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Abstract

The Cameron Highlands has experienced multiple land encroachment activities and

repeated deforestation, leading to extensive land-use and land-cover change (LULCC) dur-

ing the past six decades. This study aims to determine the LULCC against topography in

Cameron Highlands between 2009 and 2019 by using geospatial techniques to analyze

Landsat 7 (ETM+) and 8 (OLI/TIRS), ASTER GDEM and MODIS imaging sensors. The

results showed a decline of 35.98 km2 in primary forests over ten years across the Cameron

Highlands, while agricultural lands and urban areas flourished by a rise of 51.61 km2 and

11.00 km2 respectively. It can be noted that the elevation most affected is between 1000

and 1500 m, across all classes. Further results showed the expansion of both agriculture

and urban development onto slopes above 35˚, leading to an instability of soil structure. In a

comparison of the base years of 2009 with 2019, mean LST results have shown tempera-

tures rising by 7.5˚C, while an average between 3 and 4˚C across the region is recorded.

The results obtained provide new information for government bodies and land planners to

coordinate their actions without further jeopardizing the environment of the Cameron

Highlands.

Introduction

The examination of land-use and land-cover change (LULCC) is a study of environmental

change that is closely related to socioeconomic development. This change is mainly caused by

the desire, rather than the need, to further expand land use, whether it be to satisfy agricultural

or urban growth [1, 2]. Often, the expansion of land is improperly monitored with little or no

consultation prior to the starts of projects. Thus, the use of various satellite datasets through

remote sensing can provide a baseline requirement for sustainable planning and the manage-

ment of natural resources [3–5].

In mountainous regions, any change in land use in the upper elevations will severely impact

the overall climate of the region; This is because mountainous regions have a climate system
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that differs from the lower elevations; they are known to be highly susceptible to this change.

This includes the study area of the Cameron Highlands [4, 6]. This region is regarded as an

ideal area to study the effects on ecosystems because of LULCC. Due to their topography,

mountainous regions are able to store and filter various energies, in addition to providing

homes for a high diversity of organisms [1, 7]. According to Wang et al. [1], due to their

“unique geology, geomorphology, climate, hydrology and other environmental characteristics,

mountains gave birth to various ecosystems and provide diverse ecosystem services to local

and lowland populations”. Although mountainous regions can provide resources to the local

population, the expansion of industrialization and urbanization has pushed once lush forested

areas to the brink of destruction [8, 9].

The relationship between LULCC and human growth for development is a complicated

issue in Cameron Highlands, in addition to other mountainous regions in Malaysia, primarily

due to the suitability of the climate for agricultural needs and to enhance local economic

growth [4, 5, 10, 11]. The Cameron Highlands has a temperate climate with an average annual

temperature of 23˚C, thus prompting economic development in the 1970’s [12]. The area’s low

and stable temperatures throughout the year, paired with a surrounding enclave of primary

forests, meant that the area is ideal for the expansion of both tourism and agriculture [6, 13,

14]. The population growth has led to a rapid change in land-use and land cover (LULC) as a

result of urbanization and industrialization. Although the changes in LULC do not directly

imply a degradation of the land, under certain circumstances, improper handling of land use

leads to a “landslide effect” that results in new problems. In the Himalayas, inappropriate

deforestation and land use practices have led to accelerated erosion, which then further con-

tributed to devastating floods in the lower plains [4]. Such disasters are common in Cameron

Highlands [15]. For the past 30 years or longer, erosion, landslides, water table exposure, soil

instability, and various other land failures have occurred as a result of improper land use and

examination prior to a development [16].

Several studies have been conducted on LULCC in high elevation regions, with an emphasis

on slopes [8, 17–19], mountains [19, 20], coastal regions [21–23], and elevated terrains of

numerous landscape patterns [24, 25]. Landscape changes undoubtedly brings both positive

and negative changes to an area [21]. In the Ganjingzi District, Yang J et al. [26] simulated a

land use change in rural-urban areas. Using a four-part Markov Chain sub-area composite

model, he found that the overall landscape conversion occurred in predominantly agricultural

farmlands and garden lands, converted to construction land for urban expansion between

2000 and 2015. It can be noted that the use of this model can provide valuable management in

land use planning. Wang et al. [8] studied land use change in the Tibetan plateau during the

economic boom of 1990–2000. The results of his landscape metrics showed cropland and

built-up land increasing severely, the magnitude of this change is driven by economic develop-

ment. A land use assessment according to elevation and slope gradient was performed in the

highlands of Ethiopia [18]. This study derived the use of Landsat imagery from 1986 to 2017 in

the agricultural region of Amhara State. The study notes that the majority of land cover change

is contributed not only by farmland expansion but also through illegal deforestation for log-

ging exports. Furthermore, Chen et al. [19] used spectral indices to map landscape types of the

mountainous region of Shizhu county. Similarly in a mountain range, the Fanjingshan Nature

Reserve in China as an example, Tsai et al. [20] used a number of satellite sensors including

Landsat, Quickbird and GeoEye to monitor land use changes in the national park. Their

research showed the use of multi-temporal satellite imagery across multiple sensors, combined

with techniques of seasonal image mosaics, digitized terrain models, and in-situ data to be of

utmost importance in improving mapping accuracy. An assessment between the relationship

of LST and LULCC was performed in Dongting Lake, China [27]. Tan et al. [27] found the
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external activities such as human induced activities, airflow, precipitation, and landscape pat-

tern affecting the overall LST value. Rodrigues-Galiano & Chica-Olmo [22] analyzed a coastal

area of Mediterranean Spain incorporating digital terrain models, land surface temperature

and Landsat imagery over several seasons. Gaveau et al. [28] assessed deforestation in Borneo

over four decades using Landsat, ALOS Palsar, and MODIS imagery. This research found

native rainforests subjected to continuous logging, slash-and-burn practices, and conversion

of land primary forest cover to industrial plantations. The studies above provided knowledge-

able literature that is adaptive and facilitates the research background needed in the progres-

sion of methods. However, this study will be the first on the Cameron Highlands, focusing on

the topographical classification (slope and elevation) of land use classes. This area has a land-

mass that is densely populated in the mid-elevation regions (montane forest oak of 1200 m), in

which both agricultural and urban activities occur. Land cover changes in these areas for non-

forested areas have increased by 161 km2 over the past 30 years, whereas other sources have

reported an increase of 84 km2 during the same 30-year period [6, 29, 30]. Hence, this research

is the first for the study area to use geospatial techniques to detect the LULC changes in Cam-

eron Highlands in relation to topography from 2009 to 2019.

In this paper, we discuss on the following objectives: (i) Assessing land use and land cover

change across elevation, (ii) classifying slope degrees according to their associated land use to

assess the changes in land cover, (iii) analyzing LST patterns against topography (LST per eleva-

tion / LST per slope), (iv) identifying the driving forces of LULC in Cameron Highlands, and

(v) consider methods of mitigating the driving forces to achieve sustainable development goals.

Materials and methods

Study area

This study was conducted in Cameron Highlands district, located in the western part of

Pahang state, and defined as a highland area at 4˚ 35’ 55.40” N latitude and 101˚ 29’ 07.05” E

longitude (Fig 1). Topographically, the study area contains roughly 50% mountainous areas,

30% undulating areas, 15% valleys, and 5% plains. The Cameron Highlands sits at an elevation

between 300 and 2060 m above sea level, and its total area is approximately 69,699 km2. The

soil structure classification of the area consists of sandy clay loam, limestone, and slate in the

upper hill dipterocarp region and below (< 1200 m), as well as granite for the montane forest

oak region and above (> 1200 m) [9, 31, 32].

Background

Recently, the Cameron Highlands has been a popular research topic due to its numerous land-

slide accidents and sinkholes [29, 31, 33, 34]. The annual average rainfall in the area is 2850

mm. The combination of heavy precipitation and ongoing development of urban areas has led

to the instability of the soil in the area. Moreover, the uprooting of forests and deep roots has

also hastened the weakening of the structural integrity of the mountain. A guideline for land

development according to slope degree was introduced by the authorities, it outlines the spe-

cific slope bracket in which certain types of land uses and construction are able to take place

there [25]. However, contractors often defy the relevant regulations of that guideline and con-

tinue with their construction plans [25].

A preliminary study analyzing the connection between LULC and land surface temperature

(LST) for the study area was extensively discussed by How Jin Aik et al. [35] using multi-tem-

poral satellite images of Landsat 7 and 8 to provide a better understanding of the LULCC in

the highland regions. The results illustrated an increment of total urban area by 1.7% in 10

years, while farmland and agriculture rose by 7.71% significantly. These changes to the land
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cover of Cameron Highlands had led to a decrease in primary forest cover by 8.88%. It was

also recorded that temperature had risen between 2–3˚C, with an extreme of 7˚C on average

during the period of the study. A similar approach was adopted for the current study to deter-

mine changes to the landscape and suitability of a specific land cover or land use-elevation and

slope classification for future activities for the period of 2009 to 2019. An assessment of land

surface temperature (LST) against topography of each land use class was also conducted for

the same period. This research has identified the drivers of deforestation and established some

recommendations for effective land conservation and management, as well as facilitate remote

sensing technologies to provide a better understanding of the causes and consequences of land

use change. The results of this paper can be used as a guideline for future studies to assess the

relationship between LULC and LST in sensitive mountainous regions. Additionally, it could

serve as a study on climate change as a result of deforestation projects.

Data collection

Landsat satellite images from 2009, 2014, and 2019 (Enhanced Thematic Mapper+ ((ETM+)

and Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS)) were down-loaded from

Fig 1. Study site of the Cameron Highlands District in the state of Pahang, Malaysia. (Data source: Landsat-8 OLI image courtesy of the U.S. Geological

Survey).

https://doi.org/10.1371/journal.pone.0252111.g001
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the United States Geological Survey Earth Explorer website (USGS) and used for this study.

The Universal Transverse Mercator (UTM) projection of 47N and the World Geodetic Sys-

tems (WGS)–1984 datum was applied to the images. Landsat 7 was used for 2009, and Landsat

8 was used for 2014 and 2019. Images were processed into a level-one terrain-corrected (L1T)

product. The Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Dig-

ital Elevation Model (ASTER GDEM) was downloaded from NASA’s Earth Data website. The

dates chosen for this study are in the first quarter of each year, this was to coincide with the

ground-based data we had collected from a field visit at the end of March 2019 (Table 1).

Image pre-processing

Satellite images of the study years were imported into ArcMap 10.5 for mosaicking and data

tiling. They were further imported into the ERDAS ER Mapper 2015 for additional image cor-

rection and cloud masking applications. In the ATCOR module, MODTRAN code was

applied to the satellite images; this program proved useful in removing haze from the images.

An outline of this process is shown in Fig 2.

Land cover change across topography

LULCC and elevation. Because LULC is further classified according to elevation classes,

the mountain range was divided into various subsections. First, the Global Digital Elevation

Model was pro-processed and clipped to the study area. Then, the resulting image was reclassi-

fied according to the elevation, whereby 4 classes with an interval of 500 meters were obtained.

The elevation interval was based on Meybeck et al. [36] typology grouping, where the mean

medium of relief surface roughness, type of forests, and the grouping of urban areas are taken

into consideration. The land cover classification image was then layered over the reclassified

elevation map to be reprocessed. Thus, the newly classified image was then reclassified once

more, resulting in a map of land cover against elevation groups. These elevation groups are

listed as 1, 2, 3, 4, and 5 (< 500 m, 500–1000 m, 1000–1500 m, 1500–2000, and> 2000 m

respectively). Using this final map, we were able to obtain land cover area values of the eleva-

tion groups. These processes were also repeated for the other years.

Finally, for the ground-truth images, a point-based accuracy assessment was con-ducted.

On-site GPS points were obtained and applied on the 2019 imagery only, while Google Earth

acted as an additional verification source for the other years. A confusion matrix was used in

ArcMap to create 500 random sampling points, where 100 points were allocated to each land

cover class. ArcMap was then used for the final stages of map making and labelling.

LULCC and slope. An additional step for assessing LULCC in the mountainous region

used a slope degree map. The resulting image from the GDEM merger was used to produce a

slope map originally derived by the unit degrees. Further, these degree values were reclassified

to intervals of 10˚. Similar to the methods conducted in the LULCC and elevation section,

land cover classes intersected these degree lines were obtained. Finally, the land cover map was

overlaid onto the slope map, and specific land cover types and their associated slope degree

Table 1. Description of satellite sensors and acquisition date.

Sensor Date Path/Row Purpose

Landsat 7 (ETM+) 03 April 2009 127/57 Land Use vs Topography, Land Surface Temperature vs Topography

Landsat 8 (OLI/TIRS) 08 March 2014 127/57 Land Use vs Topography, Land Surface Temperature vs Topography

22 March 2019 127/57 Land Use vs Topography, Land Surface Temperature Topography

ASTER GDEM V2 2011 ASTGTM2_N04E101 Digital Elevation Model derivation and Land Use vs Topography classification

https://doi.org/10.1371/journal.pone.0252111.t001
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values with the resulting area values were obtained. The changes in slopes and elevation classes

according to the LULC were tested using the PROC GLIM-MIX in SAS Ver. 9.3 (SAS Insti-

tute) at a significance level P< 0.05 as a split plot randomized complete block design (RCBD).

The main plot was the land use classes, while the sub plot was either slope or elevation classes,

while years served as the blocks.

LST derivation

For the derivation of LST, we had used Landsat 7 and 8 TIRS bands with a thermal spatial reso-

lution of 60 m and 100 m respectively. Landsat 7 was then resampled to the same spatial reso-

lution of band 10 and 11 of Landsat 8. For MODIS, the spatial resolution is 1 km for bands 31

and 32; which was then reclassified to the same resolution as both Landsat 7 and 8 sensors–

100 m. As many dates throughout the months of March and April were shrouded in clouds,

we had to go for the image with the least cloud coverage, then subsequently conducted a cloud

removal technique in the ATCOR module of ERDAS Imagine 2015. Due to that, one image

per month could only be obtained for all years of the duration of the study. The Landsat 8 sat-

ellite passed overhead our study area at approximately 10 am, consistently for all years. The

temporal resolution for both Landsat 7 and 8 satellites is 16 days, while MODIS is 2 days. A

known issue for Landsat 7 imagery was the SLC-off error, that removed important areas from

the imagery, then, ‘gap filled’ using a gap filled data file that came within the Landsat imagery

database.

The data used for our study are within the first quarter of each year (January to April). As

the study area was known to contain plenty of cloud cover, due to it being a mountainous

region that sits along the Titiwangsa Mountain range, it experiences harsh weather during the

monsoon season. For this matter, MODIS was introduced to complement Landsat data as a

means of validation to accurately estimate LST values. The MODIS data chosen was ensured

Fig 2. Flowchart outline of the study methodology.

https://doi.org/10.1371/journal.pone.0252111.g002

PLOS ONE Impacts of land use and land surface temperature

PLOS ONE | https://doi.org/10.1371/journal.pone.0252111 May 21, 2021 6 / 26

https://doi.org/10.1371/journal.pone.0252111.g002
https://doi.org/10.1371/journal.pone.0252111


to be a day or two before/after the images of Landsat. All data from the satellite sensors gener-

ated a maximum, minimum, average, and standard deviation values. These values were

extracted from histogram tab in the data when viewed in ArcMap, for the purpose of LST anal-

ysis and map making accordingly. The LST derivation was conducted on the spatial scale of

the entire study area– 669.69 km2, with and without land cover changes. Due to the varying

LST values, the decision to combine Landsat and MODIS data was undertaken to obtain an

average between the two sensors. Further explanations regarding the decisions above are cov-

ered in the preliminary study [35].

For this study, Landsat 7 ETM+ dual thermal bands were used; specifically, the low gain

band 6 (6L) and high gain band 6 (6H). Band 6L shows areas where the surface brightness is

high (non-vegetated areas), whereas band 6H highlights areas where surface brightness is low

(vegetated areas) [27, 37]. In a study where the investigated area sat in a high vegetation area,

Nguemhe Fils et al. [38] used only band 6H because the surface brightness was lower. How-

ever, in the current study, we used both bands because the study area comprised both vegeta-

tive and non-vegetative details. To obtain an average, both values of 6H and 6L were added

and then divided by ‘2’. Various studies, such as [37, 39–41], previously used this method.

To calculate the LST of Landsat 8, we chose the Split-Window Algorithm (SWA), in which

both bands 10 and 11 were applied; this method is recommended over other methods, despite

the known stray light issue [42–48]. For the calculation of LST from the satellite data, the satel-

lite images used were subjected to a series of processes. Additionally, MODIS TERRA, as a val-

idation comparison, was also used within this study. The method of deriving LST is explained

in detail by How Jin Aik et al. [35].

Results

LULCC accuracy

To calculate the accuracy of the classification and post classifications, a confusion matrix was

performed using a point-based validation system. For the year 2019, ground truthing points

collected on site by a handheld Garmin GPS is used for the accuracy assessment. However, as

there are no user obtained points or historical classification maps for years 2009 and 2014,

Google Earth acted as the validator. The results are shown in Tables 2–4. The overall accuracy

was 94.60%, 90.94%, and 92.78% for years 2019, 2014 and 2009 respectively.

Land cover change across elevation class

The elevation of Cameron Highlands is categorized by a 500 m interval, shown in Fig 3. In this

section, the relationship between LULC classes against elevation gradient is assessed accord-

ingly as seen in Fig 4 and Table 5. Based on the results, it was found that the elevation group of

1000–1500 m experienced the most changes in land cover, where the primary forests declined

Table 2. Confusion matrix of 2019 land cover classification.

LULCC 2019 Primary Agricultural Urban Cleared Water Total User (%)

Primary Forests 97 4 2 0 0 103 94.17

Agricultural Lands 2 89 5 2 0 98 90.82

Urban Areas 1 7 92 3 0 103 89.32

Cleared Lands 0 0 1 95 0 96 98.96

Water bodies 0 0 0 0 100 100 100.00

Total 100 100 100 100 100 500 94.65

Producer’s Accuracy (%) 97.00 89.00 92.00 95.00 100.00 94.60

https://doi.org/10.1371/journal.pone.0252111.t002
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by 35.98 km2 between 2009 and 2019. This reduction in primary forests is followed by an

increase of both urban areas and agricultural lands of 3.99 km2 and 14.79 km2 respectively. As

the majority of urban and farm-based plots reside in this elevation group, the changes have

been detrimental to the environment in this elevation group. Consequently, land cover classes

in the > 1500 m group showed the second largest change, especially in primary forests where

urban areas replaced those land covers. During the initial 5 years gap of 2009 to 2014, clearing

of primary forests were the main activity alongside agricultural land expansion (farmland and

plantations). It was noted that land cover change declined between 2014 and 2019, for all, but

urban classes. This is due to the growing urban population and land use where high rise con-

dominiums and buildings, and hilltop homes are being built. As the elevation increases, so

does the development of urban living quarters. Interestingly, between 2014 and 2019, agricul-

tural lands experienced a reduction in land cover area. This is due to the conversion of agricul-

ture to urban areas, happening in the 1000–1500 m group. Water bodies such as the Ringlet

Lake and Ulu Jelai Hydroelectric plant too, experienced some changes, a decline of 0.22 km2

between 2009 and 2019 due to the reduction in size of Ringlet lake, followed by an incline of

0.04 km2 for the hydroelectric plant. Based on Fig 3, there are 5 classes of elevation groups,

however, the results of land use and land cover classification showed negligible change in

the> 2000 m group. Due to the nature of the results, only 2 decimal points are taken for the

area. Thus the> 2000 m group has miniscule changes in 3 decimal points; therefore, this

group was removed from Table 5.

In Fig 4, the LULCC of Cameron Highlands are grouped by their individual category of ele-

vation–denoted by the values 1–5. This figure enables the reader to have a proper assessment

of the land cover changes and expansion between 2009 and 2019. The figure was generated

from the results of Table 5. Between 2009 and 2014, the change in urban areas ranged between

2.09 to 2.51 km2, while agricultural lands expanded between 0.49 to 15.67 km2. Some areas of

agricultural lands appeared sporadically as if unplanned, these can be seen in Fig 4, year 2014,

occurring in the areas of Habu and Ringlet. These areas seem to be converted from previously

Table 4. Confusion matrix of 2009 land cover classification.

LULCC 2009 Primary Agricultural Urban Cleared Water Total User (%)

Primary Forests 94 4 2 4 0 104 90.38

Agricultural Lands 2 89 5 2 0 98 90.82

Urban Areas 6 8 88 5 0 107 82.24

Cleared Lands 4 1 2 85 0 92 92.40

Water bodies 0 0 1 0 98 99 98.99

Total 106 102 98 96 98 500 90.96

Producer’s Accuracy (%) 97.00 89.00 92.00 95.00 100.00 94.60

https://doi.org/10.1371/journal.pone.0252111.t004

Table 3. Confusion matrix of 2014 land cover classification.

LULCC 2014 Primary Agricultural Urban Cleared Water Total User (%)

Primary Forests 96 3 2 0 0 101 95.05

Agricultural Lands 3 88 1 8 0 100 88.00

Urban Areas 1 5 86 5 3 100 86.00

Cleared Lands 0 3 7 88 1 99 88.88

Water bodies 0 0 3 0 97 100 97.00

Total 100 99 99 101 101 500 90.88

Producer’s Accuracy (%) 96.00 89.00 87.00 87.00 96.00 91.00

https://doi.org/10.1371/journal.pone.0252111.t003
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urban or primary too, to agriculture. Ground visits to the location further confirms the change

as such, particularly in the areas of Brinchang and Tringkap. Notably, most farm areas located

along the side of the road network remained unchanged but inland land conversion appeared

to be rampant; this further confirms the land use change results to be true to a certain level.

The pattern of growth in land use across all classes concentrate their expansion in the fourth

elevation group (between 1500 and 2000 m).

Fig 3. Elevation map of Cameron Highlands. (Data source: ASTER Global Digital Elevation Model courtesy of NASA Earth Data).

https://doi.org/10.1371/journal.pone.0252111.g003
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Fig 4. LULCC of Cameron Highlands by elevation group between 2009 and 2019. (Data source: Landsat 7 ETM+ and Landsat-8 OLI image courtesy of the U.S.

Geological Survey).

https://doi.org/10.1371/journal.pone.0252111.g004

Table 5. LU/LC distribution of area and area change (km2) across the elevation (m).

Land Cover Elevation (m) 2009 2014 2019 2009–2014 2014–2019 2009–2019

Area % Area % Area % Change Change Change

Primary Forests < 500 21.59 3.73 18.51 3.42 16.93 3.26 -3.08 -1.58 -4.66

500–1000 132.71 22.95 124.55 22.98 121.59 23.45 -8.16 -2.96 -11.12

1000–1500 305.23 52.80 286.32 52.86 269.25 51.91 -18.91 -17.07 -35.98

> 1500 118.62 20.52 112.38 20.74 110.94 21.38 -6.24 -1.44 -7.68

Total 578.15 541.76 518.71 -36.39 -23.05 -59.44

Agricultural Lands < 500 0.00 0.00 0.49 0.86 7.45 8.80 0.49 6.96 7.45

500–1000 0.29 0.87 5.46 9.58 23.17 27.39 5.17 17.71 22.88

1000–1500 25.87 78.40 41.54 72.84 40.66 48.06 15.67 -0.88 14.79

> 1500 6.84 20.73 9.54 16.72 13.33 15.75 2.70 3.79 6.49

Total 33.00 57.03 84.61 24.03 27.58 51.61

Urban Areas < 500 0 0 2.51 4.22 2.65 4.33 2.51 0.14 2.65

500–1000 4.02 8.04 6.45 10.84 4.77 7.81 2.43 -1.68 0.75

1000–1500 41.78 83.36 43.87 73.73 45.77 74.91 2.09 1.9 3.99

> 1500 4.30 8.60 6.67 11.21 7.91 12.95 2.37 1.24 3.61

Total 50.10 59.50 61.10 9.40 1.60 11.00

Cleared Lands < 500 0.67 8.55 0.78 7.05 0.31 7.43 0.11 -0.47 -0.36

500–1000 1.5 19.12 1.56 14.11 0.19 4.56 0.06 -1.37 -1.31

1000–1500 5.16 65.82 7.04 63.66 3.29 78.90 1.88 -3.75 -1.87

> 1500 0.51 6.51 1.68 15.18 0.38 9.11 1.17 -1.30 -0.13

Total 7.84 11.06 4.17 3.22 -6.89 -3.67

Water Bodies < 500 0.00 0.00 0.00 0.00 0.1 9.09 0.00 0.10 0.10

500–1000 0.00 0.00 0.00 0.00 0.62 56.36 0.00 0.62 0.62

1000–1500 0.60 100 0.34 100 0.38 34.55 -0.26 0.04 -0.22

> 1500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 0.60 0.34 1.10 -0.26 0.76 0.50

https://doi.org/10.1371/journal.pone.0252111.t005
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Land cover change across slope class

According to the Malaysia Ministry of Energy and Nature Resources (MMNER) [49], slope

ranges must be controlled for any development activity. Classified details of slope ranges are

provided in Table 6. Using these classification systems, all development activities, such as

farming, residential construction, and other relevant activities, must follow the guidelines to

manage, conserve, and maintain the structures of hill areas. However, this regulation is not

applied to the development of most activities in Cameron Highlands. The slope-land use com-

parison map in Fig 5 provides an indication of the types of land cover that are being built on

with regards to the slope inclination.

In Fig 5, a land cover map of Cameron Highlands in the year 2019 over a slope map in

degree format is shown. Areas of steepness above 35˚ are denoted as areas (in red), wherein

any construction or land use is not recommended. Agricultural lands are mostly located in the

study area at a slope angle between 15˚ and 25˚. The historical trend between 2009 and 2019

has shown land cover changes to occur primarily between 15˚ and 25˚ (Table 7), and second

between 25˚ and 35˚; the changes are noted by 25.97 km2 and 13.21 km2 respectively. How-

ever, Fig 5 shows extreme cases in which crops are being cultivated on slopes exceeding 35˚ in

steepness. Our results in 2019 confirm the change in land cover on the upper slopes, where

agricultural lands (1.84 km2) and urban areas (1.49 km2) are the primary land covers in the

area. Field visits have confirmed that farmers can be seen cultivating vegetables, typically in

“Mossy forest” areas of steep hills at the foots of mountains, while living along the cliff sides.

The results of the land cover to slope classification shown in Table 7 indicate that man-

made structures (see agricultural lands, urban areas, and cleared lands) are built between 15

and 35˚. Between 2014 and 2019, there was an increase in development at the lower elevations;

slope range was not considered here because the majority of the Cameron Highlands, regard-

less of the slope, has experienced geoengineering processes on its cliff faces. However, a con-

current increase in the lower elevation regions of the study area was recorded.

Relationship between LST and topography

The mean LST of the Cameron Highlands in the last 10 years increased from 21.1˚C to 28.6˚C,

with an approximate 7.5˚C increase across the region (Table 8). As previously mentioned, the

LST values are derived from the mean of values from MODIS and Landsat sensors. This was

done to minimize the error of deviation and decrease the LST variability difference between

the three dates. The primary forest experienced the largest change in LST between 2009 and

2019, where a range of values from -0.5 to 3.5˚C are realised. This change is brought about by

deforestation and land cover change which occurred significantly in the 500–1000 m group.

Table 6. Classification of slope ranges [9, 31, 49].

Class

Names

Characteristic of

Slope

Description

Class I < 15˚ Suitable for development, low restriction in geoengineering process, low

engineering cost for development and need for research land development.

Class II > 15˚ and < 25˚ Low restriction in geoengineering process, suitable for development, low

engineering cost for development and need for research land development.

Class III > 25˚ and < 35˚ High restriction in geoengineering process, low in development activities, high

cost for engineering development and need for land research development

intensively.

Class IV > 35˚ Not suitable for development activities, very high restriction in geoengineering

processes, very high cost for engineering development and very intensive need

of land research development activities.

https://doi.org/10.1371/journal.pone.0252111.t006
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Fig 5. Cameron Highlands slope and land cover image overlay. (Data source: Landsat-8 OLI image courtesy of the U.S. Geological Survey).

https://doi.org/10.1371/journal.pone.0252111.g005
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About 1.7˚C increase is observed between 2014 and 2019, while a 3.2˚C increase between 2009

and 2019 is observed. The land cover change in this elevation group experienced land conver-

sion from primary forest to agriculture lands and urban areas, predominantly in the areas sur-

rounding the Ulu Jelai Hydroelectric plant, in the East region of Cameron Highlands.

In the agricultural lands, the 1500–2000 m group elevation is the most affected group by

LST change. The increase in LST depends on the type of crop grown. From field visits and ver-

ification through Google Earth, the agriculture plots at this elevation group are mainly farm

vegetables, flowers, green crops and farms of various vegetative signatures (Fig 4, agricultural

lands, elevation group 4). A point to note is the unavailability of LST values in certain elevation

groups, this is due to the absence of that land cover class, where a (-) is denoted in Table 5.

From the mean temperature difference, it is evident that the mean LULC classes temperature

increased over time, thus, indicating that the LST trend in temperature of Cameron Highlands

is decreasing.

Aside from assessing LST trends by elevation group, an additional assessment relating to

slope inclination was performed. As the Cameron Highlands is an area full of undulating hills

and mountains, it is necessary to determine and assess any changes relating to LST and LULC

along the slope classes. Using the data from Table 7 and Fig 5, LST values per land cover and

slope group are obtained (Table 9). Most of the classes experienced an increase in temperature,

while urban and water bodies experienced a decrease in temperature; between 2009 and 2014

for several slope classes.

Table 7. LU/LC distribution of area and area change (km2) across the slope (˚).

Land Cover Slope (˚) 2009 2014 2019 2009–2014 2014–2019 2009–2019

Area % Area % Area % Change Change Change

Primary Forests <15 190.63 32.97 175.58 32.41 163.71 31.56 -15.05 -11.87 -26.92

> 15 and < 25 240.73 41.64 226.88 41.88 218.15 42.06 -13.85 -8.73 -22.58

> 25 and < 35 126.26 21.84 119.56 22.07 117.87 22.72 -6.70 -1.69 -8.39

> 35 20.53 3.55 19.74 3.64 18.98 3.66 -0.79 -0.76 -1.55

Total 578.15 100.00 541.76 100.00 518.71 100.00 -36.39 -23.05 -59.44

Agricultural Lands <15 16.37 49.61 24.10 42.26 27.62 32.64 7.73 3.52 11.25

> 15 and < 25 11.58 35.09 21.86 38.33 37.55 44.38 10.28 15.69 25.97

> 25 and < 35 4.39 13.30 9.64 16.90 17.6 20.80 5.25 7.96 13.21

> 35 0.66 2.00 1.43 2.51 1.84 2.17 0.77 0.41 1.18

Total 33 100.00 57.03 100.00 84.61 100.00 24.03 27.58 51.61

Urban Areas <15 23.01 45.93 30.85 148.32 27.2 44.52 7.84 -3.65 4.19

> 15 and < 25 19.21 38.34 20.80 34.96 21.16 34.63 1.59 0.36 1.95

> 25 and < 35 6.88 13.73 6.87 11.55 11.25 18.41 -0.01 4.38 4.37

> 35 1.00 2.00 0.98 1.65 1.49 2.44 -0.02 0.51 0.49

Total 50.10 100.00 59.50 196.47 61.10 100.00 9.40 1.60 11.00

Cleared Lands <15 4.79 61.10 4.31 38.97 2.25 53.96 -0.48 -2.06 -2.54

> 15 and < 25 2.35 29.97 4.37 39.51 1.26 30.22 2.02 -3.11 -1.09

> 25 and < 35 0.64 8.16 2.13 19.26 0.54 12.95 1.49 -1.59 -0.1

> 35 0.06 0.77 0.25 2.26 0.12 2.88 0.19 -0.13 0.06

Total 7.84 100.00 11.06 100.00 4.17 100.00 3.22 -6.89 -3.67

Water Bodies <15 0.33 55.00 0.25 73.53 0.62 56.36 -0.08 0.37 0.29

> 15 and < 25 0.18 30.00 0.06 17.65 0.36 32.73 -0.12 0.3 0.18

> 25 and < 35 0.07 11.67 0.02 5.88 0.11 10.00 -0.05 0.09 0.04

> 35 0.02 3.33 0.01 2.94 0.01 0.91 -0.01 0.00 -0.01

Total 0.60 100.00 0.34 100.00 1.10 100.00 -0.26 0.76 0.5

https://doi.org/10.1371/journal.pone.0252111.t007
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Significance of LULCC and topography

To assess the significance of LULCC from Fig 4 and Tables 5 and 7, the ANOVA test showed

that the changes were significant for primary and agricultural lands, and urban areas, although

the changes according to the forest elevation and slope classes illustrated otherwise (Table 10).

Significance of LST and topography

In the significance test of LST from Tables 8 and 9, the ANOVA test showed that the changes

were significant for water bodies only when land cover against elevation was analysed

(Table 11). Elevation groups 1 and 2 too were significant. However, land cover against slope

classes achieved significance across primary forests, agricultural lands, and cleared lands. The

LST change in the three slope classes, excluding > 35˚, were significant too.

Discussions

Driving forces of land cover change and effects on land use

In the last ten years, an extensive body of literature and theories has emerged, wherein land

use and land cover change are directly related to forest transition. Drivers of deforestation are

identified based on permanent changes of forest cover to other land uses. The land use changes

described in this study indicate the growth of agriculture and urban expansion through the

Table 8. LST trend per land cover–elevation group.

Land Cover 2009 2014 2019 2009–2014 2014–2019 2009–2019

Elevation (m) Temp (˚c) Temp (˚c) Temp (˚c) Change Change Change

Primary Forests < 500 24.1 26.6 27.6 2.5 1.0 3.5

500–1000 23.4 24.9 26.6 1.5 1.7 3.2

1000–1500 22.6 24.3 24.8 1.7 0.5 2.2

1500–2000 22.3 24.0 23.7 1.7 -0.3 1.4

> 2000 21.3 22.6 22.1 1.3 -0.5 0.8

Agricultural Lands < 500 - 27.3 26.4 - -0.9 -

500–1000 24.5 26.1 26.3 1.6 0.2 1.8

1000–1500 23.2 25.8 26.2 2.6 0.4 3.0

1500–2000 22.3 25.5 26.2 3.2 0.7 3.9

> 2000 21.1 - 25.1 - - 4.0

Urban Areas < 500 - 26.6 28.6 - 2.0 -

500–1000 25.5 26.4 27.9 0.9 1.5 2.4

1000–1500 24.6 25.8 27.8 1.2 2.0 3.2

1500–2000 24.2 25.7 27.1 1.5 1.4 2.9

> 2000 - - - - - -

Cleared Lands < 500 24.9 26.7 27.5 1.8 0.8 2.6

500–1000 24.4 26.4 27.4 2.8 1.0 3.0

1000–1500 24.3 26.0 27.2 2.7 1.2 2.9

1500–2000 23.8 25.3 25.6 2.5 0.3 1.8

> 2000 - 24.4 - - - -

Water Bodies < 500 - - 27.9 - - -

500–1000 - 27.8 - - -

1000–1500 22.3 26.5 27.6 4.2 1.1 5.3

1500–2000 - - - - - -

> 2000 - - - - - -

https://doi.org/10.1371/journal.pone.0252111.t008
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clearing of previously used land and a new land—deforestation and forest conversion [50, 51].

This research revealed significant changes in both spatial composition and configuration due

to urban development as a result of the land use structure in the study area. In Cameron High-

lands, this study found that the main contributors to land use change are driven by a rise in

agricultural plantations and the agricultural activity of vegetable farming. Subsequent drivers

of deforestation include urbanization, for which tourism and living spaces are in demand. This

has led to further deforestation and forest conversion to meet this national demand. In hind-

sight, this change is also seen in other parts of the world where urban growth far exceeds the

supply of food sources [18, 23]. Hence, land use change in Cameron Highlands shifted from

mostly primary forest area in 2009 to mostly urban areas in 2014 and, subsequently,

Table 9. LST trend per land cover–slope group.

Land Cover 2009 2014 2019 2009–2014 2014–2019 2009–2019

Slope (m) Temp (˚c) Temp (˚c) Temp (˚c) Change Change Change

Primary Forests < 15 22.8 24.4 25.2 1.6 0.8 2.4

> 15 and < 25 23.0 24.4 25.4 1.4 1.0 2.4

> 25 and < 35 22.2 24.5 25.4 2.3 0.9 3.2

> 35o 22.5 24.3 25.2 1.8 0.9 2.7

Agricultural Lands < 15 22.2 23.7 26.6 1.5 2.9 4.4

> 15 and < 25 22.5 23.5 26.5 1.0 3.0 4.0

> 25 and < 35 22.7 23.5 25.6 0.8 2.1 2.9

> 35o 23.3 23.5 25.0 0.2 1.5 1.7

Urban Areas < 15 24.6 25.2 26.8 0.6 1.6 2.2

> 15 and < 25 24.9 24.8 26.7 -0.1 1.9 1.8

> 25 and < 35 24.9 24.3 26.5 -0.6 2.2 1.6

> 35o 25.6 24.1 25.7 -1.5 1.6 0.1

Cleared Lands < 15 24.6 25.4 26.4 0.8 1.0 1.8

> 15 and < 25 24.3 25.0 26.4 0.7 1.4 2.1

> 25 and < 35 24.7 25.3 26.2 0.6 0.9 1.5

> 35o 24.8 24.9 26.1 0.1 1.2 1.3

Water Bodies < 15 21.1 23.3 25.6 2.2 2.3 4.5

> 15 and < 25 21.6 23.8 25.5 2.2 1.7 3.9

> 25 and < 35 23.5 23.7 24.7 0.2 1.0 1.2

> 35o 25.4 23.2 24.4 -2.2 1.2 -1.0

https://doi.org/10.1371/journal.pone.0252111.t009

Table 10. Non-parametric ANOVA test of significance on land cover changes comparisons.

Land Cover vs Elevation Land Cover VS Slope

Land Cover classes P-values Land cover classes P-values

Primary Forest 0.0002 Primary Forest <0.0001

Agricultural Lands 0.0023 Agricultural Lands <0.0001

Cleared Lands 0.9869 Cleared Lands 0.9789

Urban Areas 0.0074 Urban Areas <0.0001

Water Bodies 0.9770 Water Bodies 0.9566

Elevation P-values Slope P-values

< 500 1.0000 < 15 1.0000

500–1000 0.9334 > 15 and < 25 1.0000

1000–1500 0.7372 > 25 and < 35 1.0000

> 1500 0.8003 > 35 0.9990

https://doi.org/10.1371/journal.pone.0252111.t010
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agricultural lands in 2019. Similarly, Gasim et al. [13] and Razali et al. [29] reported that

human activities and increased demand for both forest products and arable land for agricul-

ture are the primary drivers of deforestation in the study area. Despite the decrease in primary

forested areas, we can also observe some new growth in tea plantations and vegetable crops.

The main driving factor is undoubtedly deforestation, but there are also various proximate

drivers. It has been observed that the intensification of agricultural expansion, settlement

expansion, human activities, forest product harvesting, and mining are key contributors to

land use in Cameron Highlands (Fig 4). There are also the factors of government policies on

the expansion of agriculture to eliminate poverty in the region; human population growth; and

advancements in plantation technologies, arable soil, and climate suitability, which are the var-

ious underlying drivers of land use changes [6, 29, 35].

Population loss also plays a role in a regional growth structure by means of economic as

well as land use management. You et al. [52] expands on his research in Northeast China dur-

ing their economic boom era of 1992 to 2018. It was found that the reduction in population in

the region led to a decline in both social welfare and a reduction of socioeconomic develop-

ment. This had shifted the transitional land use from farming to a more industrialised sector

in hope to bring the migrants back. With regards to the farming systems and technological

advances, we are able to see a decline in local communities in Cameron Highlands that have

been solely concentrating on farm development [6]. The shift is being made to a transforma-

tion of economic rise in the industrial plantation and tourism sector [6, 31]. However, such

change results in the increase of foreign investors buying up local owned land, which inadver-

tently pumps our homegrown income out of the country [31]. Many aspects based on the local

population’s perceptions of land use, their socio-economic conditions, farming systems and

technologies, local environmental policies, and the role of politics remain as challenges for

land planners, as these aspects have influenced the changes that occur on the forest cover [53].

Land use/ land cover changes relationship with topography

By taking the topography–LULC relationship into consideration, our study observed that the

LULC along the upper angles exceeds 35˚. Additionally, LULCC was found to be highly depen-

dent on the slope, elevations, the geological structures of terrains, and environmental–ecologi-

cal circumstances. Because agricultural activities prevail in predominantly flat areas, this result

was expected due to the ease of agricultural practices. It is clear that flat areas are more condu-

cive to agricultural practices such as irrigation and ploughing, allow a higher intake of soil

Table 11. Non-parametric ANOVA test of LST significance on LULC–topography.

Land Cover vs Elevation Land Cover VS Slope

Land Cover classes P-values Land cover classes P-values

Primary Forest 0.5416 Primary Forest 0.0100

Agricultural Lands 0.0604 Agricultural Lands 0.0044

Cleared Lands 0.4768 Cleared Lands 0.0077

Urban Areas 0.0779 Urban Areas 0.0123

Water Bodies 0.0100 Water Bodies 0.0199

Elevation P-values Slope P-values

< 500 0.0012 < 15 0.0047

500–1000 0.0064 > 15 and < 25 0.0049

1000–1500 0.0349 > 25 and < 35 0.0032

1500–2000 0.5538 > 35 0.0245

> 2000 0.7572

https://doi.org/10.1371/journal.pone.0252111.t011
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nutrients due to low surface runoff, and have close proximity to human settlements in which

grazing occurs [18, 54]. In the higher elevation region of the Cameron Highlands (1500–2000

m) in 2019, we found that the area of urban areas was greater than the area of primary forests.

This decline in primary forest is also attributable to the rise in farmland, which caused instabil-

ity in the soil in the surrounding area. Despite the high risks of soil erosion, further expansion

occurs annually, to the detriment of farmers; annual soil deposition is found to occur at a rate

of 0.5–1.0% of the total soil area (Huon et al., 2017). According to Huon et al. [55], in Laos,

this rate of soil deposition is calculated based on an area that has high rainfall and is on a

steeply sloping plane. The study area in Laos is highly similar to that of our study area of the

Cameron Highlands. In the Lancang–Mekong river delta, Chuenchum et al. [56] found that

the rate of deposition varies at different elevations and distances of the affected area from the

closest water table and/or river. The erosion rate was found to be between 700 and 10,000 t/

km2/y in the Mekong river delta. However, in our study, the rate is approximately 90 to 200 t/

km2/y, depending on the area [35]. Sungai Bertam is not a fast-moving river, and its rate of

flow is controlled continuously by the Ulu Jelai hydroelectric plant that flows into Ringlet

Lake. Thus, the amount of annual rainfall, in addition to the ongoing engineering projects in

the river bed at Ringlet, constantly causes the rate of soil deposition to flux, particularly during

the monsoon season [35].

Generally, farmland is most suitable for production between slopes of 15 and 35˚. However,

the results in Table 7 show a continuous rise in farmed land above 35˚. This is a cause for con-

cern because steeper slopes not only have higher development costs due to their inaccessibility

and fragile soil structure but also lower soil fertility due to faster surface runoff, poor water

holding capacity, and weaker root hold strength for crops. Although areas for farming and

agricultural activities are not scarce, the uncontrolled growth of crops appears to violate the

regulations because these crops are planted on cliffs, regardless of the slope degree and eleva-

tion. This has significant implications for the cliff face, increasing the risk of potential ground

imperfections and the formation of loose soil, thus leading to landslides [25].

Additionally, this practice leads to unforeseen effects caused by the uprooting of previously

grown trees with deep roots, which are replanted with soft root crops [57]. Unlawful farming

operations are to blame for this phenomenon due to the placement of farmlands on the upper

classes (III and IV) of hillslopes. Agriculture development on these hillslopes directly affects

the water quality of streams, through which soil degradation is the direct cause of improper

farming guidelines [58]. Several studies by Hamzah et al. [31], Birhanu et al. [59], and Degife

et al. [60] reported that flat land is more favorable than steep slopes due to a lower water table,

better water holding capacity, and maximum contact time of the seepage of water into the soil.

As the majority of flat lands and low degree cliff faces are used, local people will choose to

deplete the primary forests at higher elevations and on steeper slopes. Further development

will be pushed into the lower regions of the Cameron Highlands, primarily in the hill diptero-

carp region (500–1000 m) and areas in the upper dipterocarp region (1000–1500 m); thus, fur-

ther increasing the rate of deforestation and leading to a heightened change in climate

processes.

Generally, primary forests decrease with an increase in agricultural land, despite the eleva-

tion gradient and high angular slope degree, which is partly caused by the conversion from for-

est to farmland or urban areas to farmland. The Cameron Highlands has experienced

numerous landslides and cliff failures in recent decades, primarily due to poor geotechnical

practices [61]. However, these occurrences were caused by the uprooting of trees from these

steep slopes, which is one of the detrimental effects of cliff face deforestation [15]. This, conse-

quently, leads to an increase in surface water runoff and exacerbates the effect of soil erosion

due to the absence of vegetation cover [16]. Because of the increased changes due to
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anthropogenic factors and their resulting impacts, recording and addressing these issues is of

extreme importance.

Topographical relationship to LST and LULCC

Most of the data obtained for the calculation of LST are within the first quarter of the year,

when the monsoon season is faltering or has passed. It can be noted that, during this time, the

monsoon season affected the data because the land is usually covered with damp vegetation,

which results in a cooling effect. In contrast, at the end of the monsoon season towards sum-

mer, the vegetation cover was minimal; hence, the recorded LST for most years was high. For

every 100 m rise in elevation, the surrounding temperature decreases by 0.65˚C, depending on

the location, season, water vapor content, time of day, and various other factors [50]. Using

this classification of elevation against recorded LST, we were able to determine the extent to

which the constant rate of 0.65˚C per 100 m increased during the period of 2009 to 2019.

Both elevation groups one and two experienced the most change in LST in the span of 10

years. It was observed in primary forests and cleared lands by a change of 3.2–3.5˚C and 1.8–

3.0˚C, respectively. When the tropical rainforests were deforested, they would have released

carbon to the atmosphere which affects the surrounding area. This area is found to be in the

Eastern part of the Cameron highlands region where both agriculture and urban classes have

taken over. It can be noted that a road was built here between 2009 and 2014, linking the East-

ern and Western boundaries together. Subsequently, urban development increased tremen-

dously in the later 2014–2019 years. Although there are no urban housing areas evident, as

validated by Google Earth and Maps, the area in the lower elevation region seems to be devel-

oped for farm workers. While it is difficult to ascertain whether the area is solely urban or

urban mixed–agriculture, we are able to confirm that land use change has severely increased

the overall LST.

In the third elevation group (1000–1500 m) lies the upper dipterocarp region; Liang et al.

[62] and Sinha et al. [63] explained that an increase in the sensitivity of forests to changes in

climate conditions begins here, where the sensitivity of the forest flora increases as the eleva-

tion increases. The species biodiversity richness is greater here, and flora is able to thrive better

than in other forested regions because the climatic conditions and the atmospheric pressure

are optimal. However, from our results, we have found that LULCC in this elevation group is

exceptionally higher than other elevation groups. Because of the growing population, the

demand for land for urbanization in the Cameron Highlands will continue in the already pop-

ulous third elevation group. Furthermore, because available land is becoming scarce, future

urbanization can be expected to occur in the lower forest region (first and second elevation

groups). Moreover, the change in LST across all land covers is significantly higher than the

other elevations (Table 8). It is interesting to note that water bodies had an increase in temper-

ature by 4.2˚C, 1.1˚C, and 5.3˚C in 2009–2014, 2014–2019, and 2009–2019. One of the water

bodies’ is named as Ringlet Lake and has experienced land cover changes between 2014 and

2019, where some areas were filled and converted to aquaculture farms. This change in land

use suggests that the increase in temperature is justified where the surface reflectance of water

has now increased while the rate of heat deposition has decreased. As the aquaculture farms

have aluminium roofing, the heat absorption in this area increases as well.

The fourth elevation group (1500–2000 m) lies the montane-forest oak region. It is

regarded as the region of utmost importance in the entire Cameron Highlands area, due to the

majority of tea plantations and farm crops grown there. Hence, results for this would indicate

the suitability of crop growth for the future. From our results, the average change in tempera-

ture was noticeably higher in 2009–2014, than 2014–2019 for all classes. This result would
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indicate that the intensive LULCC happening between 2009 and 2014 affected the LST

severely; a noticeable change between 1.5–3.2˚C. The results obtained indicated a similarity to

those of the study of Phan et al. [64], which was conducted in a mountainous region of Viet-

nam when both MODIS and Landsat datasets were averaged as well. Rising temperatures not

only cause hardships for agriculture but also negatively impact the tourism sector [64–66].

Relationship between LST and LULCC

Changes in land use had affected the land surface temperature (LST) of the Cameron High-

lands, which is also a driver of forest transition. The relationship between LULCC and LST is

complex and multidirectional as land use change has been demonstrated to influence climate

at local, regional, and global scales. Among anthropogenic land use types, the urban environ-

ment and urbanization are arguably the strongest drivers of localized climate change and vari-

ability [67]. In Cameron Highlands, preliminary research showed a rise in temperature by

roughly 2–3.5˚C in ten years [35]. This increase was introduced by the change in land cover

and extreme land use conversion of forest to urban and from urban to agriculture. The

changes occurring in major towns such as Ringlet, Brinchang, and Kuala Terla are readily

observable [35]. Moreover, the increase in urban areas is a direct indication of an increase in

population, which affects the urban heat index (UHI). Furthermore, the conversion of the veg-

etative regions to impervious surfaces has been shown to increase extremes in temperature

and result in the creation of urban heat islands (UHI). Urban development and construction

activities were demonstrated by Madanian et al. [68] to result in alterations in climatic parame-

ters, such as land temperature. The loss of tropical forest and its replacement with intensive

monoculture has also been demonstrated to result in localized and regional alterations to the

climate [69]. Parks in urban areas mitigate the excess heat radiated off buildings by providing a

cooling effect from the land cover types of water and vegetation. However, not much is heard

about the effects of buildings on those parks and how the excess heat would affect the cold

island effect (CIE). As mentioned before, UHI is contributed by urban development, hence,

Han et al. [70] studied the impacts of buildings and their UHI against cool areas such as urban

parks. This study was done in Beijing, China in multiple central locations where urban parks

have been situated to mitigate the UHI effects from the close proximity of buildings. The

results have shown the parks CIE to be stronger in summer than in winter. Moreover, high

rise buildings would provide shade onto the park areas, which in hand cools the area by a nom-

inal amount. However, as high-rise buildings occupy a larger surface area, it too is able to radi-

ate more heat from the sun. Han suggests that the planning of an urban city should take into

account the effects of medium and high-rise buildings onto parks. In Dalian city, China, Yang

J et al. [67] had organized and planned local climate zones (LCZ) for the mitigation of urban

heat island effect. In such a densely populated city, human settlements are bound to generate

excess heat, further contributing to the increment of the overall LST. Through a series of mod-

els, an appropriate LCZ layout model was found achieving 11.654˚C, as the lowest UHI inten-

sity value. This layout model is recommended for similar densely populated urban areas [26].

Similarly, Yang J et al. [71] had studied the relationship between LST and LCZ in Shenyang

city, China using these parametric models too. Notably, this LCZ model would be beneficial to

the urban development of Cameron Highlands and to understand the severity of UHI emitting

from these areas.

Studies in Cameron Highlands over the past years have shown an inclination in LST due to

the direct implications of forest clearing—even more so with the extensive growth of urban

housing areas [29]. In forest transitions, it has a very sensitive relationship with the changing

climate. Modelling studies focusing on the Amazon basin established that a loss of biodiversity
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and increase in the savanna would result in ecological “tipping points”—namely, an increase

in temperature of 4˚C or deforestation exceeding 40% of the forest area. This would cause a

‘runaway’ effect in which large-scale transitions of mostly the southern and eastern Amazon

could take place [69]. As of 2016, an estimated 1˚C temperature increase has been observed in

the Amazon region [69]. Changes in climate due to land use behaviours and greenhouse gas

emissions could also potentially influence the hydrological regimes of geomorphological fea-

tures such as rivers catchments and basins, as well as affecting the run-off process [68, 69]. Pat-

terns of vegetation types in relation to LST is studied in Coastal Dalian using the MODIS12Q2

product, where each vegetation phenology identified by NDVI was found having a strong rela-

tionship against LST [72]. Results have shown the LST in these coastal areas affecting the vege-

tation cycles, primarily to the contribution of UHI from nearby urban areas. The results of a

study conducted in Isfahan Province, Iran utilized a Landsat-based analysis to show a strong

negative correlation between LST and the Normalized Difference Vegetation Index (NDVI)

during hot months. Conversely, the study showed the opposite during the cold season. This

phenomenon was also demonstrated by assessing changes in vegetation cover, moisture prop-

erties, and surface temperature in a brown coal dump from 1984 to 2009 using a Landsat-

based analysis [73]. By comparing Fig 4 to Table 8 and Fig 5 to Table 9, the changes in land use

difference over the years were also shown to severely impact the average recorded LST. As this

is the first study to associate LST with forest type cover class in Malaysia, we hope that this

work can serve as a starting point for future studies. The benefit of assessing LST is that LST

can serve as a variable to assess forest health; moreover, the LST provides valuable information

to understand better what occurs at each elevation and what the LST threshold is, to identify

the ecology linked to that LST.

Sustainable Development Goals (SDG) for Cameron Highlands

The main issues that have affected the Cameron Highlands are the causes and effects of its

land-use. The Cameron Highlands is unique because it is a highland forest whose year-long

temperature and cool climate provide the perfect grounds for highland vegetable crops and

tourism. The expansion into this sensitive highland region is driven by these factors, rather

than timber logging. These issues include the transition from small-scale shareholder agricul-

ture to larger scale deforestation through logging. Ideally, the development of the policies in

Cameron Highlands would be aimed at mitigating carbon emissions from the deforestation of

primary forests, which are great carbon storages. The national sustainable development goals

(SDG) outline included estimates of the activity data of land use via satellite land monitoring

systems through land cover assessments, increased enforcement funding, and educating the

locals about proper farming techniques to ensure sustainable farming practices are undertaken

[74–76]. The situation in Cameron Highlands differs from that in other hotspots, such as Bor-

neo, as there are no large-scale industrial plantations or large agriculture plots in Cameron

Highlands but instead small-sized areas of agriculture run by many small shareholders. Based

on a visual interpretation from visits to the study area, the area’s land usage is improper, as reg-

ulations are improperly enforced. Some larger agriculture plots, such as the Bharat tea planta-

tion and Boh tea plantation, may benefit from the SDG’s by furthering the growth of their tea

sustainably through planting only on allocated land without pushing into other land-use areas

and also following the guidelines for planting on the recommended slope degree class [68].

There are several ways that the government can address the existing drivers of deforesta-

tion. First, both economic and employment opportunities for the local and indigenous com-

munities should be expanded. Secondly, there are two groups of drivers for deforestation, the

first being the large shareholders and the second being the small communities farming for
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their own needs [77]. For the first group, the government could strategize and create policies

to develop a transparent and effective enforcement mechanism [78]. It is recommended that

the authorities in Cameron Highlands establish an incentive mechanism for the second group

by rewarding them for their efforts in conserving the forest by means of compensation [78,

79]. However, this can only work in the short-term for such individuals, as they could come to

rely on handouts and, in the worst case, this factor could create more unemployment [80].

A baseline for measurements would need to be established, which would either follow the

national forest reference value or the emission level. This system would periodically monitor

and measure carbon emissions and storage values and provide the information required for

periodical reporting to the UN and other relevant national committees. The policies governed

by these countries should encourage mitigation actions in the forest sector by reducing emis-

sions from deforestation and forest degradation, engaging in conservation and the enhance-

ment of forest carbon stocks, and conducting sustainable management of forests [74, 81]. The

state government of Pahang has announced efforts for the protection and preservation of the

Cameron Highlands, similar to the recommendations stated above, including the regrowth of

trees and allocating funds to increase armed security forces to curb illegal land encroachment

[82, 83]. An additional suggestion to consider is the use of identification and mapping to con-

struct a simple cause-effect relationship chart between the different land uses and their associ-

ated socio-economic activities. Through this program, we would be able to specifically

establish the pros and cons of an activity and identify the relationship one activity would have

with another [84]. This recommendation would be crucial for identifying the causes and effects

that would then determine the course of action in Cameron Highlands.

Limitations of the study

In our study, we first encountered several issues regarding the derivation of the LST from both

Landsat 7 and 8 datasets, primarily due to the errors mentioned previously. To counter this

issue, we had combined both MODIS and Landsat LST datasets together to form an average.

This resulted in the temperature data analysis conducted in this study to be indeed helpful. In

our preliminary study by How Jin Aik et al. [35], to counter the uncertainty of results, the two

satellite sensors were compared with air temperature obtained from the local meteorological

weather station in Tanah Rata, Cameron Highlands. By taking into account the underestima-

tion of air temperature data, we conducted an accuracy assessment based on the projected LST

values. The RMSE and BIAS values were obtained through the comparative LST assessment,

which was backed up by previous studies of similar land cover and temperate climates, to con-

firm that the RMSE accuracy is within acceptable range. We had chosen the Landsat sensor

due to its long-term date coverage which our study falls within, and compared against

MODIS, and air temperature values. Perhaps, the need of another LST derived dataset would

result in a better comparison of interannual temperature variability.

In Malaysia, an average of 80% cloud cover is experienced daily [85, 86]. Moreover, the

study area sits on the Titiwangsa Range, which separates the north-eastern and south-western

part of Malaysia. As the range has an elevation of 1800 m and above, it acts as a natural barrier

to protect the southern parts of Malaysia from the harsh monsoon season that batters the

north. The date of our study was in late March to early April, this is the period when the north-

ern monsoon had just passed. Even though the temporal resolution of MODIS is 2 days, rains

are constant, even at the end of the monsoon season, hence, we would not be able obtain clear

cloud coverage images; having a 16 vs 2-day temporal resolution does not help much. This is

where radar based LST methods would work. For future studies, we recommend examining

the slope effect that determines the lapse rate at each slope range. This is due to the different
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forest types having different tree canopy heights and surface canopy areas; hence, there would

be a difference in the direct radiation received. Moreover, future improvements, such as apply-

ing several other land surface temperature detection methods, should be used—for example,

LiDAR through UAVs, and AVHRR radar derived LST—to create a more accurate database

over the period of study.

Conclusions

The forests in Cameron Highlands have witnessed an unprecedented rate of deforestation

since the 1960s, which accelerated as industrialization and the need for urban growth

expanded in priority over conservation. We found the main conclusions as follows: (1) Signifi-

cant LULC changes were observed in the study area through an analysis of land use vs topogra-

phy. In a span of 10 years, the agricultural lands and urban area classes increased substantially

by 51.61 km2 and 11.00 km2 respectively. In the primary forest class, the elevation most

affected by this change was the 1000–1500 m group. Between 2009 and 2019, it experienced a

reduction of 35.98 km2 or 5.14% of the total land area. (2) Landscape of land cover along slopes

shown agricultural lands pushing into slopes beyond 25˚. Moreover, between 2014 and 2019, a

recorded land cover change of 1.84 km2 and 1.49 km2 for agricultural lands and urban areas

respectively was found exceeding 35˚. (3) In the urban land areas of Cameron Highlands, pre-

dominantly in the third and fourth elevation groups, a rising trend of land surface temperature

was observed. Within the span of the ten years, temperatures rose by an average of 3˚C and an

overall 7.5˚C is recorded. (4) We have identified the drivers of deforestation in the study area.

It is mostly related to the rise in urbanization as a result of population growth and agriculture

growth. Therefore, it is essential to have a broader understanding of historical trends and iden-

tify the past drivers of deforestation that lead to LULC changes. In this study, we hope that the

research methods designed are able to be evaluated to a level where both ecological and social

systems can support the green development of the region and approach the target of achieving

a low carbon credit value.
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36. Meybeck M, Green P, Vörösmarty C. A new typology for mountains and other relief classes. Mountain

Research and Development. 2001 Feb; 21(1):34–45.

37. Tavares MH, Cunha AH, Motta-Marques D, Ruhoff AL, Cavalcanti JR, Fragoso CR, et al. Comparison

of methods to estimate lake-surface-water temperature using Landsat 7 ETM+ and MODIS imagery:

Case study of a large shallow subtropical lake in southern Brazil. Water. 2019 Jan; 11(1):168.

38. Fils SC, Mimba ME, Dzana JG, Etouna J, Mounoumeck PV, Hakdaoui M. TM/ETM+/LDCM Images for

studying land surface temperature (LST) interplay with impervious surfaces changes over time within

the Douala Metropolis, Cameroon. Journal of the Indian Society of Remote Sensing. 2018 Jan; 46

(1):131–43.
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