure 3. A continuous deformation from the restorative phase portrait of Fig. 1 left to the regenerative phase portrait of Fig. 1
right involving a transcritical bifurcation [17, Section 3.2] determined by the algebraic conditions (2) and (3). The dark blue circle
represents a restorative stable steady-state, the light blue circle a regenerative stable steady-state, and the half-filled circle represents the transcritical
bifurcation which separates the restorative and regenerative regimes.
doi:10.1371/journal.pcbi.1003040.g003

Figure 4. Excitability types in model (1). SN denotes the saddle-node bifurcation, TC the transcritical bifurcation. The black square denotes the
pitchfork bifurcation organizing center. Varying n0 and V0 the model switches between excitability types.
doi:10.1371/journal.pcbi.1003040.g004

A Balance Equation for Neuronal Excitability
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The two conditions (6) and (7) now imply

det Jf ~0, ð8Þ

where Jf denotes the Jacobian of the fast subsystem (5a),(5b). We

show in Supplementary Material S1 that the corresponding

bifurcation is necessarily transcritical [17, Section 3.2].

The singularity condition (8) is the high-dimensional counter-

part of the V -nullcline self-intersection in the planar model. It

reflects the geometric nature of the transcritical bifurcation, that is,

a robust geometrical object that exists independently of the

timescale separation and persists in the singular limit of an infinite

timescale separation, regardless of the system dimension. Our

ansatz makes the proposed analysis robust against the model time

constants. The time constants are only used to classify the gating

variables in the three physiological groups.

We split GS in two subfamilies: GSz, which contains regenerative

slow gating variables xsz, and GS{, which contains restorative slow

gating variables xs{. The balance condition (7) is then rewritten as

X
sz

L _VV

L sz

L sz
?

LV

����
TC

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{w0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regenerative gates

z
X

s{

L _VV

L s{

L s{
?

LV

����
TC

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{v0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
restorative gates

~0 ð9Þ

to express a balance between restorative and regenerative ion

channels. It is the high-dimensional counterpart of (2) and it

provides a rigorous high-dimensional generalization of restorative

and regenerative excitability:

Restorative excitability. The model is said to be restorative

at steady state if:

X
sz

L _VV

L sz

L sz
?

LV
z
X

s{

L _VV

L s{

L s{
?

LV

0
@

1
A
������
SS

v0

Regenerative excitability. The model is said to be regen-

erative at steady state if:

X
sz

L _VV

L sz

L sz
?

LV
z
X

s{

L _VV

L s{

L s{
?

LV

0
@

1
A
������
SS

w0

A block diagram representation is illustrated in Fig. 5. The insight

provided by the planar model of the previous section predicts that

the switch of excitability detected by the balance equation (9) will

lead to the accompanying distinct electrophysiological signatures

of Fig. 1.

Tracking excitability switches in the squid giant axon
The Hodgkin-Huxley (HH) model [2] provides a non-physio-

logical, but historical and experimentally verified tutorial for

tracking a switch of excitability in conductance based models. The

model reads

C _VV~{�ggkn4 V{VKð Þ{�ggNam3h V{VNað Þ{

gl V{Vlð ÞzIapp,
ð10aÞ

tm Vð Þ _mm~ m? Vð Þ{mð Þ, ð10bÞ

th Vð Þ _hh~ h? Vð Þ{hð Þ, ð10cÞ

tn Vð Þ _nn~ n? Vð Þ{nð Þ, ð10dÞ

where m is the fast sodium channel activation while the sodium

channel inactivation h and the potassium channel activation n are

the slow gating variables. We set all time constants to one, because

this simplification has no effects on the algebraic conditions (7) and

(8). The Jacobian of (10) reads

J~

L _VV

LV

L _VV

Lm

L _VV

Lh

L _VV

Ln
Lm?

LV
{1 0 0

Lh?

LV
0 {1 0

Ln?

LV
0 0 {1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð11Þ

The upper-left block is the Jacobian of the fast (V ,m) subsystem.

Imposing the singularity condition (8) yields

L _VV

LV

����
TC

z
L _VV

Lm

Lm?

LV

����
TC

~0, ð12Þ

while the balance equation (9) reads

L _VV

Ln

Ln?

LV

����
TC

z
L _VV

Lh

Lh?

LV

����
TC

~0 ð13Þ

Note that (12) and (13) imply the bifurcation condition det J~0 in

(11).

At first sight, the balance condition (13) cannot be satisfied

because both sodium and potassium channels are restorative

Figure 5. Block diagram illustration of restorative and regenerative excitability in conductance based models.
doi:10.1371/journal.pcbi.1003040.g005

A Balance Equation for Neuronal Excitability
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channels according to their corresponding kinetics in the model,

and in agreement with our proposed classification. This is

consistent with the fact that the excitability of the HH model is

always restorative in physiological conditions.

However, it was long recognized [18] that potassium channels

can generate an inward current at steady-state if the extracellular

Kz concentration is sufficiently large. Indeed, any change in

extracellular potassium concentration induces a change in the

potassium reversal potential, as expressed by the Nernst equation.

This suggests to use the potassium reversal potential VK as a

bifurcation parameter in HH model in order to satisfy the balance

equation

ð14Þ

where potassium now acts as a regenerative gating variable

provided that VKwVSS . Physiologically, condition (14) imposes

that the potassium Nernst potential is large enough for the

regenerativity of the potassium activation to balance the restor-

ative effects of the sodium current inactivation.

The two conditions (12) and (14) can numerically be solved to

determine the critical values Vc
K and Vc. The value of the applied

current at the transcritical bifurcation is then determined from

(10a), which gives

Ic
app~�ggK n4

?(Vc)(Vc{Vc
K )z�ggNam3

?(Vc)h?(Vc)(Vc{VNa)z

gl(V
c{Vl):

The numerical bifurcation diagram in Fig. 6A confirms the

transcritical bifurcation at Vc
K . That bifurcation diagram is drawn

by varying VK together with applied current Iapp, following the

affine reparametrization described in Supplementary Material S1.

More precisely,

Iapp(VK )~Ic
app{�ggK n4

?(Vc)(VK{Vc
K ):

Mathematically, this reparametrization imposes one of the

defining conditions of the transcritical bifurcation. Physiologically,

its effect is to keep the net current constant at steady-state Vc (i.e.

Iion(VK )zIapp(VK )~0): as VK is varied, the observed switch in

the excitability type does not rely on changes in the net current

across the membrane, but solely on changes in its dynamical

properties.

The bifurcation diagram in Fig. 6A provides informations on

the model excitability also far from the transcritical values. For

highly hyperpolarized VK , the model is purely restorative and

exhibits the typical excitable behavior of the original Hodgkin-

Huxley model [1, Figure 8]. As VK is increased, a stable

regenerative steady-state is born in a saddle-node bifurcation. At

this transition, the system switches to a mixed excitability type.

Short current pulses let the system switch between the

depolarized restorative stable steady state and the hyperpolar-

ized regenerative stable steady state (Fig. 6B,middle). The

associated bifurcation diagram and phase portrait are repro-

duced in Fig. 6C,D,middle. Finally, a further increase of VK lets

the restorative steady state exchange its stability with a

(regenerative) saddle at the transcritical bifurcation (and, soon

after, lose stability in a Hopf bifurcation) and the system

switches to regenerative excitability. The regenerative steady

state coexists in this case with the spiking limit cycle attractor.

Current pulses switch the system asymptotic convergence

between the two attractors (Fig. 6B,right). The associated

bifurcation diagram and phase portrait are reproduced in

Fig. 6C,D,right.

The same qualitative excitability switch was described by Rinzel

in [10], who linked the appearance of a bistable behavior to the

inward nature of potassium current at steady-state for sufficiently

depolarized VK . In vitro recordings of the squid giant axon with

isotonic extracellular Kz concentration show the same transition

[18].

Tracking excitability switches in conductance-based
models

The mathematical analysis of the previous section follows an

algorithm that allows to detect a transcritical bifurcation in

generic conductance based models of arbitrary dimension and

to track associated excitability switches. The steps of the

algorithm are summarized in Table 2. For simplicity and

conciseness, we restrict our attention to the modulation of only

one regenerative ionic current. However, a similar algorithm

can be written for an arbitrary modulation of ionic currents (by

variation of maximal conductance(s), adaptation variable(s), or

reverse potential(s)) that brings the model to the balance

expressed in (9).

For the sake of illustration, we apply this algorithm to a

number of published conductance-based models and show that

all these models can switch between restorative and regener-

ative excitability through a transcritical bifurcation, as

sketched in Fig. 7. Figure 7 indicates two qualitatively distinct

paths from restorative to regenerative excitability: one path

traversing the mixed excitability region just described with

Hodgkin-Huxley model (Fig. 6A) and one path switching

directly from restorative to regenerative excitability through

the TC bifurcation that will be illustrated on the dopaminergic

neuron model.

Dopaminergic (DA) neuron model. Model equations and

parameters are taken from [3]. This is the model that originally

motivated [11].

(i) Classification of gating variables as fast (GF ), slow
(GS), and adaptation (GA) variables. The model

includes fast sodium channels (INa,f ), delayed-rectifier

potassium channels (IK ,DR), L-type calcium channels

(ICa,L), small conductance calcium-activated potassium

(SK) channels (IK ,Ca), and calcium pumps (ICa,pump). We

classify model variables as follows

N GF ~fmNa,f g
N GS,{~fhNa,f ,mK ,DRg and GS,z~fmCa,Lg
N GA~f½Ca2z�ing

In order to unfold excitability switches, SK channel density

is set to zero, since SK channels drastically attenuate DA

neuron excitability by activating a strong calcium regulated

potassium current [19,20,21]. The intracellular calcium

concentration is fixed at ½Ca2z�in~300nM.

(ii) Balance equation and choice of the bifurcation
parameter. The only source of regenerative excitability is

provided by L-type calcium channels. The balance equation

reads

A Balance Equation for Neuronal Excitability
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Figure 6. Variations of the potassium reversal potential VK induce excitability switches in the Hodgkin-Huxley model. A. Bifurcation
diagram of the HH model with VK as the bifurcation parameter. TC denotes a transcritical bifurcation, SN a saddle-node bifurcation, HB a Hopf
bifurcation. Branches of stable fixed points are represented as solid curves, whereas branches of saddle points and unstable points as dashed curves.
B. Electrophysiological responses of the model for three different values of VK , corresponding to three different excitability types (restorative, mixed,
and regenerative, from left to right). C. Bifurcation diagrams with the applied current as the bifurcation parameter for the same three values of VK as
in B. Black (resp. blue) full curves represent branches of stable steady-states (resp. limit cycles), black dashed curves branches of saddle and unstable
steady-states. Branches of unstable limit cycle are drawn as dashed blue curves. HB denotes a Hopf bifurcation, SN a saddle-node bifurcation, and SH
a saddle-homoclinic bifurcation. D. Phase portraits of reduced HH model proposed by Rinzel in [10] for the same three values of VK as in B,C. Blue
full curves denote the V -nullclines and black full curves the w-nullclines, where w denotes the slow variable of the reduced model. Filled circles
denote stable steady-states, crosses saddle points, and circles unstable steady-states.
doi:10.1371/journal.pcbi.1003040.g006
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Table 2. Algorithm for the detection of a transcritical bifurcation in generic conductance-based models via modulation of a
regenerative ionic current and computation of the excitability switch bifurcation diagram.

(i) Classification of gating variables as fast (GF ), slow (GS), and adaptation (GA) variables

(i-a) Following Tab. 1, group gating variables in the three groups GF , GS , and GA .

(i-b) Split GS in regenerative GS,z and restorative GS,{ slow gating variables.

(i-c) If adaptation variables are present, set them to constant physiologically relevant values

(ii) Balance equation and choice of the bifurcation parameter

(ii-a) Select a regenerative ionic current Ireg and the associated regenerative slow gating variable xreg .

(ii-b) Write the balance equation

L _VV

L reg

L reg
?

LV

����
TC

~{
X

r{

L _VV

L S{

L S{
?

LV

����
TC

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{v0

{
X

Sz= reg

L _VV

L Sz

L Sz
?

LV

����
TC

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{w0

(b.eq.)

(ii-c) If Ireg has an adaptation variable xa , pick it as the bifurcation parameter l regulating the left hand side of (b.eq.), that is l~xa .

If Ireg has no adaptation variable, pick l~�ggreg

(iii) Singularity condition and fixed point equation

(iii-a) Solve (b.eq.) together with the singularity condition (8), in V and l.

For numerical implementation, recall that the left hand side of (8) is proportional to

L _VV

LV
z
X

f

L _VV

L f

L f
?

LV

(iii-b) Plug the computed values Vc and lc into the fixed point equation _VV DTC~0 to compute the value of the applied current at the transcritical bifurcation (Ic).

(iv) Tracking of excitability switches

Change the applied current according to the equation

Iapp~Ic{
L _VV

Ll

����
TC

(l{lc),

and compute the model bifurcation diagram with V as the variable and l as the bifurcation parameter.

doi:10.1371/journal.pcbi.1003040.t002

Figure 7. Modifications in the balance between restorative and regenerative channels induce excitability switches in conductance-
based models. The figure sketches excitability switches of the Hodgkin-Huxley (HH) model [2], Aplysia’s R15 neuron (R15) model [6], a
dopaminergic (DA) neuron model [3], thalamic reticular (RT) and relay (RE) neuron models [4,5], and a cerebral granule cell (GC) model [7] on the
excitability parameter map computed for the two-dimensional model of [1]. All these conductance-based models can switch between restorative and
regenerative excitability through the physiologically relevant regulation of specific ion channels.
doi:10.1371/journal.pcbi.1003040.g007
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L _VV

LmCa,L

LmCa,L,?

LV TC

���� ~{
L _VV

LhNa,f

LhNa,f ,?

LV
z

�
L _VV

LmK,DR

LmK ,DR,?

LV

�
TC
:

ð15Þ

We use the L-type calcium channel density �ggCa,L as the

bifurcation parameter (i.e. l~�ggCa,L).

Solving Steps (iii) and (iv) of the algorithm above gives the

following results (in this and the subsequent tables, the reported

critical values are not exact, but rounded to the last significant

digit):

Vc �ggc
Ca,L Ic

{64:9167mV 1:9473mS=cm2 9:5436mA=cm2

The critical value �ggc
Ca,L is roughly 1.5 times smaller than the

nominal parameter value in [3], which is consistent with the

observation that the original model exhibits regenerative excit-

ability during SK channel blockade.

The resulting bifurcation diagram is drawn in Fig. 8A. In

addition to confirming the existence of a transcritical bifurcation

for the computed values, it reveals the excitability switches

induced by changes in L-type calcium channel density in this

model: in the absence of L-type calcium channels, the model

exhibits restorative excitability. As �ggCa,L increases, a saddle

point and an unstable node emerge at a saddle-node bifurcation,

which induces no excitability switch. Further increase of �ggCa,L

causes a transcritical bifurcation, where the stable point and the

saddle exchange their stability. At this point, the stable steady-

state becomes regenerative, and the model switches to regen-

erative excitability.

These excitability switches induce the predicted changes in the

electrophysiological signatures, as illustrated in Fig. 8B. Whereas

the DA neuron model instantaneously reacts to a step input of

depolarizing current for �ggCa,Lv �ggc
Ca,L, it exhibits spike latency,

plateau oscillations and ADP as soon as �ggCa,L becomes higher than

�ggc
Ca,L. In addition, the model becomes strongly bistable.

Thalamic relay (RE) neuron model. Model equations and

parameters are taken from [4]

(i) Classification of gating variables as fast (GF ), slow
(GS), and adaptation (GA) variables. The model

includes fast sodium channels INa,f , delayed-rectifier potas-

sium channels IK,DR and T-type calcium channels ICa,T . We

classify model variables as follows

N GF ~fmNa,f g
N GS,{~fhNa,f ,mK ,DRg and GS,z~fmCa,Tg
N GA~fhCa,Tg

(ii) Balance equation and choice of the bifurcation
parameter. The only source of regenerative excitability is

Figure 8. Variations of L-type calcium channel density �ggCa,L induce excitability switches in a model of DA neurons [3]. A. Bifurcation
diagram of the model with �ggCa,L as the bifurcation parameter. TC denotes a transcritical bifurcation, SN a saddle-node bifurcation. Branches of stable
fixed points are represented as solid curves, branches of saddle points and unstable points as dashed curves. B. Electrophysiological responses of the
model to step inputs of excitatory/inhibitory current (the intracellular calcium concentration is fixed at ½Ca2z�in~300nM , which is within the
physiological range). For �ggCa,L lower (resp. higher) than the critical value �ggc

Ca,L, the model exhibits typical electrophysiological signature of restorative

(resp. regenerative) excitability. The low �ggCa,L configuration corresponds to �ggCa,L~1mS=cm2 , whereas the high �ggCa,L configuration corresponds to
�ggCa,L~3mS=cm2.
doi:10.1371/journal.pcbi.1003040.g008
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provided by T-type calcium channels. The associated

balance equation reads

L _VV

LmCa,T

LmCa,T ,?

LV

����
TC

~{
L _VV

LhNa,f

LhNa,f ,?

LV
z

�
L _VV

LmK ,DR

LmK ,DR,?

LV

�����
TC

:

T-type calcium channels are dynamically regulated by a (slow)

voltage-gated inactivation hCa,T . We use this variable as the

bifurcation parameter (i.e. l~hCa,T ).

Solving Steps (iii) and (iv) of the algorithm above gives the

following results:

Vc �hhc
Ca,T Ic

{61:5561mV 0:0041 0:9074nA=cm2

Since �hhc
Ca,T[(0,1), the model dynamically switches between

restorative and regenerative excitability when hCa,T crosses the

critical value, and the electrophysiological signatures are consistent

with the excitability switches (see Fig. 9).

Thalamic reticular (RT) neuron model. Model equations

and parameters are taken from [5], maximal conductances are

adapted as in [11].

(i) Classification of gating variables as fast (GF ), slow
(GS), and adaptation (GA) variables The model includes

fast sodium channels INa,f , delayed-rectifier potassium

channels IK,DR and T-type calcium channels ICa,T . We

classify model variables as follows

N GF ~fmNa,f g
N GS,{~fhNa,f ,mK,DRg and GS,z~fmCa,Tg
N GA~fhCa,Tg

(ii) Balance equation and choice of the bifurcation
parameter The only source of regenerative excitability is

provided T-type calcium channels. The associated balance

equation has the same structure as for the thalamic relay

neuron model considered above. Along the same line, we

choose the T-type calcium channel inactivation hCa,T as the

bifurcation parameter (i.e. l~hT ).

Solving Steps (iii) and (iv) of the algorithm above gives the

following results:

Vc �hhc
Ca,T Ic

{61:5561mV 0:0041 0:9074nA=cm2

As in the case of the thalamic relay neuron model, the T-type

calcium channel inactivation generates a dynamical switch

between restorative and regenerative excitability, significantly

affecting neuron response to external inputs (Fig. 9).

Aplysia R15 neuron model. Model equations and param-

eters are taken from [6].

(i) Classification of gating variables as fast (GF ), slow
(GS), and adaptation (GA) variables. The model

includes fast sodium channels INa,f , delayed-rectifier potas-

sium channels IK ,DR, slow L-type calcium channels ICa,L

and calcium-activated potassium channels IK ,Ca. We classify

model variables as follows

N GF ~fmNa,f g
N GS,{~fhNa,f ,mK ,DRg and GS,z~fmCa,Lg
N GA~f½Ca2z�ing

The intracellular calcium conductance is fixed at

½Ca2z�in~0:09nM.

(ii) Balance equation and choice of the bifurcation
parameter. As in the case of DA neurons, the source of

regenerative excitability is provided by L-type calcium channels,

and we take their maximal conductance �ggCa,L as the bifurcation

parameter. The associated balance equation has the same

structure as for the DA neuron model considered above.

Solving Steps (iii) and (iv) of the algorithm above gives the

following results:

Vc �ggc
Ca,L Ic

{48:0516mV 5:405410{5 mS=cm2 {0:03mA=cm2

Comparing the critical value �ggc
Ca,L with the original value

�ggCa,L~4 10{3 mS=cm2 shows that the bursting model proposed

in [6] exhibits strong regenerative excitability. Switches of

electrophysiological signatures are illustrated in Fig. 9.

Cerebellar granule cell (GC) model. Model equations and

parameters are taken from [7].

(i) Classification of gating variables as fast (GF ), slow
(GS), and adaptation (GA) variables. The model

includes the following ion channels: fast (INa,f ), persistent

(INa,P) and resurgent sodium channels (INa,R) ; N-type

calcium channels (ICa,N ) ; delayed rectifier (IK,DR), A-type

(IK,A), inward rectifier (IK ,IR), calcium activated (IK,Ca) and

slow potassium channels (IK ,slow). We classify model

variables as follows

N GF ~fmNa,f ,mNa,Pg
N GS,{~fhNa,f ,mK ,DR,mK ,A,mK,IRg
GS,z~fmNa,R,mCa,Ng

N GA~fhNa,R,hCa,N ,hK ,A,mK,slowg

and

We set the persistent and calcium-activated currents to zero

(these two channels do not impact excitability type as

anticipated by our classification and shown by D’Angelo and

colleagues [7]). The inactivation of the A-type potassium

current is fixed at hK ,A~0:02 and the activation of the slow

potassium current is fixed at mK,slow~0:13.

(ii) Balance equation and choice of the bifurcation
parameter. The neuron model possesses two sources of

regenerative excitability: resurgent sodium channels and N-

type calcium channels. As in the case of T-type calcium

channels mentioned above, these two channels possess an

inactivation gate, which is used as the bifurcation parameter.

We apply our algorithm by varying the parameter of one

regenerative current while fixing the other at different values.

This permits to draw an approximated hypersurface in the

(hCa,N ,hNa,R) plane at which the balance equation is satisfied

and the model undergoes the transcritical bifurcation and the

A Balance Equation for Neuronal Excitability
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Figure 9. The same mathematical bifurcation in different conductance-base models causes the same switch in electrophysiological
signatures. The figure shows the electrophysiological responses of various conductance-based models to step inputs of excitatory/inhibitory
current when the bifurcation parameter l is lower (left) or higher (right) than the critical value lc . This bifurcation parameter can be either the density
or the inactivation variable of a regenerative channel. Other adaptation variables are set to constant values chosen in physiological ranges (see text).
For l lower (resp. higher) than the critical value lc , all models exhibit electrophysiological signatures of restorative (resp. regenerative) excitability.
Numerical values of the parameter l in the different plots are as follows. Thalamic relay cell: left hCa,T ~0, right hCa,T~0:2. Thalamic reticular cell: left

hCa,T~0, right hCa,T~0:4. Aplysia R15 neuron: left �ggCa,L~10{6mS=cm2 , right �ggCa,L~0:004mS=cm2 . GC neuron: left hCa,N~0:01,hNa,R~0:1, right
hCa,N~0:3,hNa,R~0:1.
doi:10.1371/journal.pcbi.1003040.g009

L _VV

LmNa,R

LmNa,R,?

LV

����
TC

~{
L _VV

LhNa,f

LhNa,f ,?

LV
z

X
y~DR,A,IR

L _VV

LmK ,y

LmK,y,?

LV
z

L _VV

LmCa,N

LmCa,N,?

LV

 !�����
TC

,

L _VV

LmCa,N

LmCa,N,?

LV

����
TC

~{
L _VV

LhNa,f

LhNa,f ,?

LV
z

X
y~DR,A,IR

L _VV

LmK ,y

LmK ,y,?

LV
z

L _VV

LmNa,R

LmNa,R,?

LV

 !�����
TC

,

A Balance Equation for Neuronal Excitability

PLOS Computational Biology | www.ploscompbiol.org 12 May 2013 | Volume 9 | Issue 5 | e1003040



associated excitability switch. The two balance equations read,

respectively:

Solving Steps (iii) and (iv) of the algorithm, one obtains the

parameter chart in Fig. 10. These results show that both

channels can induce a dynamical switch in excitability.

However, the N-type calcium channel contributes much more

to regenerative excitability than the resurgent sodium channel

in this model: as soon as hCa,N *> 0:03 the model is in

regenerative excitability for all values of hNa,R. On the

contrary, when hCa,N~0 the inactivation of resurgent sodium

channel should be reduced at least by a factor two for the

model to exhibit regenerative excitability.

The balance equation determines a switch from
restorative to regenerative excitability

As illustrated in Figure 4, the significance of the transcritical

bifurcation is that it delineates in the parameter space the

boundary of a specific type of excitability and that this boundary is

determined by a simple physiological balance (Eq. 9) between

restorative and regenerative channels.

Specific to regenerative excitability is the bistable phase portrait

of Fig. 1, right. For the six analyzed conductance-based models,

our bifurcation analysis of the full model confirms the existence of

a bistable range beyond the transcritical bifurcation, where a

regenerative resting state and a spiking limit cycle coexist. In each

case, the bistability range is obtained for the nominal time scales of

the published model and is robust to a variation of time scales. In

each case, the bistabilty range is also neuromodulated, that is,

determined by conductance parameters that are known to vary in

slower time scales and/or across neurons of a same type.

It is important to distinguish this robust and physiologically

regulated bistability from other types of bistability that can be

encountered in conductance-based models. Figure 11 qualitatively

illustrates three typical bistable phase portraits associated to the

planar model (1) that exhibit the coexistence of a stable resting

state and of a spiking limit cycle. The first two are associated to

restorative excitability and are extensively studied in the literature.

See, e.g. [13,14], and references therein. Only the third one is

associated to regenerative excitability.

The three bistable phase portraits share the common feature of

‘‘hard excitation’’: as the amplitude of a step input depolarizing

current is increased, the response of the neuron abruptly switches

from no oscillation to high frequency spiking. Following the

historical classification of Hodgkin [15], the three situations

correspond to Class II neurons, as opposed to Class I neurons for

which the spiking frequency gradually increases with the

depolarizing current amplitude.

Hard excitation can be a manifestation either of a switch-like

monostable bifurcation diagram or of a hysteretic bistable

bifurcation diagram. By definition, the three bistable phase

portraits in Figure 11 give rise to hysteretic bifurcation diagrams.

But for the two bistable phase portraits associated to restorative

excitability, the hysteresis is highly dependent on the time scale

separation, i.e., the ratio e between the fast and slow time

constants. In the case of the first phase portrait (subcritical Hopf

bifurcation), asymptotic analysis shows that the hysteresis vanishes

as O(e{1=e). In the case of second phase portrait (saddle-

homoclinic bifurcation), the situation is even worse because for

small ew0 the system necessarily undergoes a monostable saddle-

node on invariant circle bifurcation. In fact, the second phase

portrait is not physiological for neuron conductance based models.

Figure 10. Joint variations of the inactivation gates of N-type calcium channels and resurgent sodium channels induce excitability
switches in cerebellar granule cells. A. Two parameter bifurcation diagram of the mode with hCa,N and hNa,R as bifurcation parameters. TC
denotes a branch of transcritical bifurcations detected following the algorithm in Table 2. B. Electrophysiological responses of the model to step
inputs of excitatory/inhibitory current: left hCa,N~0:01,hNa,R~0:1, right hCa,N~0:3,hNa,R~0:1.
doi:10.1371/journal.pcbi.1003040.g010
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For instance, in the hypothetical INa,pzIK conductance-based

model considered in [14, Fig. 6.44], the time constant of the

potassium activation must be set below 0:17ms to create a saddle-

homoclinic bifurcation, which is roughly 40 times smaller than its

physiological value and even smaller than the fast time constant. A

geometric proof of the generality of this fact is provided in [1]. The

conclusion is that hysteresis associated to restorative excitability is at

best very small (if any) in physiologically plausible conductance based

models, which makes their electrophysiological signatures similar to

those associated to a switch-like monostable bifurcation diagram.

In sharp contrast, the hysteresis associated to regenerative

excitability is barely affected by the time-scale separation. Instead

it is regulated by conductance parameters whose modulation is

physiological (for instance, a regenerative ion channel density).

The extended hysteresis is what determines the specific electro-

physiological signature of regenerative excitability: a pronounced

spike latency, a possible plateau oscillation, and an after

depolarization potential. As a consequence, those features cannot

be robustly reproduced in physiologically plausible conductance

based models of restorative excitability. Because those features are

important markers of modern electrophysiology [22,23], the

distinction between restorative and regenerative excitability seems

physiologically relevant, beyond the possible shared feature of

hard excitation.

In conclusion, the bistability associated to regenerative excit-

ability is specific in that it produces a robust electrophysiological

signature in physiologically plausible parameter ranges and

consistent with many experimental observations. It is in that sense

that the balance equation delineates a switch of excitability of

physiological relevance.

A refined classification of neuronal excitability
Early in the history of neurodynamics [15], Hodgkin proposed a

classification of excitability in three different classes:

Class I: The spiking frequency vs. input current amplitude (f/I)

curve is continuous, i.e., the spiking frequency continuously

increases from zero to high-frequency firing as the input current

amplitude rises. Class I excitability is also referred to as ‘‘soft’’

excitation.

Class II: The f/I is discontinuous, i.e., the spiking frequency

abruptly switches from zero to high-frequency firing as the

amplitude of the applied current is raised above a certain

threshold. Class II excitability is also referred to as ‘‘hard’’

excitation.

Class III: The spiking frequency is zero for all amplitudes of the

applied current. Transient action potentials can be generated in

response to high-frequency stimuli.

Because regenerative excitability exhibits hard excitation, it is a

physiologically distinct subtype of Class II excitability.

Bifurcation theory helps relating this physiological classification

to mathematical signatures of the associated neuron models.

Distinct bifurcations delineate the different excitability classes as

well as the different excitability mechanisms within a given class.

They are summarized in Fig. 12.

Figure 11. Three bistable phase portraits of model (1) and cartoon of the associated hysteretic bifurcation diagrams. In the phase
portraits, a solid curve denotes the V -nullcline, whereas a dashed curve denotes the n-nullcline. Stable fixed points are depicted as filled circles,
whereas unstable as circles and saddle points as cross. Stable limit cycles are drawn as solid oriented blue curves, whereas unstable as red dashed
curves. The stable manifolds of saddle points are depicted as green oriented curves. In bifurcation diagrams, a solid curve denotes branches of stable
fixed points, whereas a dashed curve denotes branches of unstable or saddle points. Branches of stable limit cycles are depicted as blue curves,
whereas branches of unstable limit cycles as red dashed curves. sub.HB denotes a subcritical Hopf bifurcation, SNLC a saddle-node limit cycles
bifurcation, SN a saddle-node bifurcation, and SH a saddle-homoclinic bifurcation. A–B. Restorative bistability. A. Subcritical Hopf bifurcation.
Hysteresis vanishes exponentially fast as timescale separation increases. B. Restorative saddle-homoclinic bifurcation. Not physiological because it
violates the time scale separation between V and n. C. Regenerative bistability ruled by a regenerative saddle-homoclinic bifurcation. Hysteresis is
barely affected by time-scale separation.
doi:10.1371/journal.pcbi.1003040.g011
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Ermentrout [12] showed that Class I excitability arises from a

saddle-node on invariant circle bifurcation, whereas Class II

excitability arises from a Hopf bifurcation. Both bifurcations

correspond to examples of restorative excitability in the terminol-

ogy of the present paper and the transition between Class I and II

is governed by a Bogdanov-Takens bifurcation.

Our recent paper [1] further expands this classification to

account for regenerative excitability. Regenerative excitability

(called Type IV in [1]) arises from a (singularly perturbed) saddle-

homoclinic bifurcation and the transition from restorative to

regenerative excitability always involves a transcritical bifurcation.

Discussion

A simple and robust balance equation identifies a
transcritical bifurcation in arbitrary conductance based
models

Motivated by a geometric analysis of a qualitative phase

portrait, we have proposed an algorithm that easily detects a

transcritical bifurcation in arbitrary conductance based models.

Owing to the special structure of such models, the algorithm leads

to solving an algebraic equation of remarkable simplicity and

physiological relevance: a balance between slow restorative and

slow regenerative ion channels. The condition is also robust

because the balance is independent of the detailed kinetics, even

though it critically relies on a classification of variables in three

well separated time-scales, in good agreement with what is known

on ion channels kinetics [8].

The ubiquity of a transcritical bifurcation in conductance-
based models

The detection of the transcritical bifurcation relies on the sole

existence of a physiological balance between restorative and regener-

ative ion channels. Given that all neuronal models possess restorative

sodium and potassium channels, this implies that a transcritical

bifurcation exists in every conductance-based model that possesses at

least one regenerative ion channel. Moreover, the channel balance,

and therefore the TC bifurcation, are readily detectable in a model of

arbitrary dimension (both in the state and parameters): the balance (9)

simply defines a hypersurface in the parameter space that can

algebraically be tracked under arbitrary parameter variations. An

illustration was provided on the GC model above.

In spite of its ubiquity and of its physiological significance, we

are not aware of an earlier reference to a transcritical bifurcation

in conductance based models. A reason for this omission might be

accidental: there are no regenerative channels in the seminal

model of Hodgkin and Huxley (unless one modifies the potassium

resting potential Vk) and this model has been the inspiration of

most mathematical analyses of conductance-based models.

For the same reason, it seems physiologically relevant to

distinguish between restorative and regenerative excitability

beyond Hodgkin’s classification of Class I (‘‘soft’’) and Class II

(‘‘hard’’) excitability. Regenerative (and restorative) excitability

faithfully capture the presence (or the absence) of specific

electrophysiological signatures of modern electrophysiology such

as spike latency, afterdepolarization potentials, or robust coexis-

tence of resting state and repetitive spikes.

Figure 12. The various bifurcations associated to different types of neuronal excitability. SNIC: saddle-node on invariant circle; BT:
Bogdanov-Takens; AH: Andronov-Hopf; SN: saddle-node; TC: transcritical; SH: saddle-homoclinic. See also [1] for more detailed definitions and
properties of excitability Types I-V and associated transition bifurcations in a planar neuron model. Class I excitability occurs in the neighborhood of a
SNIC bifurcation [12] and is purely restorative. Class II excitability can be either restorative in which case the stable equilibrium looses stability in a
subcritical Hopf bifurcation (Type II in [12]) or regenerative in which case a stable equilibrium coexists with a stable limit cycle over a robust bistable
range organized by a (singularly perturbed) saddle homoclinic bifurcation (Type IV in [1]). In a small parameter range, class II excitability can also
exhibit a mixed type (Type Vb in [1]), where a regenerative "down" stable equilibrium coexists with a "up" restorative stable equilibrium or limit cycle.
Stability of those attractors is lost either in saddle-node or Hopf bifurcations. Class III excitability can be either restorative (a monostable equilibrium)
or exhibits a mixed type (Type Va in [1]), where a regenerative down stable equilibrium coexists with a restorative up stable equilibrium. Both
attractors loose stability in a saddle-node bifurcation. The transition to regenerative excitability is always through a transcritical bifurcation.
doi:10.1371/journal.pcbi.1003040.g011
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A single mathematical prediction applies to many
distinct physiological observations

Although purely mathematical in nature, the transcritical

bifurcation has a remarkable predictive value in several published

conductance based models. In each of the six analysed models, the

proposed algorithm identifies a physiological parameter that acts as

a tuner of neuronal excitability in a physiologically plausible range

and in full agreement with existing experimental data. At the same

time, the distinct nature of the regulating parameter, which can be

either the maximal conductance or the inactivation gating variable

of a regenerative ion channel depending on the neuron model, is

associated to distinctly different regulation mechanisms.

Reduced modeling should retain the balancing channel
The classification of gating variables in three distinct time scales

is an essential modeling step both for the proposed algorithm and

for the reduction of full conductance-based models to low-

dimensional models that can be used in population studies [24].

Despite the inherent robustness of time-scale separation analysis,

this classification is a limitation of the proposed approach if the

model contains ion channels with poorly known kinetics. When all

slow ion channels are properly identified, they can be aggregated

in a single slow variable to lead to a second order model of the type

(1), where the single parameter n0 captures the restorative or

regenerative nature of the aggregated slow variable. Further

reduction to a one-dimensional hybrid model with reset is possible

thanks to the time-scale separation between the voltage V and the

slow variable n. This reduction is illustrated in [11] on the

thalamic TC neuron and the reduced model remarkably retains

the switch of excitability of its high-dimensional counterpart. In

contrast, a reduced model will lose the switch of excitability of the

full conductance-based model when a regenerative ion channel is

treated as a fast gating variable. It is for instance common in model

reduction to set the activation of a calcium channel to steady state.

This amounts to treat the calcium activation as a fast variable,

which makes the channel either ‘‘slow restorative’’ or ‘‘neutral’’ in

the terminology of this paper. If the calcium channel is the only

source of regenerative excitability, then the reduced model will not

retain features of regenerative excitability.

Neuronal excitability is regulated
In each of the analysed conductance-based models, the balance

equation responsible for the switch of excitability is satisfied for a

set of parameters that is close to the published parameter values.

This observation supports the hypothesis that neuronal excitability

is tightly regulated by molecular mechanisms and that the

influence of the channel balance condition on neuronal excitability

might play a role in neuronal signaling.

Materials and Methods

Numerical analysis
Numerical temporal traces of the different neurons (Figs. 1, 6, 8,

9) were reproduced by implementing in MATLAB (available at

http://www.mathworks.com) the original models as described in

the associated papers. The phase portraits in Figures 1 and 3 were

hand-drawn using the Open Source vector graphics editor

Inkscape (http://inkscape.org). The phase portraits in Figure 6

were numerically drawn with MATLAB by implementing the

planar model in [10] and subsequently modified with Inkscape.

The bifurcation diagrams in Figures 6, 7, and 8 were drawn by

implementing the algorithm of Table 2 in MATLAB. No figure or

part of figure was reproduced from other published works.

Supporting Information

Supplementary Material S1 Algorithmic detection of a

transcritical bifurcaton in conductance-based models.

(PDF)
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