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Predicting treatment response using EEG in major depressive
disorder: A machine-learning meta-analysis
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Selecting a course of treatment in psychiatry remains a trial-and-error process, and this long-standing clinical challenge has
prompted an increased focus on predictive models of treatment response using machine learning techniques.
Electroencephalography (EEG) represents a cost-effective and scalable potential measure to predict treatment response to major
depressive disorder. We performed separate meta-analyses to determine the ability of models to distinguish between responders
and non-responders using EEG across treatments, as well as a performed subgroup analysis of response to transcranial magnetic
stimulation (rTMS), and antidepressants (Registration Number: CRD42021257477) in Major Depressive Disorder by searching
PubMed, Scopus, and Web of Science for articles published between January 1960 and February 2022. We included 15 studies that
predicted treatment responses among patients with major depressive disorder using machine-learning techniques. Within a
random-effects model with a restricted maximum likelihood estimator comprising 758 patients, the pooled accuracy across studies
was 83.93% (95% CI: 78.90–89.29), with an Area-Under-the-Curve (AUC) of 0.850 (95% CI: 0.747–0.890), and partial AUC of 0.779. The
average sensitivity and specificity across models were 77.96% (95% CI: 60.05–88.70), and 84.60% (95% CI: 67.89–92.39), respectively.
In a subgroup analysis, greater performance was observed in predicting response to rTMS (Pooled accuracy: 85.70% (95% CI:
77.45–94.83), Area-Under-the-Curve (AUC): 0.928, partial AUC: 0.844), relative to antidepressants (Pooled accuracy: 81.41% (95% CI:
77.45–94.83, AUC: 0.895, pAUC: 0.821). Furthermore, across all meta-analyses, the specificity (true negatives) of EEG models was
greater than the sensitivity (true positives), suggesting that EEG models thus far better identify non-responders than responders to
treatment in MDD. Studies varied widely in important features across models, although relevant features included absolute and
relative power in frontal and temporal electrodes, measures of connectivity, and asymmetry across hemispheres. Predictive models
of treatment response using EEG hold promise in major depressive disorder, although there is a need for prospective model
validation in independent datasets, and a greater emphasis on replicating physiological markers. Crucially, standardization in cut-off
values and clinical scales for defining clinical response and non-response will aid in the reproducibility of findings and the clinical
utility of predictive models. Furthermore, several models thus far have used data from open-label trials with small sample sizes and
evaluated performance in the absence of training and testing sets, which increases the risk of statistical overfitting. Large
consortium studies are required to establish predictive signatures of treatment response using EEG, and better elucidate the
replicability of specific markers. Additionally, it is speculated that greater performance was observed in rTMS models, since EEG is
assessing neural networks more likely to be directly targeted by rTMS, comprising electrical activity primarily near the surface of the
cortex. Prospectively, there is a need for models that examine the comparative effectiveness of multiple treatments across the same
patients. However, this will require a thoughtful consideration towards cumulative treatment effects, and whether washout periods
between treatments should be utilised. Regardless, longitudinal cross-over trials comparing multiple treatments across the same
group of patients will be an important prerequisite step to both facilitate precision psychiatry and identify generalizable
physiological predictors of response between and across treatment options.
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INTRODUCTION
It has been notably demonstrated in the Sequential Treatment
Alternatives to Relieve Depression (STAR*D) study that antidepres-
sants fail to facilitate remission in most patients with major

depressive disorder (MDD) and that there is no clearly preferred
medication when patients inadequately respond to several courses
of antidepressants [1]. Similarly, data from a multicentre rando-
mized controlled trial spanning 2439 patients across 73 general
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practices in the UK found that 55% of patients (95% CI: 53–58%)
met the threshold for treatment-resistant depression, defined as
≥14 on the BDI-II, and who had been taking antidepressant
medication of an adequate dose, for at least 6 weeks [2].
This long-standing clinical challenge of selecting an appropriate

treatment for any given patient has prompted the increasing
development of predictive models of treatment response using
machine learning techniques. Broadly speaking, supervised
machine learning models use labeled training data (e.g., features
or input variables), to predict a given outcome (e.g., treatment
response) in unseen data (e.g., testing or validation dataset) [3]. In
the context of psychiatry, these models have largely involved
classification and regression tasks, where the outcome is a
categorical (e.g., responders vs. non-responders), or a continuous
outcome (e.g., depression change scores). There are several
available algorithms to select from, each relying on a series of
assumptions of the underlying input data. Moreover, an important
consideration in model development is hyperparameter tuning,
which involves finding a configuration of tuning parameters prior
to model training that results in the best performance (e.g.,
accuracy for classification models, and lowest root mean squared
error for regression models, respectively). A detailed overview of
supervised machine learning [4], algorithm selection [3], and
hyperparameter tuning [5] can be found elsewhere.
Thus far, most studies have utilized baseline clinical data to

predict prospective treatment response at an individual level, with
varying degrees of success and methodological robustness [6].
Similarly, there is a growing interest in the use of neuroimaging
and neurophysiological markers as input features to these models.
For instance, in a recent meta-analysis using MRI to predict
treatment response in MDD, comprising 957 patients, the overall
area under the bivariate summary receiver operating curve (AUC)
was 0.84, with no significant difference in performance between
treatments or MRI machines [7]. AUC, as described elsewhere [8],
is a measure ranging from 0 to 1 indicating how well a parameter
can distinguish between two diagnostic groups (e.g., responders/
non-responders to an intervention).
However, fMRI and MRI remain impractical as widespread clinical

tools to predict treatment response in psychiatry, considering the
high costs associated with each scan, and the excessive wait times
to access a limited number of MRI machines. It was also recently
shown in a landmark study that due to considerable analytical
flexibility in fMRI pipelines, seventy independent teams yielded
notably different conclusions when presented with the same
dataset and series of hypotheses [9].
In contrast, measures such as electroencephalography

(EEG) are comparably more cost-effective and scalable as a
potential clinical tool to predict treatment response. As
described elsewhere [10], EEG oscillations refer to rhythmic
electrical activity in the brain and constitute a mechanism
where the brain can regulate changes within selected neuronal
networks. This repetitive brain activity emerges because of the
interactions of large populations of neurons. As such, there is
evidence that MDD may be related to abnormalities in large-
scale cortical and subcortical systems distributed across frontal,
temporal, parietal, and occipital regions [10].
For instance, power amplitudes in specific frequency bands,

known as band power, are associated with different mechanisms
in the brain. Although incompletely understood, alpha band
power (8–12 Hz) reflects sensory and attentional inhibition and
has been shown to be associated with creative ideation [11], beta
frequencies (13–30 Hz) are prominent during problem-solving
[12, 13], while delta frequencies (≤4 Hz) are notable during deep
sleep [14], gamma frequencies (30–80 Hz) during intensive
concentration [15], and greater theta band frequencies (4–8 Hz)
during relaxation, respectively [16]. Alpha asymmetry, which
measures the relative alpha band power between hemispheres,
particularly within frontal electrodes, has been shown to

discriminate individuals with MDD from healthy controls, although
inconsistencies have been found across literature [17]. Similarly,
beta and low gamma powers in fronto-central regions have been
shown to be negatively correlated with inattention scores in MDD
[18]. Moreover, intrinsic local beta oscillations in the subgenual
cingulate were found to be inversely related to depressive
symptoms, particularly in the lower beta range of ~13–25 Hz
[19]. Additionally, in specific contexts, gamma rhythms, which
represent neural oscillations between 25 and 140 Hz, have been
shown to distinguish patients with MDD from healthy controls,
and various therapeutic agents for depression have also been
shown to alter gamma oscillations [20]. Patients with depression
also show more random network structure, and differences in
signal complexity [17], which may serve as replicable biomarkers
of treatment response and remission.
A detailed description of potential EEG biomarkers of depres-

sion including signal features, evoked potentials, and transitions in
resting-state EEG between wake and deep sleep, can be found
elsewhere [17]. Altogether, no robust individual biomarker of
treatment response in MDD has emerged. Towards this end, in a
meta-analysis of treatment response prediction during a depres-
sive episode, it was shown that the sensitivity across articles was
0.72 (95% CI= 0.67–0.76), and specificity was 0.68 (95%
CI= 0.63–0.73), respectively [21]. Nonetheless, most included
studies used linear discriminant analysis in the absence of
adequate cross-validation methods, training, and testing sets, or
hyperparameter tuning, which may have led to biased perfor-
mance metrics and a greater likelihood of statistical overfitting.
Therefore, in the present study, we aimed to meta-analyze and
systematically review studies that used machine learning techni-
ques to predict treatment response in MDD.

METHODS
This study has been registered on PROSPERO with the registration
number PROSPERO CRD42021257477.

Search strategy
Three electronic databases (PubMed, Scopus, and Web of Science)
were examined for articles published between January 1960 and
February 2022. To identify relevant studies, the following structure
for the search terms was used: (Supervised Machine Learning OR
Artificial Intelligence) AND (Major Depressive Disorder) AND
(Electroencephalography) AND (Interventions OR Trials). The com-
plete filter is available in the supplementary material. We also
screened references from the included articles to identify potential
missed articles. There were no language restrictions.

Eligibility criteria
This meta-analysis was performed according to the PRISMA
statement [22]. We selected original articles that assessed patients
with a psychiatric disorder treated with pharmacological or non-
pharmacological interventions coupled with machine learning
models and electroencephalography (EEG) feature to predict
treatment outcomes. Review articles and preclinical trials were
excluded. A minimum criterion of cross-validation or training and
testing sets were required for study inclusion since models lacking
resampling procedures are less likely to appropriately generalize
to independent datasets. Furthermore, studies with small sample
sizes (≤30) that did not correct for overfitting were excluded,
since cross-validation with small sample sizes, in the absence of
training and testing sets, can lead to inflated and highly variable
predictive accuracy [23]. Details relating to excluded studies can
be found in Supplementary Table 1.

Data collection and extraction
Initially, the potential articles were independently screened
for title and abstract contents by two researchers (DW and RFP).
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Then, they also obtained and read the full text of potential articles.
A third author (ICP) provided a final decision in cases of
disagreement. Data extracted from the studies included publica-
tion year, sample size, diagnosis, EEG system, reference choice,
impedance, number and type of electrodes, a method for de-
artificing, feature selection and extraction method, type of
intervention, outcomes of interest, machine learning algorithm,
and performance metrics of the models (i.e., accuracy, balanced
accuracy, sensitivity, specificity, area under the curve, true
positive, false positive, true negative and false negative, and
coefficient of determination). We also developed a quality
assessment instrument specific to machine learning studies since
there is no tool for quality assessment in machine learning
studies. Briefly, the quality assessment evaluates studies according
to several domains including representativeness of the sample,
confounding variables, outcome assessment, machine learning
approach, feature selection, class imbalance, missing data,
performance/accuracy, and testing/validation. This instrument,
and a brief description of each component, are further described
in the Supplementary Material. Additionally, we utilized the
Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)
[24] to assess potential bias and variation in each included study,
as described in Supplementary Table 2.
In terms of the analysis, “mada” [25], “dmetatools” and “meta”

packages in R were used to meta-analyze diagnostic accuracy
studies. The metamean function in the “meta” package was used
to pool accuracy across studies in a random-effects model using
an inverse variance method with Knapp–Hartung adjustments to
calculate the confidence interval around the pooled effect. A
restricted maximum-likelihood estimator was used to calculate the
heterogeneity variance τ2. Moreover, the madad function in the
“mada” package was used to calculate the sensitivity, specificity,
and pAUC across studies, while the Madauni function was used to
calculate the Diagnostic Odds Ratio (DOR), positive likelihood ratio
(posLR), and negative likelihood ratio (negLR). AUC was calculated
using the AUC_boot function in dmetatools, with an alpha of 0.95
and 2000 bootstrap iterations.

RESULTS
We found 2489 potential abstracts and included 15 articles in the
present meta-analysis and systematic review, two included after
reference screening (Supplementary Table). A list of included
studies as well as their most relevant characteristics and findings
are detailed in Table 1. Two separate quality assessments can be
observed in the supplementary material. Of the included
studies, seven predicted responses to brain stimulation therapies
[26–30, 32, 33], and eight predicted responses to pharmacological
treatment [34–41]. Additionally, a complete breakdown of how
each study defined treatment response can be found in
Supplementary Table S4.

Studies predicting treatment response to brain stimulation
therapies
There were seven studies using EEG features to predict treatment
response to brain stimulation [26–30, 32, 33]. Among these, all
predicted responses to repetitive transcranial magnetic stimula-
tion (rTMS). Further information relating to feature extraction
methods, feature selection, and extracted features can be found in
Table 2.
Corlier and colleagues predicted treatment response to open-

label 10 Hz rTMS applied to the left dorsolateral prefrontal cortex
(DLPFC) in a sample of 109 patients with MDD. Treatment
response was defined as a decrease of ≥40% in post-treatment 30-
item inventory of depressive symptomatology—self-rated (IDS-30)
scores. Extracted features comprised changes in neurophysiologi-
cal connectivity in the individual alpha frequency (IAF) band in
response to rTMS stimulation. Using an elastic net model, which

provides an embedded form of feature selection, the authors
reported an accuracy of 61.8–69.3%, with the best performance
using alpha spectral coherence features, defined as spectral
correlation in the alpha frequency band. Of note, the same model
showed 77% accuracy in a unilateral treatment subgroup [28].
Furthermore, Erguzel and colleagues developed a model to

predict antidepressant response to 20 sessions of adjunctive 25 Hz
rTMS applied to the left PFC in a sample of 147 individuals with
MDD. Responder status was operationalized as a ≥50% reduction
in Hamilton Depression Rating Scale (HAM-D) scores at the end of
treatment. The best performance was observed in a Support
Vector Machine (SVM) model in the theta frequency band across
prefrontal regions using cordance features, which combines
absolute and relative resting EEG activity, with an accuracy of
86.4% [32]. Additionally, Hasanzadeh et al. developed a model to
predict response to 5-sessions of 10 Hz rTMS applied to the left
DLPFC among 46 patients with MDD. Treatment response was
defined as ≥50% decrease in BDI-II or HAMD-24 scores or by
BDI ≤ 8 (HAMD-24 ≤ 9) which indicates remission. Using a k-
Nearest Neighbors (k-NN) model, the best performance was
observed using Lempel–Ziv complexity features in the beta
frequency band, which counts the number of distinct segments
in the signal, with an accuracy of 82.6%. [32].
Another study [28] predicted treatment response (≥50%

improvement in HAMD-17) in an 18-session open-label trial of
25 Hz rTMS to the left prefrontal cortex, comprising 55 patients
with MDD using cordance features in the delta and theta
frequency bands, resulting in 89.09% accuracy. However, since
accuracy was assessed using internal k-fold cross-validation alone,
performance may be over-optimistic. In another study, treatment
response was predicted within a 15-session open-label trial of
10 Hz left prefrontal rTMS in 39 patients with MDD using theta,
upper alpha, and upper gamma power and connectivity, as well as
theta-gamma coupling features, resulting in an accuracy of 91%
[25]. Similarly, in another study using the same experimental
design in 32 patients with MDD, treatment response was predicted
using theta and alpha power and connectivity, frontal theta
cordance, and alpha peak frequency, resulting in an accuracy of
86.66% [26]. Furthermore, other studies with insufficient sample
sizes predicted response to tDCS [41], and rTMS [42], as further
described in Supplementary Table S1.
Across neurostimulation trials, important features included

absolute and relative power in frontal electrodes (alpha and theta
band), connectivity measures (theta and gamma), spectral entropy,
and cordance features across alpha, theta, delta, and gamma
frequency bands. As described elsewhere [43], spectral entropy of a
signal is a measure of its spectral power distribution and is based on
Shannon’s entropy. With respect to important channels, one study
[28] found Fp1, Fp2, F3, F7, and F8 in the theta frequency band to
be important features following feature selection, and these same
features were used in a follow-up study [30] by the same group,
largely maintaining model accuracy (89.12% vs. 78.3–86.4%,
respectively). One study [32] compared nonlinear, power spectral
density, bi-spectral features, and cordance, with the best perfor-
mance observed when restricting features to power over all 19-
channels in delta, theta, alpha, and beta frequency ranges [33].
Furthermore, another study [26] found enhanced theta power at Fz
to differ significantly between responders and non-responders
(F1= 8.577, p= 0.006), however, no main effect for frontal-midline
theta power was observed in a follow-up study [27]. Furthermore,
three studies [26, 27, 33] did not report feature selection methods,
and surprisingly, no studies compared multiple feature selection
methods. Further details can be observed in Table 2.

Studies predicting clinical response to pharmacological
treatment
Seven studies developed predictive models of clinical response to
pharmacological treatment [34–41]. Among these, three studies
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assessed treatment response to various classes of antidepressants
within randomized double-blind trials [35–38], one assessed
response within a randomized trial of ketamine or placebo [34],
one assessed response in an open-label trial of an SSRI [38], and two
other studies assessed response to sertraline [40], and escitalopram
[41], respectively.
Wu and colleagues developed a machine learning model

known as Sparse EEG Latent SpacE Regression (SELSER), applied to
alpha, beta, delta, and gamma frequency bands, to predict
antidepressant treatment response using resting-state EEG.
SELSER was first trained on data from the largest neuroimaging-
couped placebo-controlled randomized clinical study of antide-
pressant efficacy, comprising 309 patients. The generalizability of
the antidepressant signature was tested in two independent
samples of depressed patients treated with antidepressants, and
another sample of patients treated with rTMS to assess the
specificity of SELSER’s signature for predicting response to
antidepressants. Response was defined according to HAMD-17
change scores at the end of treatment. SELSER was shown to
generalize across antidepressant datasets, with an R2 of 0.60 in
predicting response to sertraline, and an R2 of 0.41 in predicting
response to placebo, respectively [40].
Cao and colleagues developed a machine learning model to

predict rapid antidepressant response to ketamine in a sample
of 55 patients with treatment-resistant depression. Response
was defined as ≥45% reduction in depressive symptoms
(HAMD-17) 240 min following infusion. Using EEG power in
delta, theta, lower-alpha, and upper alpha bands, as well as
alpha asymmetry in frontal electrodes as candidate features,
the best performance was observed using SVM with a radial
kernel, resulting in an accuracy of 78.4% [34].
De la Salle and colleagues developed a model to predict

response within a double-blinded 12-week trial of escitalopram,
bupropion, or combined treatments, in 47 patients with
treatment-resistant depression. Clinical response was defined
as a ≥50% reduction in MADRS scores from baseline, and
remitters were operationalized as those with ≤10 MADRS scores
at posttreatment. Within a logistic regression model, change
scores in middle right frontal cordance and prefrontal cordance
across delta, theta, alpha, and beta frequency bands resulted in
an accuracy of 74% and 81% in predicting clinical response,
respectively. Similarly, clinical remission could be predicted
with 70% accuracy using prefrontal cordance, however, middle
right frontal cordance features were not discriminative (51%
accuracy). It is important to note that EEG features alone
resulted in better accuracy (74–81%) than clinical features
alone (66%) or a combined model of EEG and clinical features
(64–66%) [36].
Furthermore, Zhdanov et al. predicted antidepressant response

to an 8-week open-label trial of escitalopram (10–20mg) in a
sample of 122 patients with MDD. Patients were classified as
responders if they showed ≥50% reduction in Montgomery-Asberg
Depression Rating Scale (MADRS) scores at the end of treatment. Of
note, four classes of features were used, comprising electrode-level
and source-level spectral features, multiscale-entropy-based fea-
tures, and microstate-based features, as described in further detail
within Supplementary Table 1. Using baseline EEG features alone,
their SVM model showed an accuracy of 79.2%. Performance
improved slightly when adding EEG features from the second week
of treatment, with an accuracy of 82.4% [41].
In another study, Rajpurkar and colleagues predicted improve-

ment in individual symptoms within the HAM-D from baseline to
week 8 within a randomized trial of escitalopram, sertraline, or
extended-release venlafaxine in a sample of 518 patients with
MDD. Pre-treatment EEG candidate features included frontal
alpha asymmetry, occipital beta asymmetry, and the ratio of
beta/alpha and theta/alpha band power for each electrode.
Using a gradient boosting machine (GBM) model withTa
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embedded feature selection, the authors reported an R2 of
0.375–0.551, with the best performance using EEG and baseline
symptom features [39]. Other studies predicted response to
various classes of antidepressants, resulting in an accuracy of
88% [37], treatment remission, resulting in an accuracy of 64.4%
[35], and treatment response to an open-label trial of an SSRI,
resulting in an accuracy of 87.5% [38].

Across medication trials, important features included alpha,
theta, and gamma power in frontal electrodes, coherence
between frontal and temporal electrodes, change scores in
delta power, the ratio of alpha and theta power in temporal
electrodes, and asymmetry between hemispheres. With respect
to important channels, two studies [34, 39] found Fp2 absolute
theta to be among the top ten features to predict response to
SSRIs/SNRI, and ketamine, respectively. Additionally, two studies
[37, 39] showed baseline power at F7 to be an important
feature, although in different frequency bands, corresponding
to alpha, beta, and gamma, respectively. Overall, studies varied
widely in the number of electrodes, electrodes of interest, and
feature extraction methods, which preclude a set of well-
elucidated individual biomarkers of treatment response.

Improvements in model accuracy by incorporating EEG
features
Additionally, we sought to investigate the contribution of EEG-based
features to predictive accuracy in cases where clinical variables were
also incorporated into predictive models of treatment response.
However, only six studies [26–28, 37, 39, 41] (40%) used both EEG
and clinical candidate features within model development. Among
them, only one [28] reported differences in model accuracy between
EEG features, clinical features, and combined models. Corlier and
colleagues reported that alpha spectral correlation features predicted
treatment response with 69.3% accuracy (Sensitivity: 67.1%,
Specificity: 70.9%), while baseline IDS-30 scores predicted treatment
response with 75.1% accuracy (Sensitivity: 64.1%, Specificity: 83.6%).
Combining both features lead to greater model performance, with
an accuracy of 79.2% (Sensitivity: 75.7%, Specificity: 81.9%) [28].

Quality metrics
Overall, samples used to develop models were small, with a
median sample size of 55 among studies predicting response to
neurostimulation, and 86.5 among studies predicting response to
antidepressant medication, respectively. Quality metrics were
assessed using the QUADAS-2 [24], and a quality assessment
instrument specific to machine learning. These quality assessment
metrics can be found in Supplementary Table 2, and the
Supplementary Material, respectively. The QUADAS-2, as described
elsewhere [24], evaluates the risk of bias according to the domains
of patient selection, index test, reference standard, and flow and
timing. Overall, most studies showed a low risk of bias according
to patient selection, how treatment response was defined, and the
time interval between EEG assessments and treatment follow-up.
However, 7 of 15 (46.6%) [26, 27, 29, 30, 32, 33, 38] showed a high
risk of bias in reference standards for model development, which
included a lack of training/testing sets, and a lack of blinded
assessment to treatment allocation when collecting symptom
scales and EEG data.

With respect to the machine learning quality assessment, the
median score for neurostimulation studies was 5/9 (55.5%), and
the median score for psychiatric medication studies was 6.5/9
(72.2%), respectively. Only two studies [27, 34] discussed
methods to address the class imbalance, which occurs in
classification models where there is a disproportionate ratio of
observations in each class (e.g., responders vs. non-responders).
Moreover, several studies [26, 27, 29, 30, 32, 33, 35–37, 39]
evaluated performance using cross-validation in the absence of
training and testing sets, which increases the risk of model
overfitting and may lead to biased results.Ta
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Meta-analyses of predictive models of treatment response
using EEG
Within the fifteen studies included in the systematic review, seven
predicted treatment responses to rTMS [26–30, 32, 33], and eight
predicted responses to antidepressant treatments (ketamine, escita-
lopram, sertraline, escitalopram, bupropion, and venlafaxine), respec-
tively [34–41]. Among them, 12 involved binary classification models
[26–29, 32–38, 41] (response vs. non-response) and reported
summary statistics required to pool predictive accuracy. A detailed
summary of performance metrics across models can be found in
Supplementary Table S4. The accuracy of treatment response
prediction models in MDD across 758 patients was pooled in a
random-effects model using an inverse variance method with a
restricted maximum likelihood estimator to calculate the hetero-
geneity variance τ2. Furthermore, Knapp–Hartung adjustments were
used to calculate the confidence interval around the pooled effect.
Overall, across six studies comprising 438 patients with MDD, the

pooled accuracy of treatment response prediction using EEG was
83.93% (95% CI: 78.90–89.29), with a heterogeneity variance τ2 of
0.0044 (95% CI: 0.0009–0.0296), as depicted in Fig. 1. Moreover, the
median sensitivity across studies was 77.96% (95% CI: 60.05–88.70),
and median specificity was 84.60% (95% CI: 67.89–92.39), respectively,
as shown in Fig. 2. Additionally, as shown in Table 3, the AUC was
0.850 (95% CI: 0.747–0.890), with a pAUC of 0.777, whereas the total
DOR was 23.49 (95% CI: 10.40–52.02), with a posLR of 5.232 (95% CI:
3.15–8.67), and negLR of 0.271 (95% CI: 0.195–0.376), respectively.
Briefly, DOR is a ratio of the odds of testing positive (e.g., predicted as
a responder) when reaching therapeutic response to treatment,
relative to the odds of testing positive (e.g., predicted as a responder),
when failing to respond to treatment, although this metric is also
dependent on prevalence [42]. Further information regarding this
metric can be found elsewhere [43]. Similarly, posLR describes the
probability of testing positive divided by the probability a positive test
would be expected in a negative case, whereas negLR is defined as
the opposite. A posLR of 10 or more and a negLR of 0.1 or less are
generally deemed to be informative tests. Additionally, considering
potential study heterogeneity across treatment modalities, a sub-
group analysis was performed for rTMS and antidepressant models,
where these outcomes were assessed separately, as shown in
Supplementary Figs. S1–S4.

Efficacy of predicting treatment response to rTMS
Across six studies [26–29, 32, 33], comprising 438 patients, the
pooled accuracy of rTMS treatment response prediction using EEG
was 85.70% (95% CI: 77.45–94.83), with a heterogeneity variance
τ2 of 0.0051 (95% CI: 0.0004: 0.0668). The median sensitivity across
studies was 79.4% (95% CI: 58.65–90.80) and median specificity
was 92.05% (95% CI: 81.70–99.30), respectively. Overall, the AUC
across studies was 0.895 (95% CI: 76.07–93.99), with a partial AUC
of 0.821, a DOR of 35.48 (95% CI: 7.805–161.364, τ2= 2.797), posLR
of 7.098 (95% CI: 2.843–17.725, τ2= 0.915), and negLR of 0.234
(95% CI: 0.122–0.448, τ2= 0.478), respectively.
A test for equality of proportions with a continuity correction of 0.5

yielded a Chi-squared (X2) value of 20.05 (p= 0.0012) and 20.62
(p= 0.00095) for sensitivities and specificity, respectively. Moreover, a
moderate negative correlation was observed between sensitivities
and false-positive rates (Rho=−0.526 (95% CI: −0.937 to 0.498).
Further details can be observed in Supplementary Figs. S1 and S3.

Efficacy of predicting treatment response to antidepressants
Across five studies [35–38, 41], comprising 325 patients, the
pooled accuracy of antidepressant treatment response predic-
tion using EEG was 81.41% (95% CI: 71.09–92.23), with a
heterogeneity variance τ2 of 0.0052 (95% CI: 0.00–0.11), as
depicted in Supplementary Fig. S2. The median sensitivity
across studies was 77.78% (95% CI: 61.14–88.50), and median
specificity was 82.06% (95% CI: 65.54–95.24), respectively.
Overall, the AUC of studies predicting response to antidepres-
sant medications was 0.764 (95% CI: 0.710–0.899) with a partial
AUC of 0.756. Furthermore, the overall DOR was 19.02 (95% CI:
5.51–65.61), with a posLR of 4.30 (95% CI: 1.92–9.64), and
negLR of 0.296 (95% CI: 0.208–0.422). A test for equality of
proportions with a continuity correction of 0.5 yielded an X2

of 3.8 (p= 0.434) for sensitivities and an X2 of 23.67
(p= 0.0000927) for specificities, respectively. Moreover, a weak
negative correlation of sensitivities and false-positive rates was
observed across studies (Rho=−0.016, 95% CI: −0.886 to
0.879). Further details can be observed in Supplementary Figs.
S2 and S4.
Considering the small number of antidepressant studies, we

performed another meta-analysis with the addition of three studies

Fig. 1 Pooled effects of treatment response accuracy using EEG. Pooled accuracy of treatment response prediction models in Major
Depressive Disorder across 792 patients within a random-effects model using a restricted maximum-likelihood estimator to calculate the
heterogeneity variance τ2. Model accuracy across studies was used, in conjunction with standard deviation, calculated by multiplying the
standard error by the square root of the sample size (SD= SE × √n). Knapp–Hartung adjustments were used to calculate the confidence
interval around the pooled effect. The average accuracy across models was 83.94% (95% CI: 78.91–89.29), with a heterogeneity variance τ2

of 0.0044.
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[44–46] that were excluded due to small sample size (N ≤ 30),
increasing the total sample to 402 patients with MDD. This resulted
in a pooled accuracy of 84.52% (95% CI: 77.67–91.98, τ2= 0.0034),
median sensitivity of 82.07% (95% CI: 60.96–91.72), median
specificity of 84.47% (95% CI: 65.28–92.55), and AUC of 0.794 (95%
CI: 0.728–0.887). Additionally, the DOR was 28.98 (95% CI: 9.95–84.4),
with a posLR of 5.20 (95% CI: 2.67–10.15), and negLR of 0.26 (95% CI:
0.19–0.37). Further details can be found in Supplementary Fig. S5.

DISCUSSION
While there is a great deal of promise in using EEG within machine
learning models to predict treatment response in MDD, there does
not appear to be a consensus on collection methods, consistent
physiological markers of response to antidepressants, or rTMS
across studies. Given the complexity of MDD, and the likelihood of
heterogeneity in important features across patients, the field may
require a conceptual shift away from the search for singular
biomarkers, towards the use of composite features, identified
using multivariate models. As such, it may be the case that no
singular neurophysiological biomarker will demonstrate the
sensitivity and specificity required to guide treatment selection
in MDD. Rather, a composite biomarker comprising a series of
distinct, but mutually informative features, may serve to both
improve our mechanistic understanding of treatment response,
and appropriately model this phenomenon. However, it is
important to highlight that multimodal feature combinations
carry several additional considerations. Namely, if complex
approaches such as source localization are required to provide
meaningful accuracy, this may provide a significant challenge in
the clinical implementation of such models. Additionally, while
resting-state features provide greater scalability relative to EEG

activation patterns during specific tasks, the latter may inform
features that could perhaps be more sensitive and specific in
modeling clinical improvement in response to a given treatment.

Model performance across meta-analyses
Overall, model performance in predicting response to rTMS
(accuracy= 85.70%, 95% CI: 77.45–94.83; AUC= 0.895, 95% CI:
76.07–93.99, DOR= 35.48, 95% CI: 7.805–161.364) was greater
than predicting response to antidepressants (accuracy= 81.41%,
95% CI: 71.09–92.23; AUC= 0.764, 95% CI: 0.710–0.899, DOR=
19.02, 95% CI: 5.51–65.61), even after the addition of three
excluded studies to increase the sample size (accuracy= 84.52%,
95% CI: 77.67–91.98; AUC= 0.794, 95% CI: 0.776–0.919; DOR=
28.98, 95% CI: 9.95–84.4). This was also found relative to a total
model including 12 studies (N= 792) across all rTMS and
medication trials (accuracy= 83.93%, 95% CI: 78.90–89.29; AUC:
0.850, 95% CI: 0.600–0.887; DOR= 23.49, 95% CI: 10.40–52.02).
There are several potential contributing factors to this finding,

as models that predicted response to rTMS utilised data from
open-label trials that lacked an adequate sham condition.
However, it is posited that this may be reflective of very specific
targets across rTMS studies, since all involved high-frequency
stimulation (10–25 Hz) to the DLPFC. Moreover, it is speculated
that EEG, which measures electrical activity primarily near the
surface of the cortex, is assessing neural networks that are more
likely to be directly targeted by rTMS. Conversely, with respect to
pharmacotherapy, the effect is much more indirect and potentially
dependent on other factors that EEG cannot access such as
hepatic metabolism, and pharmacokinetic interactions.
Interestingly, across all four meta-analyses, model specificity

(82.06–92.05%) was notably greater than model sensitivity
(77.96–82.07%), even when considering the upper and lower

Fig. 2 Sensitivity and specificity across models. A calculation of the sensitivity and specificity summary statistics across 12 studies using the
frequencies of true positives, false negatives, false positives, and true negatives, using the madad function in the mada package in R. Overall,
the balanced accuracy (sensitivity+ specificity/2) across studies was 81.28%. Across studies, model sensitivity was lower than specificity,
suggesting that predictive models of treatment response using EEG overall show better performance in identifying true non-responders to
treatment (specificity), relative to true responders to treatment (sensitivity).
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bounds of the confidence intervals. This suggests that across all
treatment modalities, including rTMS, antidepressants, and a
combined model, EEG features are better able to capture
predictors of clinical non-response to treatment, rather than
predictors of clinical response. As such, it is possible that EEG may
show greater utility in determining whether a patient will not
respond to a given intervention at baseline. However, prospective
validation with large samples in independent cohorts will be
necessary to determine the reliability of this finding.
Additionally, the rTMS model showed a higher DOR (DOR=

35.48, 95% CI: 7.805–161.364; τ2= 2.797, 95% CI: 0.00–8.402),
relative to the total model (DOR= 23.49, 95% CI: 10.40–53.02;
τ2= 1.395, 95% CI: 0.00–2.13), and antidepressant model (DOR=
19.02, 95% CI: 5.51–65.61); τ2= 1.27, 95% CI: 0.00–14.79),
respectively. This indicates that the odds for positivity among
individuals who respond to treatment are 35 times higher than
the odds for positivity among individuals who will not respond to
treatment. However, it is important to highlight that a large upper
and lower bound of the confidence interval was observed across
rTMS studies, as well as greater heterogeneity.

Independent validation, feature replicability, and clinical
outcomes
Nonetheless, there is a need for greater emphasis on testing model
performance with independent samples, greater consistency in
sample collection and model development, and an increased focus
on replicating features identified in previous models. Additionally,
nine studies [26–30, 32, 33, 36, 38] (60%) included in the present
meta-analysis and systematic review did not test accuracy in
holdout data, relying instead on internal cross-validation, which may
lead to overoptimistic performance metrics. Furthermore, most
studies (57.1%) utilised data from open-label trials lacking adequate
double-blind procedures, and as such, there is a risk of bias
pertaining to the scoring and interpretation of treatment response.
There also remains an unmet need for prospective studies that
compare features between models of treatment response and
remission outcomes. Thus far, only one study [36] has assessed both
outcomes, although it did not report a difference in top features
between these models. It remains to be determined whether there
are reproducible features that are specific to reaching the threshold
for treatment response, relative to treatment remission.

Definitions of clinical response
Most studies contained in the present review (86.6%) used binary
classification models to discriminate treatment responders’ treat-
ment from non-responders. As detailed further in Supplementary
Fig. S4, studies varied in terms of the specific clinical scale and
change-score thresholds that constituted treatment response.
Overall, four studies (26.6%) selected a ≥ 50% reduction in the
HAMD-17 as the threshold of clinical response, while three studies
(20%) defined clinical response as a ≥50% reduction in the MADRS.
Large differences in treatment duration were also observed across
trials. Importantly, greater standardization in how clinical response
is defined is required to better assess the performance of
prospective models, aid in the reproducibility of findings, and
improve the likelihood of real-world clinical utility of ML models in
psychiatry. Similarly, as described elsewhere [47], there is a lack of
clear consensus on how treatment resistance is defined, which
highlights the need for greater consistency across studies.

Comparison of algorithms across studies
Furthermore, only three studies (20%) [32, 34, 37] assessed the
performance of multiple algorithms, which limits a comparison of
which algorithms tended to perform well. Considering this, two
studies [48, 49] that were excluded due to insufficient sample size
which assessed multiple algorithms were pooled with included
studies to examine potential trends, comprising a total of five studies.
Among them, SVM was compared alongside other algorithms such

as random forest within five studies and resulted in the best
performance in 60% of cases. In the other 40% of cases [37, 49], only
composite accuracy across algorithms was reported. As described
elsewhere [50], SVM is well suited to very high dimensional data,
considering its use of support vectors, various available kernels, and
computational efficiency in large datasets.

Pre-processing strategies across studies
With respect to pre-processing strategies, all studies used a
bandpass filter to limit included frequencies to a specific range,
although studies varied widely (0.1–80 Hz) in terms of the upper
and lower bounds. One study [41] also reported using a notch
filter at 60 Hz, which attenuates frequencies in a specific range
to very low levels. Furthermore, five studies [29, 30, 32, 37, 39]
(33.3%) used independent component analysis to filter artifacts,
and five [29, 30, 32, 34, 37] (33.3%) used a fast Fourier transform
method. Other studies [33, 41] used available pre-processing
packages, such as the EEGLAB toolbox available in the MATLAB
programming language.

Future perspectives
Prospectively, there is a need for models that examine the
comparative effectiveness of multiple treatments across the same
patients. Studies thus far have focused on predicting response to a
specific intervention rather than treatment selection, and few
have been replicated to see if a classification tool has worked in
external independent datasets.
Furthermore, to facilitate EEG biomarkers of response to specific

treatments, future studies may benefit from testing model
performance on external datasets of other psychiatric medications
or neurostimulation therapies. For example, Wu and colleagues
assessed whether the algorithm SELSER, trained on SSRI datasets,
could predict response to rTMS [40]. This approach may help
highlight differences in important features to predict treatment
response across psychiatric medications and provide an avenue to
investigate potential neurophysiological mechanisms of action.
Moreover, exploring whether models retain similar features and
modest prediction accuracy when tested on external datasets of
other interventions, may provide a way to identify generalizable EEG
biomarkers that are related to therapeutic improvement or treatment
resistance across disorders. Nonetheless, it may be more informative
and realistic to focus on predictors of response to specific classes of
medications and neurostimulation trials, to identify divergent
mechanisms of therapeutic efficacy and treatment resistance. Either
way, this will require careful consideration of differences in outcome
instruments between datasets.
Surprisingly, in the present review, there was little overlap in top

features between models, even when stratifying between rTMS or
antidepressant trials. As such, there remains a critical need for a
systematic comparison of several types of features in prospective
models of treatment response and treatment selection to help
guide prospective biomarker identification and validation. Of the
15 studies comprising the current review, only three [33, 34, 41]
(20%) included three or more categories of candidate features
during model development. For instance, Hasanzadeh and collea-
gues considered nonlinear, spectral entropy, and cordance features,
and found that combining spectral entropy (beta and delta) and
cordance features resulted in the highest performance [33].
Furthermore, Zhdanov and colleagues compared electrode-level
spectral features, source-level spectral features, multiscale-entropy-
based features, and micro-state-based features. Here, multiple-
entropy-based features comprised the top 4 of 8 features in a model
to predict response to 8-weeks of open-label escitalopram [41].
Apart from the categories of features used in the present

review, as detailed in Table 2, prospective models may benefit
from incorporating features derived from brain source localization
methods. This process, as described elsewhere [51], involves
predicting scalp potentials from current sources in the brain
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(forward problem) and estimating the location of the sources by
measuring scalp potentials (inverse problem). These methods
have the potential to improve the signal-to-noise ratio of
extracted features and suppress volume conduction. However,
they require an accurate head model which is often difficult to
obtain. It remains unclear what the overall effectiveness of these
methods is in the context of extracting meaningful features to
predict treatment response.
Furthermore, as described in Supplementary Table S5, most

predictive models have been developed using features derived
from resting-state EEG. Only two studies [26, 38] (13.3%) have
used task-specific EEG to derive features, which involved the
Sternberg Working Memory Task and 3-Stimulus Visual Oddball
Task. Apart from this, event-related potentials may prove useful,
especially if we could identify stimuli that are sensitive to
depressed and psychotic states. Moreover, none of the
reviewed studies developed predictive models using a combi-
nation of resting-state and task-specific EEG. Incorporating both
within the same model of treatment response may help inform
potential mechanisms of action and yield more informative
biomarkers. Additionally, no studies thus far have utilised
intracranial EEG to predict treatment response in MDD. By
placing electrodes directly on the surface of the brain,
intracranial EEG provides a much cleaner signal, and by its
nature, greater source localization [52]. While intracranial EEG is
much more invasive relative to surface electrodes, it may be
justified for severe cases of treatment resistance.
With respect to algorithm selection, SVM was found to perform

well when comparisons against other algorithms were available.
Apart from the approach of comparing performance across
individual algorithms, stacked generalization [53] provides an
alternative ensemble method to combine the predictions of two or
more machine learning algorithms, while using another algorithm
to learn how to combine their outputs. As described elsewhere
[54], stacking can improve model performance over any single
model contained in the ensemble. Additionally, stacking differs
from the traditional bagging and boosting ensemble methods in
that it typically uses different models that combine predictions
from contributing models, rather than a series of decision trees, or
models that comprise weak learners building upon the prediction
of previous models, respectively. While two studies [37, 49]
averaged results across models into a composite accuracy, to our
knowledge, stacked generalization has not yet been explored in
predictive models of treatment response using EEG.
Similarly, hyperparameter tuning, which involves selecting the

optimal set of hyperparameters for a given model, remains an
important consideration in model development [55]. While many
software packages have default hyperparameter settings during
cross-validation, searching the hyper-parameter space for the lowest
loss-function, or best cross-validation score is recommended.
Although an exhaustive search of the hyperparameter space is
often computationally infeasible, there are several available methods
such as a manual grid search, collaborative hyperparameter tuning
[56], and Bayesian optimization [57].
As demonstrated in the current review, studies varied largely in

the number of electrodes used, EEG systems, feature selection and
extraction methods, and machine learning algorithms. Consider-
ing the heterogeneity observed across studies, large, standardized
datasets must become available before this field can move ahead
in a significant way. Importantly, there is a need for models
developed using large well-characterized samples, with separate
training, testing, and external validation datasets, to derive
classification tools that can be useful clinically. Similarly, available
repositories are needed to appropriately replicate models devel-
oped thus far, identify generalizable biomarkers of treatment
response across interventions, and identify distinct neurophysio-
logical markers that can help guide treatment selection in MDD.
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