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ABSTRACT Computational approaches that link bacterial 16S rRNA gene amplicon
data to functional genes based on prokaryotic reference genomes have emerged.
This study aims to validate or refute the applicability of the functional gene predic-
tion tools for assessment and comparison of community functionality among experi-
mental treatments, inducing either fast or slow responses in rhizosphere microbial
community composition and function. Rhizosphere samples of wheat and barley
were collected in two consecutive years at active and mature growth phases from
organic and conventional farming plots with ambient or future-climate treatments of
the Global Change Experimental Facility. Bacterial community composition was
determined by 16S rRNA gene amplicon sequencing, and the activities of five extrac-
ellular enzymes involved in carbon (b-glucosidases, cellobiohydrolase, and xylosi-
dase), nitrogen (N-acetylglucosaminidase), and phosphorus (acid phosphatase) cycles
were determined. Structural community data were used to predict functional pat-
terns of the rhizosphere communities using Tax4Fun and PanFP. Subsequently, the
predictions were compared with the measured activities. Despite the fact that differ-
ent treatments mainly drove either community composition (plant growth phase) or
measured enzyme activities (farming system), the predictions mirrored patterns in
the treatments in a qualitative but not quantitative way. Most of the discrepancies
between measured and predicted values resulted from plant growth stages (fast
community response), followed by farming management and climate (slower com-
munity response). Thus, our results suggest the applicability of the prediction tools
for comparative investigations of soil community functionality in less-dynamic envi-
ronmental systems.

IMPORTANCE Linking soil microbial community structure to its functionality, which is
important for maintaining health and services of an ecosystem, is still challenging.
Besides great advances in structural community analysis, functional equivalents, such
as metagenomics and metatranscriptomics, are still time and cost intensive. Recent
computational approaches (Tax4Fun and PanFP) aim to predict functions from struc-
tural community data based on reference genomes. Although the usability of these
tools has been confirmed with metagenomic data, a comparison between predicted
and measured functions is so far missing. Thus, this study comprises an expansive
reality test on the performance of these tools under different environmental condi-
tions, including relevant global change factors (land use and climate). The work pro-
vides a valuable validation of the applicability of the prediction tools for comparison
of soil community functions across different sufficiently established soil ecosystems
and suggest their usability to unravel the broad spectrum of functions provided by a
given community structure.
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Over the last decades, we experienced a rapid advancement of molecular approaches
to explore structural diversity of soil microbial communities. The use of next-genera-

tion amplicon sequencing allows for high-resolution analyses of microbial community
structure, e.g., on its temporal dynamics and adaptation to different environmental condi-
tions (1, 2). Corresponding studies revealed that soil microbial communities change over
the growing season (3, 4) and are dependent on the plant species (5–8) as well as on the
plant development stage (8–11). Moreover, soil type as well as land-use- and manage-
ment-related variations in pH and available nutrient concentrations shape soil microbial
communities (12–15). However, it remains challenging to determine the functional traits of
a given microbial community in order to estimate resultant soil processes and ecosystem
services (16). This is because soil processes and functions can be maintained in spite of
community shifts by functional redundancy (reviewed in reference 17), while others may
be lost by losing individual, possibly even low-abundant, key species (18). Thus, it is crucial
to have information on the traits of all present taxa to derive the functionality of the whole
community (19–21).

Cultivation has been traditionally used to cross-examine the taxonomic and func-
tional properties of bacteria. Even though the longstanding “1% cultivability paradigm”

has been questioned in recent discussions (22, 23), cultivation-based approaches are
hardly meaningful for functional trait assessment in environmental samples, since trait
variation is strongly reduced by studying only few isolates (24). When measuring
aggregated functional properties of the microbial community, e.g., by analyzing com-
munity enzyme activities (25–27) or gene expression profiles (28, 29), it is often difficult
to assign activities to certain taxa. Available methods that link structural and functional
information of bacteria include stable isotope labeling of substrates and subsequent
amplicon sequencing of isotope-enriched DNA or RNA (28, 30) or using genome-
resolved metagenomics or metatranscriptomics (31, 32). Nevertheless, capturing the
functional diversity of whole microbial communities in depth and breadth with these
methods remains cost and time intensive (32).

Computational prediction tools in microbial ecology, such as Tax4Fun and PanFP,
offer the possibility to translate structural community data into ecosystem functions in
a cost-effective way (33–35). These approaches use the link between bacterial 16S
rRNA gene amplicon sequencing and functional gene annotations of prokaryotic refer-
ence genomes. As output, the programs provide abundance estimates of functional
genes. The applicability of both tools has been validated by comparison of the pre-
dicted functional gene abundance with the number of detected genes in the respec-
tive metagenome (36–38). Median Spearman rank correlation coefficients range up to
0.87 for Tax4Fun (36) and 0.80 for PanFP (37), suggesting good approximations of func-
tional profiles. At the same time, assessment of whether and how well such predicted
functional profiles mirror microbial community trait expression and thus allow estima-
tion of ecosystem processes is still missing.

In this study, the activity potentials of five extracellular microbial enzymes (b-gluco-
sidase, cellobiohydrolase, xylosidase, N-acetylglucosaminidase, and acid phosphatase)
were measured and compared to the abundances of the respective genes predicted
with PanFP and Tax4Fun based on Illumina MiSeq amplicon sequencing data. These
enzymes were chosen because (i) they play a crucial role in soil C, N, and P cycling, (ii)
their activities are commonly measured in environmental studies as representative of
soil function, and (iii) the protocols and assays for activity determination are standar-
dized and well established.

We expected that a linear link might not be conceivable, since a direct correlation of
gene abundance and its related function would require that (i) the genes of interest are
constitutively transcribed to mRNA, (ii) the mRNAs are translated into proteins, (iii) all pro-
teins responsible for the same reaction have the same kinetics and optimal conditions for
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activity, and (iv) all enzymes have the same life span (28). In reality, gene expression and
enzyme secretion are not consistent but are regulated in response to soil conditions.
Moreover, the life span of extracellular enzymes in soil can range from hours to months,
depending on local biotic and abiotic soil parameters (28, 39). Thus, enzyme activity meas-
urements depict the situation in soil at a certain point in time but do not necessarily reflect
short-term changes in microbial community composition (39, 40). Nevertheless, we
assumed that patterns of measured enzyme activities follow those of the corresponding
functional gene abundances in the microbial communities along treatments or environ-
mental gradients that exert a continuous and steady impact.

This study aimed to evaluate this assumption and to validate or refute the applic-
ability of the functional gene prediction tools for assessment and comparison of soil
processes. Since the functional predictions by Tax4Fun and PanFP refer exclusively to
bacterial genomes, we selected croplands as study systems. Agricultural soils are usu-
ally dominated by bacteria, whereby the fungal contribution to enzyme profiles is
minimized (41, 42). We collected rhizosphere soils, i.e., the hot spot for abundance, ac-
tivity, and turnover of soil bacteria (43), of wheat (and barley in the subsequent year)
from agricultural plots of the Global Change Experimental Facility (GCEF) (44). This ex-
perimental field platform cross-manipulates climatic conditions (ambient versus future)
and farming management (conventional versus organic farming). Both experimental
treatments are known to steer structure and function of bacterial communities
(12–14). The small but continuous impact of changed climatic conditions induces a
slow response of the soil community, whereas the adaptation to different manage-
ment measures induces quicker community responses. To account for very rapid
responses, we collected rhizosphere samples at two different plant growth phases:
active biomass production and mature phase. The dynamics of roots from active to
mature growth stages (45, 46) are known to cause rapid temporal changes in rhizobac-
terial community structures (reviewed in reference 47). From all collected samples, we
determined the rhizobacterial community composition using 16S rRNA gene amplicon
sequencing, estimated the functional gene abundances by the prediction tools
Tax4Fun and PanFP, and measured the enzyme activity potentials.

We hypothesized that (i) deviations between the predicted traits and the measured
enzyme activities show a positive correlation with the speed of the community’s response
to the treatments. Thus, the strongest deviations should be related to plant growth phases
(strong dynamics, rapid adaptation) followed by the impact of the farming management,
while the most concurrent patterns should be observed along the climate treatments
(slow, consistent community adaptation). We further hypothesized that (ii) across growth
phases, the deviations are more pronounced during the mature growth phase. Plants stim-
ulate rhizobacterial growth and activity by a gradually increasing release of rhizodeposits
during active growth but strongly reduce rhizodeposition when reaching maturity, induc-
ing a reduction of bacterial biomass (9). Accordingly, functional gene abundance drops
quickly, while there is a delay for enzyme activity. We also hypothesized that (iii) deviations
in measured and predicted values are more pronounced in conventional farming soil, as
these systems experience more disturbances by, e.g., pesticide application, compared to
that of organic soil. Finally, we hypothesized that (iv) under future climatic conditions, with
larger variability of annual precipitation, the deviations between measured and predicted
functions are more pronounced than under ambient climatic conditions.

RESULTS
Experimental treatments drive rhizosphere community composition and enzyme

activities. (i) Impact on the bacterial community composition. The effect of the ex-
perimental treatments and the related differences in abiotic soil parameters (for more
information on edaphic parameters and impact on community composition refer to
Material S1 and S2, respectively, in the supplemental material) on the rhizobacterial
community composition was studied for both crops in the two consecutive years of
cultivation (Fig. 1). In the first year, when wheat was cultivated, growth phase was the
main driver for bacterial community composition (permutational multivariate analysis

Reality Test for Functional Predictions

Volume 9 Issue 1 e00278-21 MicrobiolSpectrum.asm.org 3

https://www.MicrobiolSpectrum.asm.org


of variance [PERMANOVA], R2 = 0.26, P , 0.001) (Fig. 1A), followed by farming system
(PERMANOVA, R2 = 0.08, P = 0.003) (Fig. 1B) and climate treatment (PERMANOVA, R2 =
0.03, P = 0.18) (Fig. 1C). In a comparable way, rhizobacterial community composition of
barley in the subsequent year was affected in decreasing order by growth phase
(PERMANOVA, R2 = 0.22, P , 0.001) (Fig. 1A), farming system (PERMANOVA, R2 = 0.04,
P = 0.08) (Fig. 1B), and climate treatment (PERMANOVA, R2 = 0.03, P = 0.33) (Fig. 1C). In
line with these results, analysis and visualization of indicator species in a bipartite net-
work indicated a strong grouping of species according to the growth phase and farm-
ing system in the wheat rhizosphere as well as according to the growth phase in the
barley rhizosphere (Material S3). Besides, wheat and barley strongly differed in their
rhizobacterial community composition (PERMANOVA, R2 = 0.13, P, 0.001).

(ii) Impact on rhizosphere enzyme activities. Farming system and the related dif-
ferences in edaphic parameters (Material S1) were the main drivers of enzyme activities
(Table 1; Material S2). Thereby, higher enzyme activities were found in rhizosphere soil
from conventional farming than in the ones from organic farming, which was evident
for wheat at both growth phases, while for barley, it was mainly observed in the active
growth phase (see the blue boxes in Fig. 2). The effects of the growth phase and of the
climate treatment on rhizosphere enzyme activities were comparably weak, with signif-
icant impacts of individual extracellular enzymes and in a crop-specific manner
(Table 1). The growth phase affected chitinase activity in wheat (active, mature) (Fig. 2C)
and acid phosphatase activity in barley rhizosphere (active . mature) (Fig. 2D) (Table 1).
Climate treatment effects were found for the activities of xylosidases and acid phospha-
tases in the rhizosphere of wheat and for the activity of cellulases in the rhizosphere of
barley (Table 1). Besides, all enzyme activities strongly differed (P, 0.001) between wheat
and barley rhizospheres, with higher enzyme activities in the wheat rhizosphere (Fig. 2).

FIG 1 Principal coordinates analysis for beta-diversity of bacterial rhizosphere communities. The
points are colored and circled according to growth phases (A), farming system (B), and climate
treatment (C).
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Patterns of measured enzyme activities compared to predicted enzyme gene
abundances in the rhizosphere. (i) Correlations along and relative changes
between factors of growth phase, farming system, and climate. Spearman rank cor-
relations were tested to identify common and specific patterns of predicted functional
gene abundances and measured enzyme activities over both growth phases (n=40)
(Table S1). In the wheat rhizosphere, a positive correlation between measured and
Tax4Fun- as well as PanFP-predicted values was found for xylosidases and with a trend
observed for acid phosphatases. Contrary to that, in the rhizosphere of barley, func-
tional gene abundances predicted by Tax4Fun were found to be positively correlated
with the measured enzyme activities of glucosidases, xylosidases, chitinases, and cellu-
lases. Regarding PanFP predictions, significant correlations with the measured activities
were indicated for xylosidases and chitinases and with a trend observed also for gluco-
sidases and cellulases.

Assessing the two growth phases separately, the significance level of correlations was
commonly reduced, mainly due to the lower number of samples (n=20). Nevertheless, we

TABLE 1 Drivers of rhizosphere enzyme activitiesa

Enzyme

P valueb

Farming Growth phase Climate Growth phase× farming
Wheat
Glucosidases ,0.001 0.76 0.11 0.57
Xylosidases 0.007 0.09 0.04 0.38
Chitinases ,0.001 0.002 0.41 0.19
Phosphatases ,0.001 0.19 0.04 0.21
Cellulases ,0.001 0.84 0.77 0.91

Barley
Glucosidases ,0.001 0.71 0.32 0.007
Xylosidases ,0.001 0.15 0.67 0.03
Chitinases 0.02 0.24 0.19 0.14
Phosphatases ,0.001 ,0.001 0.79 ,0.001
Cellulases ,0.001 0.85 0.04 0.05

aActivities of b-glucosidases, xylosidases, N-acetylglucosaminidases (chitinases), acid phosphatases, and
cellobiohydrolases (cellulases) were tested against the factors farming system, growth phase, climate, and
interaction of farming system and growth phase.

bSignificant impacts according to ANOVA are indicated by italic font.

FIG 2 Impacts of farming system, crop species, and crop growth phase on measured enzyme activities (nmol g soil21

h21). b-glucosidases (A), xylosidases (B), N-acetylglucosaminidases (chitinases) (C), acid phosphatases (D), and
cellobiohydrolases (cellulases) (E). Measured enzyme activities at the active (Act) and mature (Mat) growth phases in
conventional and organic farming soils are given. Different lowercase letters within each panel indicate significant
differences between the treatments (P , 0.05) according to Tukey’s HSD.
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observed stronger positive correlations between the predictions and the measured activity
for xylosidases and acid phosphatases in the wheat rhizosphere at maturity than at the
active growth phase. In contrast, for barley, these correlations were stronger at the active
growth phase than at crop maturity. Furthermore, the predictions by Tax4Fun at the active
growth phase of barley, as well as the predictions by PanFP at both growth phases of bar-
ley were highly positively correlated with the measured phosphatase activities (Table S1).

Relative differences between active and mature growth phases, conventional and
organic farming, and ambient and future climate for predicted and measured values
are presented in Table 2. Thereby, relative differences of predicted functional gene abun-
dances mostly mirrored the measured enzyme activities in a qualitative way, i.e., in terms
of the direction (positive, negative, or no difference). Exceptions were found for acid phos-
phatases and, to a lower extent, also for glucosidases in the rhizosphere of barley. While
predictions indicated higher gene abundances of the respective functional genes at the
active phase than at the mature growth phase, measured enzyme activities showed an
opposing pattern (Table 2).

(ii) Concordance and discordance between the measured and predicted values.
To be able to quantitatively compare the patterns of predicted gene abundances and
measured enzyme activities, z-transformed data were used.

The degrees of over- or underestimations of functions varied between the tested
experimental conditions (Fig. 3 and Fig. S1). Regarding the wheat rhizosphere, meas-
ured enzyme activities were mostly underestimated by the predictions at the active
growth phase (Fig. S1), whereby the strongest deviations were found for conventional
farming (CF) under ambient-climate conditions (Fig. 3) (Tax4Fun, standard deviation
[SD] = 0.51; PanFP, SD = 0.63) and organic farming (OF) under future climatic condi-
tions (Fig. 3) (Tax4Fun, SD = 0.65; PanFP, SD = 0.54). At crop maturity, we found strong
concordances between activities and predictions (Fig. S1). They were particularly
strong in OF under ambient-climate conditions (Fig. 3) (SD, 0.20 for both prediction
tools) as well as in CF in an ambient climate (Fig. 3) (Tax4Fun, SD= 0.23; PanFP,
SD= 0.36). Under future-climate conditions, the activities were underestimated in CF
and overestimated in OF (Fig. 3). Overall, we found a better fit between measured
activities and predictions in OF than in CF (Fig. S1) and an overall good fit for future-
and ambient-climate treatments (Fig. S1).

For the barley rhizosphere, a clear pattern emerged with almost perfect fits of
measured activities and predicted gene abundances at the active growth phase (Fig. 3)
(SD, 0.2 for both prediction tools) (Fig. S1, red lines indicate zero deviations). The strong-
est deviations occurred in CF under future-climate conditions, when mainly phosphatase

TABLE 2 Relative changes between factors of growth phase (active versus mature), farming system (conventional versus organic), and climate
(ambient versus future) treatmenta

Enzyme

Relative change

Active vs mature Conventional vs organic Ambient vs future

Tax Pan Enzymes Tax Pan Enzymes Tax Pan Enzymes
Wheat
Glucosidase 0.27 0.53 0.02 20.23 20.23 20.23 20.20 20.18 20.08
Xylosidase 0.52 0.55 0.14 20.25 20.24 20.19 20.24 20.18 20.14
Chitinase 0.15 0.36 0.31 20.27 20.23 20.32 20.17 20.21 20.07
Phosphatase 0.89 0.59 0.09 20.26 20.25 20.28 20.27 20.22 20.13
Cellulase 0.84 0.40 0.02 20.22 0.02 20.31 20.30 0.01 20.02

Barley
Glucosidase 0.60 1.15 20.02 20.28 20.22 20.22 0.00 0.02 0.06
Xylosidase 0.73 1.30 0.12 20.26 20.19 20.25 20.03 0.01 0.03
Chitinase 0.16 1.12 0.11 20.33 20.20 20.19 20.06 20.02 0.12
Phosphatase 1.27 1.19 20.26 20.25 20.22 20.31 0.00 0.02 0.02
Cellulase 1.03 0.77 0.01 20.26 20.23 20.28 0.00 20.02 0.16

aRelative changes are given for predicted gene abundances of Tax4Fun (Tax) and PanFP (Pan), as well as for measured enzyme activities in the rhizosphere of wheat and
barley.
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FIG 3 Measured enzyme activities and predicted functional gene abundances of Tax4Fun and PanFP, arranged by growth phases of
the two crops (horizontal) and by the experimental treatment (vertical). Data were normalized by z-transformation. The spider charts
represent the measured enzyme activity levels (blue), and gene abundance levels estimated by Tax4Fun (red) and PanFP (yellow).
Higher values are more distant from the center of the web. The median of the standard deviations between measured and predicted
values for all enzymes is given for both prediction tools separately in brackets (SD). GLU, b-glucosidases; XYL, xylosidases; NAG, N-
acetylglucosaminidases (chitinases); PHO, acid phosphatases; CEL, cellobiohydrolases (cellulases).
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activities were heavily underestimated by the predictions (Tax4Fun, SD=0.33; PanFP,
SD=0.36). At the mature growth phase of barley, enzyme activities were overestimated by
the predictions (Fig. 3 and Fig. S1), except for chitinases, where Tax4Fun predictions per-
fectly matched measured activities (Fig. 3). Overall, we observed less deviations of the pre-
dicted from the measured values in OF than in CF (Fig. S1), while the deviations were simi-
lar across the two climate treatments (Fig. S1).

Testing the effect of different treatments on deviations, growth phase definitely
exerted the strongest impact on the concordance between predicted and measured enzyme
indices for individual enzymes in the wheat rhizosphere and for all of them in the barley rhizo-
sphere (Table 3). Thereby, variance partitioning revealed that 22% of the total variations in the
deviations can be explained by this treatment. In contrast, the experimental factors farming
system and climate did not significantly affect the accuracy of the predictions (Table 3)
(analysis of variance [ANOVA], P. 0.05; variance partitioning, 0.9% and 0.1%), and P values
were smaller for farming system than for climate (Table 3). The decreasing differences in
deviations of predictions from measured values, growth phase. farming system. climate
treatment, was more obvious in the barley than in the wheat rhizosphere (Table 3).

DISCUSSION
Structure and function of microbial communities in agroecosystems are affected

by different drivers. Plant growth phase was the most prominent driver of community
composition in the rhizospheres of wheat and barley. This result agrees with findings
of Houlden et al. (48) and Francioli et al. (3), who demonstrated a strong shift in rhizo-
bacterial community composition according to plant growth stages in crop plants
such as wheat, pea, and sugar beet (48) but also in grassland species (3). Such differen-
ces can be explained by quantitative and qualitative changes in rhizodeposition that
are related to the different plant development phases (46, 49).

In contrast, measured enzyme activities were mainly driven by farming practice and associ-
ated differences in mineral nitrogen and total C and N contents (see results in Material S1 in
the supplemental material). Farming practice is an important driver of soil enzyme activity,
which drastically changes soil structure (50, 51) and soil chemical parameters (25). We found
higher enzyme activities in CF than in OF. In line with that, Arcand and colleagues (52)
observed increased activity and production of enzymes in conventional farming soil compared
to that in organic farming soil. The pattern may be caused by a higher availability of nitrogen
in CF, which is known to foster the production and activity of polysaccharide-degrading
enzymes (53–55).

TABLE 3 Significance of deviations in measured to predicted values with respect to the experimental factorsa

Enzyme

P valueb

Growth phase Farming system Climate

Both Wheat Barley Both Wheat Barley Both Wheat Barley
Tax4Fun vs enzymes
Glucose 0.01 0.25 ,0.001 0.44 0.41 0.87 0.52 0.63 0.52
Xylosidase 0.06 0.31 0.02 0.39 0.71 0.20 0.79 0.96 0.58
Chitinase 0.21 0.24 0.67 0.22 0.25 0.72 0.40 0.73 0.13
Phosphatase ,0.001 0.04 ,0.001 0.05 0.21 0.05 0.71 0.73 0.84
Cellulase ,0.001 0.02 ,0.001 0.15 0.16 0.54 0.10 0.18 0.20

PanFP vs enzymes
Glucose ,0.001 0.03 ,0.001 0.40 0.34 0.76 0.71 0.77 0.70
Xylosidase 0.003 0.26 ,0.001 0.39 0.64 0.28 0.87 0.72 0.81
Chitinase 0.18 0.72 ,0.001 0.24 0.20 0.88 0.32 0.52 0.27
Phosphatase ,0.001 0.15 ,0.001 0.06 0.24 0.05 0.90 0.92 0.92
Cellulase 0.001 0.05 ,0.001 0.05 0.003 0.90 0.74 0.80 0.37

aThe deviation between z-transformed values of measured and predicted indices for the activity of five enzymes was calculated and tested for significance across growth
phases, farming systems, and climate treatments.

bThe P values are given according to ANOVA for the total data set (both wheat and barley, n= 80) as well as separately for wheat (n=40) and barley (n=40). Significant
impacts according to ANOVA are indicated by italic font.
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Our results revealed that shifts in composition and functions of the rhizobacterial com-
munity are caused by different drivers, indicating a decoupling of community composition
and function. In concordance, Francioli et al. (56) found that mineral and organic fertilizers
mainly affect either activity or composition of the microbiome in an agricultural soil.
Additionally, Bowles et al. (57) indicated that structurally highly similar bacterial commun-
ities can show very contrasting enzyme activities in differently managed organic fields.

Measured enzyme activities partly confirmed by predictions. The predicted gene
abundances in our study responded to the drivers of both community composition
and activity and were thus affected by the growth stage and by the farming system
(Table S2, Fig. S2). In line with the first hypothesis, the performance of the prediction
tools was driver dependent, whereby the strongest deviations could be related to the
crop growth phase, followed by farming system and climate treatment. Furthermore, a
remarkable impact of the crop species on the level of concordance between the pre-
dicted and measured activities was indicated.

For barley, in accordance with hypothesis two, strong correlations and concordan-
ces between measured activities and predicted gene abundances of both tools were
observed at the active growth phase. In contrast, the enzyme activities were overesti-
mated by both prediction tools at the mature growth phase. This finding is likely based
on a faster response of the community composition than of enzyme activity. To pro-
mote plant growth, plants exudate carbon compounds into their rhizosphere that
stimulate growth and activity of soil microorganisms (58 and reviewed in reference
59). Depending on plant development stage, root exudation patterns differ and thus
strongly influence the rhizobacterial community (9, 46). Root exudation of carbon-rich
compounds (sugar) is at its strongest in the juvenile growth phase, represented by the
active growth phase of this experiment, and decreases thereafter (46). The overestima-
tion of activity by the prediction tools at the mature growth phase of barley may there-
fore be a result of accumulated, mostly inactive rhizobacterial genes.

Deviation patterns of measured and predicted activities were more heterogeneous in
the wheat rhizosphere. Three possible reasons may explain the discordance between pre-
dictions and measured activities:

(i) A major impact on enzyme activities was attributed to soil mineral N concentra-
tions, which were positively correlated (Material S2) and significantly higher in the rhi-
zosphere of wheat than in that of barley (Material S1). This relation has already been
demonstrated for activities of cellulase and b-glucosidase (54, 60) as well as of acid
phosphatase (61) and chitinase (62). The high mineral N concentration in the wheat
rhizosphere likely fostered enzyme production without microbial growth, especially at
the early active growth phase, and may explain deviations between measured activ-
ities and predictions.

(ii) For wheat, we observed an interaction effect of the experimental climate and
farming system treatment on enzyme activities, which was not reflected in the predic-
tions. Supporting our fourth hypothesis, we observed strong deviations under a
future-climate condition at the mature growth phase and under organic farming con-
ditions also at the active growth phase of wheat. With conventional farming at the
active growth phase of wheat, the pattern of deviations was inverse. As such a pattern
was not observed in the barley rhizosphere, this may indicate a plant-specific drought
effect on the enzyme activity that could not be mirrored by the prediction tools. When
Kosová et al. (63) summarized the knowledge about wheat and barley responses to
drought, they stated no strong advantages or disadvantages for either of the two but
variations along different genotypes. It is therefore likely that the cultivated wheat ge-
notype expressed a different adaption capacity to drought than the barley genotype,
which may feedback to structure and functionality of the rhizosphere community and
thus functional predictions.

(iii) Indicator species analysis and a bipartite network indicated a clear effect of the
growth phase for barley, which was also the main driver for community composition
(Material S3). In contrast, the impact of wheat growth phase on indicator species was

Reality Test for Functional Predictions

Volume 9 Issue 1 e00278-21 MicrobiolSpectrum.asm.org 9

https://www.MicrobiolSpectrum.asm.org


surpassed by farming system, as we found high numbers of shared indicator species
between active and mature growth phases under conventional farming conditions.
Thus, the contradicting drivers for overall community and indicator species in the
wheat rhizosphere may contribute to deviations between predictions and measured
activities.

Interestingly, and against our assumptions of hypothesis three, farming system-
related deviations between measured and predicted values were not obvious either in
the wheat or in the barley rhizosphere. An explanation could be the normalization of
the predicted functional gene abundances with 16S rRNA gene abundances, which
were strongly biased by farming system. Another possibility would be that the effect
of farming system was outcompeted by the overall stronger effect of growth phases.
Besides the deviations between measured and predicted values, the correlations along
the treatments and relative changes between factors of treatments were not affected,
suggesting that the prediction tools mirrored the impacts of the experimental factors
in a qualitative way.

Limitations. (i) Prediction tools. Although the applied tools were created for uni-
versal use, their predictive power depends on the quality of the databases. Another
commonly used prediction tool, PiCrust (phylogenetic investigation of communities by
reconstruction of unobserved states [64]), is tailored to functional predictions in the
human microbiome by using the Integrated Microbial Genomes database (65) contain-
ing genomes from the Human Microbiome Project (The Human Microbiome Jumpstart
Reference Strains Consortium [66]) and Greengenes database (67). For soil micro-
biomes, Tax4Fun (36) and PanFP (37) outperform predictions of PiCrust (36, 37). These
tools rely on the bacterial sequences of the SILVA database (68) which comprises qual-
ity-controlled aligned rRNA gene sequences. Nevertheless, all tools are subject to some
restrictions which have to be considered for analysis.

First, the contribution of other organisms, including plants and fungi, to the extrac-
ellular enzyme production cannot be estimated by the tools. While extracellular
enzymes in the soil are mainly attributed to origination from edaphic microorganisms
and the contribution of plants may be thus negligible (39, 69), the contribution of fun-
gal communities is of considerable importance, especially in extensively managed
grassland and forest ecosystems (70). For comparison of predicted and measured activ-
ities, we therefore performed our study in agricultural systems which are known to be
dominated by bacterial communities (41, 42).

Second, the predictive power of the tools relies on the integrity of the databases.
SILVA (68) and KEGG Orthology (KO) (71) databases facilitate annotation of bacteria
preferably to the genus level (36), thereby loosing information about functional differ-
ences on species level. Aßhauer et al. (36) further noticed that the members of the
highly diverse soil community are not sufficiently represented in the KEGG database.
Since publication of the prediction tools in 2015, the SILVA and KO databases have
been updated frequently. Notwithstanding, the tools do not implement the latest ver-
sions of KO and SILVA databases. While PanFP is based on SILVA v128 (released in
2017), Tax4Fun supports only SILVA v123 (released in 2015). The KO database has been
licensed and, thus, allows only free access to version 64.0 released in October 2012. In
our analysis, we used the latest applicable versions for Tax4Fun and PanFP analysis. For
Tax4Fun predictions, we were able to trace back the percentage of bacterial sequences
used for predictions and the distribution of KO identifiers representing the five enzy-
matic classes among samples (Fig. S3). Only 37% and 32% of bacterial sequences could
be used for the functional predictions in the rhizospheres of wheat and barley, respec-
tively. Regarding indicator species, the numbers improved to at least 43% for wheat
and 42% for barley. It would, therefore, be desirable to integrate updated databases
and more recent metagenomic data to improve predictions.

Third, the expected discrepancy between gene presence and expression is a major
constraint. Next-generation sequencing does not discriminate between the fractions of
living and dead cells. Furthermore, in a given soil, only a certain proportion of
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microorganisms are active at a certain time point (reviewed in references 72). The iden-
tity and number of active or inactive taxa depend on external conditions and stimuli
(73). In our study, we specifically investigated the impact of land use/management, cli-
mate, and plant growth. Our results imply that the various proportions of active taxa
and the contributions of dead organisms may partly explain discrepancy between
measured and predicted activities and may be the main reason for the missing quanti-
tative concordance.

(ii) Evaluation of enzyme activities as functional indicators. Besides database-
related deficiencies, discrepancies in the comparisons may also emerge due to the
approach used to determine enzyme activities. The measurement of soil enzyme activ-
ities cannot distinguish between recently secreted enzymes and enzymes that were
produced earlier by taxa whose relative abundance may have declined. These so-called
abiontic enzymes are protected against their degradation in clay complexes (39). The
persistence and accumulation of enzymes in the soil matrix may strongly influence
overall enzyme activity measurement. The amount of immobilized enzymes strongly
depends on the soil type and respective clay and organic matter content (74). We
found a strong relationship between 16S rRNA gene abundances and enzyme activities
at the active growth phase of both crops but a decrease of enzyme activity accompa-
nied by an increase of gene abundances in the mature growth phase. This indicates a
minor role of abiontic enzymes for the measured activities and, rather, suggests differ-
ent root exudation rates at active and mature growth phases as the main driver of
enzyme secretion.

A second methodological aspect that should be considered is that we determined
enzyme activities under standardized conditions which are close to the optima of the
different enzymes (pH 5, 25°C). Moreover, the high substrate concentration in the assay
(300mM) ensured no limitation due to substrate availability (75). While the used tem-
perature (25°C) represents reasonable daytime temperatures at the sampling dates in
late May and July, the used pH was much lower than the average from all samples (pH
6.3). Since we did not compare absolute values but only differential expression of
enzymes, and the pH was comparable between all treatments, differences along the
treatments should be maintained. In contrast, farming system-specific substrate avail-
ability may result in different enzyme patterns than those obtained under saturating
substrate concentrations. These methodological issues plead for further studies meas-
uring enzyme activities at realistic temperature and pH as well as particularly under
substrate concentrations reflecting the availability in the respective system.

Conclusions and perspectives. Our results demonstrate that Tax4Fun and PanFP
provide cost-effective tools to estimate functional patterns of rhizobacterial commun-
ities in a qualitative (i.e., direction of response) but not in a quantitative (i.e., extent of
response) way. The response of the studied activities to experimental drivers was pre-
dominantly predicted correctly by both tools in terms of direction, i.e., increase or
decrease. This is particularly noteworthy, since drivers of community structure and
measured activities differed from each other. Moreover, we observed a gradual
decrease in predictability the faster the treatments acted on community structure. The
tools do not provide a one-size-fits-all solution, and interpretation of predicted func-
tions has to be performed thoroughly. To trace mechanisms behind concordances and
discordances, a deeper understanding of the underlying drivers of functions and struc-
ture is necessary. We emphasize the importance of more studies on predicted and
measured functional traits to explore relevant drivers for functions and structure in dif-
ferent environments. These studies should be combined with transcriptomics data to
explore whether the link between predicted and real soil processes will be strength-
ened, as assumed for this study, or, rather, diminished.

Nevertheless, our finding provides a valuable validation of the applicability and
robustness of these prediction tools for comparison of soil community functions across
stable soil ecosystems. While the enzymes used in this approach address solely activ-
ities related to nutrient cycling, the positive validation would plead for further research

Reality Test for Functional Predictions

Volume 9 Issue 1 e00278-21 MicrobiolSpectrum.asm.org 11

https://www.MicrobiolSpectrum.asm.org


on the possibility to predict other, more intractable functions of microbial communities
in a simple and quick way.

MATERIALS ANDMETHODS
Soil sampling and sample preparation. Samples were obtained from the Global Change Experimental

Facility (GCEF) situated at the research station in Bad Lauchstädt, Central Germany (51°2393599N 11°5295599E,
118 m above sea level [a.s.l.]). The site is characterized by a temperate climate with an average temperature of
9.7°C (1993 to 2013) and a mean annual precipitation of 525mm (1993 to 2013). The soil type is a fertile loamy
soil (haplic chernozem) (76). The experimental platform of the GCEF was established in 2013 and combines
land use and climate treatments as described by Schädler et al. (44). In our study, we focused on the cultivated
cropland systems, organic farming (OF; 10 plots) and conventional farming (CF; 10 plots). The grown crop was
identical for CF and OF in 2015 (winter wheat) and 2016 (winter barley) but differed in 2014 (CF, winter rape
seed; OF, field bean). In CF, synthetic fertilizers (N, P, and K), growth regulators, and pesticides are applied. The
use of pesticides in OF is restricted, and fertilization is realized by including legumes in the crop rotation as
well as by the application of rock phosphate (P-Ca-Mg) and patent kali (K-Mg-S) every 3 years. Half of the plots
experience ambient climate (A), while the other half is exerted to simulated future-climate conditions (F) com-
prising a warming (10.55°C on average) and a changed precipitation pattern (220% in summer, 110% in
spring and fall) (for details refer to Schädler et al. [44]). Cereal roots with closely adherent soil were sampled in
the active cereal growth phase in May and at the mature state in July in 2015 (3 wheat plants per plot, 20
plots) and 2016 (3 barley plants, 20 plots). Samples were transported in cooling boxes to the field station and
immediately frozen. Simultaneous to root sampling, surrounding bulk soil was sampled for the analysis of soil
parameters. For this, six soil cores (diameter [Ø] 15mm, 0- to 15-cm depth) were taken from each plot, pooled,
sieved to 2mm, manually cleaned from organic material, and frozen at220°C.

To separate rhizosphere soil from roots, the roots with adherent soil were crushed and put in 50-ml
Falcon tubes with 40ml of 0.5% NaCl solution. Tubes were vortexed for 1min to loosen adherent soil
from the roots. Subsequently, roots were transferred to a second set of 50-ml Falcon tubes. Soil suspen-
sions without roots were centrifuged at 12,851� g for 10min. Then, the supernatants were filled into
the tubes with the roots and used for a second washing step. After vortexing, soil suspensions were
transferred into the Falcon tubes with the pellets from the first washing step. The procedure of washing
and centrifuging was repeated three times. Rhizosphere soil pellets were frozen at220°C.

Soil parameters. Since the amount of rhizosphere soil was limited to 2 to 3 g per sample, basic soil
parameters were determined using respective bulk soil. For pH analysis, 12 g of air-dried soil was sus-
pended in 30ml of 0.01 M CaCl2 solution (1:2.5 [wt/vol]). The soil suspension was equilibrated at room
temperature and thoroughly mixed every 20min. After 1 h, the pH was measured with a pH electrode.
Total carbon and nitrogen contents were determined from air-dried soil using an elemental analyzer
(Elementar Vario EL III; Elementar, Hanau, Germany). For analysis of mineral nitrogen, 5 g of fresh soil
was suspended in 20ml of 1 M KCl solution and measured via flow injection analysis (FlAstar 5000; Foss
GmbH, Rellingen, Germany). Available phosphorus was extracted from fresh soil with double lactate
(1:50 [wt/vol], pH 3.6) and quantified using the colorimetrical molybdenum blue method (77).

Soil enzymes. The activity potentials of hydrolytic soil enzymes were measured using a modified flu-
orometric assay introduced by Sinsabaugh et al. (78). The analyzed enzymes are involved in phosphorus
acquisition (phosphatases), nitrogen acquisition (N-acetylglucosaminidases), and carbon acquisition
(b-glucosidases, xylosidases, and cellobiohydrolases). Enzymatic activities were determined as turnover
rate of 4-methylumbelliferon (MUF)-coupled substrates (Table S3 in the supplemental material), where
the amount of released fluorescent MUF was directly related to enzymatic activity potentials. To avoid
underestimation of enzyme activities (79), the substrate concentration was optimized for the haplic
chernozem soil and set to 300mM for all substrates.

For each sample, a black 96-well microplate was prepared containing all five substrates, MUF dilu-
tions to calculate quench and extinction coefficients (1.25mM and 2.5mM), and the substrate and soil
suspension controls. For analysis, approximately 250mg of fresh rhizosphere soil was suspended in
50ml of 50mM acetate buffer (pH 5) and sonicated for 5min to break up soil aggregates. Subsequently,
the soil suspension was added to the substrates and incubated at 25°C for 60min. The enzyme reaction
was stopped by the addition of 1 M NaOH solution. After 3min, fluorescence was measured for eight
replicates using an Infinite 200 PRO instrument (Tecan Group Ltd., Männedorf, Switzerland) with 360-nm
excitation and 465-nm emission filters. Enzyme activity was calculated as turnover rate of substrate in
nanomoles per gram dry soil per hour (nmol g soil21 h21) (80).

DNA extraction and next-generation sequencing (Illumina MiSeq). The extraction of soil bacterial
genomic DNA was performed using the PowerSoil DNA isolation kit (MO BIO Laboratories Inc., Carlsbad,
CA, USA). The protocol was slightly modified by increasing the soil amount from 250 to 400mg. The con-
centration of extracted DNA was examined with a NanoDrop ND-8000 spectrophotometer (Thermo
Fischer Scientific, Dreieich, Germany), and the DNA was then stored at 220°C. Before running the PCR,
the concentrations of DNA extracts were adjusted to 10 to 15 ng/ml. The amplification of the bacterial
16S rRNA gene V4 region was performed with the universal primers 515f and 806r (81), which were
equipped with Illumina adapter sequences. To ensure correct amplification of the sequences, all PCRs
were performed using proofreading KAPA HiFi polymerase (KAPA Biosystems, Boston, MA, USA). The
conditions of the PCR are summarized in Table S4 (PCR 1).

PCR products were tested by gel electrophoresis and purified using the Agencourt AMPure XP kit
(Beckmann Coulter, Krefeld, Germany). To assign the sequences to the respective samples, Illumina
Nextera XT indices were attached to both ends of the bacterial fragments in a second PCR. The
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conditions of the index PCR are presented in Table S4 (PCR 2). PCR products were purified using AMPure
beads, and DNA was quantified with the PicoGreen assay (Molecular Probes, Eugene, OR, USA). For an
equimolar representation of each sample, defined volumes of prepared bacterial amplicon libraries
(corresponding to 80 ng DNA for each sample) were pooled in one tube. The fragment sizes and the
quality of DNA sequencing libraries were again checked with the Agilent 2100 bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). Sample libraries and PhiX control libraries were denatured according
to the protocol of the MiSeq v3 reagent kit and diluted to a final concentration of 10 pM. Denatured and
diluted libraries were combined to a volume of 600ml (30ml of PhiX control library, and 570ml of bacte-
rial amplicon library) and loaded onto MiSeq v3 reagent cartridge for sequencing. Finally, paired-end
sequencing of 2 by 300bp was implemented on an Illumina MiSeq platform (Illumina Inc., San Diego,
CA, USA) at the Department of Soil Ecology of the Helmholtz Centre for Environmental Research (UFZ,
Halle, Germany).

Bioinformatics workflow, functional predictions, and normalization. In total, 13,912,979 demulti-
plexed sequencing reads were processed using an in-house pipeline (described in reference 82, with
modifications) based on mothur (83) and OBITools (84). In brief, reads without the 515f and 806r primers
were discarded, and the primers were clipped from the remaining sequences using cutadapt (85). Read
pairs were assembled using PANDAseq (86) and quality trimmed to an average Phred score of 26, retain-
ing 59% of the reads. After preclustering at 99% identity using CD-HIT-454 (87), chimeric reads were
removed using the UCHIME algorithm (88), and the remaining reads were clustered into operational tax-
onomic units (OTUs) at 97% identity using vsearch (89). To safeguard against artifacts, singletons were
removed corresponding to 2.5% of the reads. The representative reads of all OTUs were examined for
chimeric reads, which were removed using the UCHIME algorithm. Subsequently, the representative
reads were taxonomically assigned based on the reference sequences from the SILVA database (version
128, nonredundant at 99% [90]) using the mothur implementation of the naive Bayesian classifier (91).
OTUs of chloroplasts and mitochondria and those not assigned to the kingdoms Bacteria or Archaea
were removed. The final sequencing depth per sample (6 standard deviation) was 96,000 6 14,000
reads.

Functional predictions of the bacterial communities were performed with two programs, PanFP (37)
and Tax4Fun (36), working on the basis of the OTU abundance and taxonomy data. Tax4Fun (36) and
PanFP (37) create functional profiles of bacterial communities using two related approaches for the anal-
yses. Tax4Fun assigns operational taxonomic units (OTUs) to reference sequences in the SILVA database
(SILVA database [68]) and converts the counts of SILVA-labeled OTUs to a taxonomic profile of organ-
isms in the KEGG database (71). PanFP creates pangenomes of taxonomically related genomes with their
identity also obtained via the SILVA database and subsequently weighs the pangenome’s functional pro-
file with OTU abundances. The authors’ instructions were followed to run Tax4Fun program line in R
(version 3.4.0 [92]) using the latest supported version of SILVA database (SILVA123, released July 2015).
Taxonomic assignment was adapted for Tax4Fun analysis to SILVA123. PanFP was executed on a suitably
formatted OTU table. The output tables provided KEGG orthology (KO) numbers for gene annotations
and Enzyme Commission (EC) number as object identifier for enzymes. Gene abundances of the
enzymes of interest were extracted from the output tables of Tax4Fun and PanFP predictions (Table S5).
Gene abundances of the three acid phosphatases and the two b-glucosidases, which belong to the
same enzymatic class according to EC numbers, were summed up from the Tax4Fun and PanFP output
tables, respectively, for further analysis.

Both programs provide abundance estimates of functional genes which are compromised by me-
thodical restraints of 16S rRNA gene sequencing. To allow a balanced reading, the input samples had to
be adjusted to a certain DNA concentration, vanishing actual differences between samples. To correct
predictions of gene abundances for biomass differences in the samples (36, 37), we estimated bacterial
DNA concentrations of rhizosphere samples by quantitative real-time PCR (qPCR) analysis. In conformity
with the Illumina sequencing, the reactions were performed with the primer pair 515f and 806r (81) tar-
geting the 16S rRNA gene V4 region of the bacterial genomes. All samples were diluted to 2-ng/ml DNA
input concentrations, as measured by the PicoGreen assay (Molecular Probes, Eugene, OR, USA), and the
dilution factor was recorded. As reference, a dilution series of 0.05, 0.125, 0.5, 1, and 4 ng/ml genomic
DNA of a Phyllobacterium isolate from the same soil was prepared to generate a standard curve.
Quantitative PCR was run with the Bio-Rad iCycler (Bio-Rad Laboratories GmbH, Munich, Germany) under
the conditions listed in Table S4 (qPCR). Measured threshold cycle (CT) values of the rhizosphere samples
were related to the standard curve to calculate the mass of bacterial DNA. Subsequently, the obtained
DNA concentrations were multiplied with the dilution factors to yield the relative bacterial DNA concen-
trations for each sample. The obtained values were used as factors to normalize gene abundances in
each sample and are further given as DNA concentrations in micrograms per gram dry soil in Table S6.

Statistics. All analyses were performed with the open-source software R (version 3.4.0, R Core
Team). The impacts of farming system, climate, and growth phases were tested separately for OTU data
to identify the main drivers of the bacterial community. The factors were then ordered by decreasing
impact. PERMANOVA (“adonis” R package vegan) was run, separately for crop species, using the follow-
ing model: Bray-Curtis dissimilarity (OTU table) � growth phase � farming system � climate.
PERMANOVA (“adonis,” R package vegan) was also performed to analyze the influence of soil abiotic pa-
rameters on community structure. The stratification by crop species ensured permutations only within
groups of samples belonging to wheat or barley rhizosphere. To visualize significant grouping factors of
bacterial community composition, principal-coordinate analysis (PCoA) was performed. For this, absolute
abundances of each OTU were normalized to the total read counts in the samples, a Bray-Curtis dissimi-
larity matrix was calculated, and the first two axes of the PCoA were plotted.
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Indicator species analysis was performed to identify OTUs that were either specific or shared
between wheat and barley among the two growth stages and the two farming systems. According to
Hartman et al. (93), we applied two different approaches to test for indicator species using R (version
3.4.0 [92]). The correlation-based approach calculates point-biserial correlation coefficients (R package
indicspecies [94]) indicating positive associations of OTUs to one or various conditions of farming system
and plant growth phases. Associations were considered significant at a P value of ,0.05. A likelihood ra-
tio test evaluated differences in abundances of OTUs between plant growth phases in the two different
farming systems (R package edgeR [95]). Differences in abundances were considered significant by a
false-discovery rate (FDR)-corrected P value of ,0.05. OTUs, when confirmed by both tests to be signifi-
cant, were regarded as indicator species and further implemented in bipartite network analysis. The net-
work was constructed with the R package igraph (93, 96).

Subsequently, Fisher tests were performed identifying enrichments of phyla within the indicator spe-
cies compared to the overall community composition in wheat and barley rhizospheres to examine if in-
dicator species were a random subset of the overall community (R package rcompanion [97]).

The measured enzyme activities of glucosidases, xylosidases, chitinases, phosphatases, and cellulases
were evaluated using the following linear model: test variable � (crop species) � farming system �
growth phase � climate.

The crop species was included when analyzing effects across both years/crop species. To test for sig-
nificant impacts of single factors and for interaction effects, but also for the influence of abiotic soil pa-
rameters, an ANOVA was run with the respective models followed by Tukey’s honestly significant differ-
ence (HSD) post hoc tests. Significance levels were classified as highly significant (P , 0.001), strongly
significant (P, 0.01), significant (P, 0.05), and tendency (P, 0.1.).

Spearman rank correlation tests were applied to assess correlations of measured enzyme activities
with the respective predicted gene abundances within climate and farming system treatments and also
within and among the different growth phases. To compare expression levels of measured and pre-
dicted enzyme activities, values were z-transformed. The differences between measured and predicted
Tax4Fun and PanFP, as well as relative changes between factors of the treatment, growth phase, farming
system, and climate, were calculated for each enzyme. Significant deviations within and among experi-
mental factors tested with ANOVA and variance partitioning are given (R package vegan).

Data availability Demultiplexed sequences are accessible in the Sequence Read Archive under
BioProject accession PRJNA605022. The pipeline used for analysis of metabarcoding raw read libraries is
available at https://github.com/lentendu/DeltaMP. Tax4Fun and PanFP are open access, author’s
descriptions can be found for Tax4Fun under http://tax4fun.gobics.de/ and for PanFP under https://
github.com/srjun/PanFP.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.1 MB.
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