Supplementary data

Studies on the Japanese soil-borne wheat mosaic virus movement protein highlight its ability to bind plant RNA

Authors: Claudia Janina Strauch¹, Nico Sprotte¹, Estefania Peña Lozano², Emmanuel Boutant^{3,5}, Khalid Amari⁴, Steffen Ostendorp², Anna Ostendorp², Julia Kehr², Annette Niehl^{1*}

¹Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Brunswick, Germany

²Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany

³Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, 74 route du Rhin - CS 60024, F-67401 Illkirch, Strasbourg, France

⁴Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany

⁵Biotechnology and Cell Signaling, CNRS UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg, France

^{*}corresponding author: annette.niehl@julius-kuehn.de

Table S1: Primer sequences

Primer name	Sequence 5'-3'	Determination
MP_GW_For1	GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT AAA CAT GAC AAC TAA AGA TGT TTC	GATEWAY-cloning of MP ^{JSBWMV} , addition of
MP_GW_Rev1	GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC CAC TAT GTT TTC AGA GTC	attB-sites GATEWAY-cloning of MP ^{JSBWMV} , addition of attB-sites
MP_fw_GG	TTA AGG TCT CGT TGC ATG ACA ACT AAA GAT GTT TCA AGT GAT TCC	GoldenGate cloning of MPJSBWMV:GFP into
		E.coli expression plasmid pET28a
eGFP_rev_GG	TTA AGG TCT CGA AGC TTA CTT GTA CAG CTC GTC CAT GC	GoldenGate cloning of MP ^{JSBWMV} :GFP into <i>E.coli</i> expression
		plasmid pET28a
eGFP_For	GGGG ACA AGT TTG TAC AAA AAA GCA GGC TTC ATG GTG AGC AAG GGC GAG	GATEWAY-cloning of free GFP
eGFP_Rev	GGGG AC CAC TTT GTA CAA GAA AGC TGG GTC TTA CTT GTA CAG CTC GTC CAT	GATEWAY-cloning of free GFP
MP_toRFP_NSp_For1	CCG AAG ATG CTC CCT GAA CA	Modification of pJS1
Bgl2_inRFP_NSp_Rev1	GAA GAT CTT TAG GCG CCG GTG G	Modification of pJS1
RNA2_for	GAT CTA ATA CGA CTC ACT ATA GTT GAG TGT TAA CTC TTC TTG	Full length RNA2 synthesis
RNA2_rev	CTC CGG TTC GGG GGG	RNA2 full length and tRNA-like structure- RNA2 synthesis
tRNA2_for	GAT CTA ATA CGA CTC ACT ATA TGT ATG TTC TGT TGA ACT ACT GT ATG	tRNA-like structure- RNA2 synthesis
tRNA1_for	GAT CTA ATA CGA CTC ACT ATA CAT AGT GTG ATT ATT ACT ATT ATG	tRNA-like structure- RNA1 synthesis
tRNA1_rev	CTC CGG TTC AGG GGG	tRNA-like structure- RNA1 synthesis
Non_tRNA1_for	GAT CTA ATA CGA CTC ACT ATA AGT CGT TAG ACT GCT TAA AG	non tRNA1-like- structure synthesis
Non_tRNA1_rev	TCA CAC TAT GTT TTC AGA GTC CAA	non tRNA1-like- structure synthesis
Non_tRNA2_for	GAT CTA ATA CGA CTC ACT ATA GTT GAG TGT TAA CTC TTC TTG	non tRNA2-like- structure synthesis
Non_tRNA2_rev	TCA CAG AGG TTT AGA CTT CCT T	non tRNA2-like- structure synthesis

24 °C 17 °C

Figure S1. JSBWMV forms visible infection sites on *Chenopodium quinoa* leaves at **17** °C but not at **24** °C. *Chenopodium quinoa l*eaves of five to six-week-old plants were infected with RNA in-vitro transcribed from pJS1 and pJS2 cDNA clones (Yamamiya and Shirako, 2000) and kept in the greenhouse with 16h light and 8h dark cycles and at least 200 W/m² light intensity either at 24°C or at 17°C. Multicellular infection sites visible as chlorotic spots were only obtained at 17°C. Pictures were taken 12 dpi.

Figure S2:

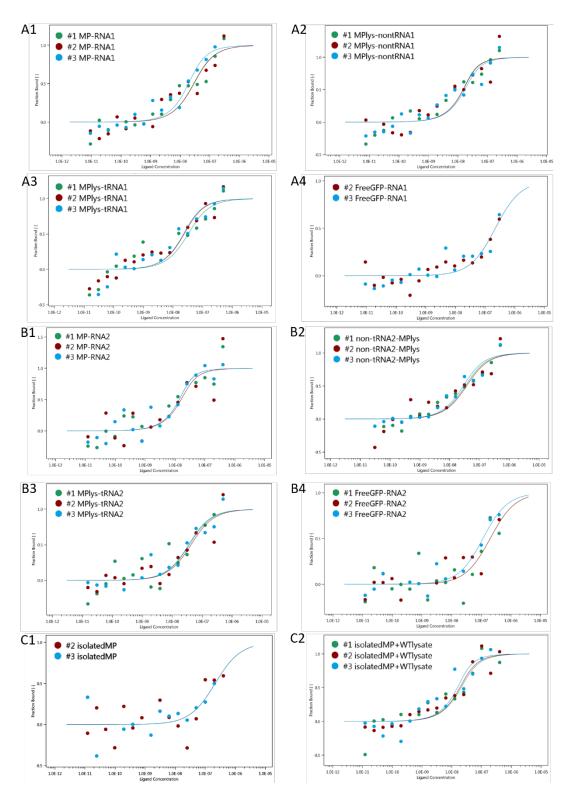


Figure S2: Microscale thermophoresis binding curves for MP^{JSBWMV}:GFP or GFP, respectively to viral RNAs

N. benthamiana leaf crude extracts expressing MP^{JSBWMV} and GFP after agro-inoculation were used to analyze the binding affinity of (**A1**) MP^{JSBWMV}:GFP to RNA1^{JSBWMV}, (**A2**) MP^{JSBWMV}:GFP to RNA1^{JSBWMV} non-tRNA, (**A3**) MP^{JSBWMV}:GFP to tRNA1^{JSBWMV}, (**A4**) GFP to RNA1^{JSBWMV}, (**B1**) MP^{JSBWMV}:GFP to RNA2^{JSBWMV}:GFP to tRNA2^{JSBWMV} of the RNA2^{JSBWMV} of the RNA2^{JSBWM}

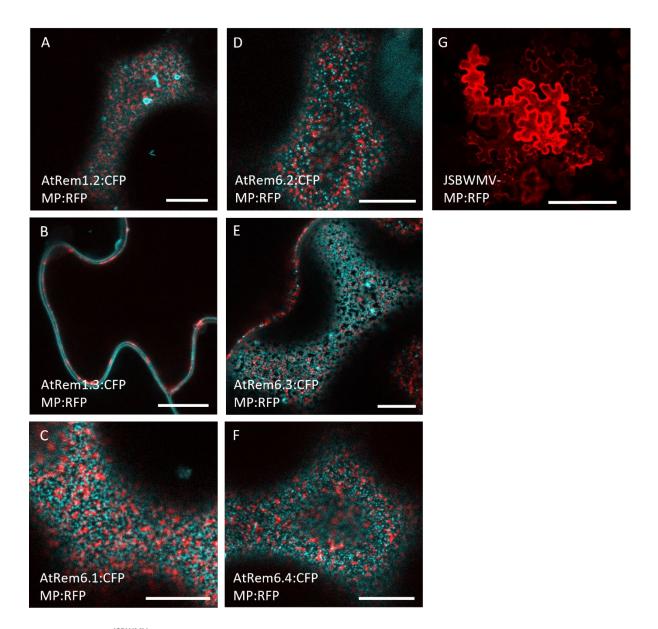


Figure S3: MPJSBWMV:RFP localizes to membrane rafts.

(A-F) MP^{JSBWMV}:RFP was ectopically expressed in *N. benthamiana* epidermal cells via agroinoculation and co-expressed with different markers. (A-F) MP^{JSBWMV}:RFP (red) co-expressed with (A) AtREM1.2:CFP (cyan); (B) AtREM1.3:CFP (cyan); (C) AtREM6.1:CFP (cyan); (D) AtREM6.2:CFP (cyan); (E) AtREM6.3:CFP (cyan); (F) AtREM6.4:CFP (cyan), remorins and MP^{JSBWMV}:RFP localize in a patchy pattern at the cell periphery. The localizations do not overlap. Images taken two to five days post infiltration. Scale bars are 10 μm. (G) JSBWMV-MP:RFP infection site seven days after rub inoculation of RNA^{JSBWMV-MP:RFP} into *N. benthamiana* epidermal cells. Scale bar is 200 μm.