
Use of reduced dose rate when treating moving tumors 
using dynamic IMRT 

Laurence Court,a Matthew Wagar, Madeleine Bogdanov, Dan Ionascu, 
Deborah Schofield, Aaron Allan, Ross Berbeco, Tania Lingos
Department of Radiation Oncology, Dana-Farber/Brigham & Women’s Cancer Center, 
Boston MA, USA
lecourt@mdanderson.org

Received 3 February, 2010; accepted 16 August, 2010

The purpose was to evaluate the effect of dose rate on discrepancies between 
expected and delivered dose caused by the interplay effect. Fifteen separate dynamic 
IMRT plans and five hybrid IMRT plans were created for five patients (three IMRT 
plans and one hybrid IMRT plan per patient). The impact of motion on the deliv-
ered dose was evaluated experimentally for each treatment field for different dose 
rates (200 and 400 MU/min), and for a range of target amplitudes and periods. The 
maximum dose discrepancy for dynamic IMRT fields was 18.5% and 10.3% for 
dose rates of 400 and 200 MU/min, respectively. The maximum dose discrepancy 
was larger than this for hybrid plans, but the results were similar when weighted 
by the contribution of the IMRT fields. The percentage of fields for which 98% 
of the target never experienced a 5% or 10% dose discrepancy increased when 
the dose rate was reduced from 400 MU/min to 200 MU/min. For amplitudes up 
to 2 cm, reducing the dose rate to 200 MU/min is effective in keeping daily dose 
discrepancies for each field within 10%. 
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I.	 Introduction

Several authors have studied the dose discrepancies caused by the interplay between moving 
radiation fields (as with dynamic IMRT [sliding window]) and respiratory-induced motion of 
the tumor. It has been shown that certain combinations of MLC sequence and target motion 
can give large dose discrepancies(1,2) for individual fractions. These effects generally average 
out when multiple fractions are used,(3-9) but Seco et al.(1) found that this is not always the case 
(e.g., for step-and-shoot IMRT) and, for some situations, a dose error could still remain after 
multiple fractions.  

Previously published work has shown that the daily dose discrepancies caused by the target/
MLC motion are dependent on specific characteristics of the MLC and tumor motion.(2, 10) These 
effects are smallest for large MLC separation, small displacement between adjacent MLCs, slow 
MLC speeds, short target periods and small target amplitudes. A number of groups have provided 
specific recommendations on the MLC parameters that will minimize the interplay effect. Yu 
et al.(2) recommends keeping the speed of collimator (or MLC) motion below 0.5 cm s-1 for 
apertures larger than 1 cm. Court et al.(10) gives recommendations for the maximum collimator 
speed as a function of various parameters such as field aperture and target period. For apertures 
larger than 1 cm the results of Court et al. are similar to those of Yu et al. For smaller apertures 
(< 1cm), they showed that the collimator speed should be kept to 0.1–0.2 cm s-1. It is difficult, 
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however, to use these recommendations to directly guide the planning process. Instead, the 
following simple guidelines can be used:(11)  

1.	 Choose gantry and collimator angles that will minimize large fluence gradients (e.g., do 
not have beams for which portions of the field-of-view includes the cord or other critical 
structures). This helps avoid complicated MLC sequences with small separation between 
opposing MLCs and large displacement between adjacent MLCs.

2.	 Avoid pushing the IMRT optimization process too much. This is a somewhat subjective guide-
line, but it indicates to the planner that the use of unusually high weights (priorities) or low 
fluence smoothing may result in fields with MLC sequences that have small separations.  

3.	 Use reduced dose rates (to give lower collimator speeds). This has also been suggested by 
Jiang et al.(12) 

The purpose of this work is to experimentally investigate Guideline #3. Specifically, we 
investigated the impact of reducing the dose rate from 400 MU/min to 200 MU/min. We evalu-
ated the impact of target motion on the daily delivered dose for 20 IMRT lung plans (91 fields) 
created using these guidelines. Fifteen of these plans are dynamic IMRT plans; five of them are 
hybrid IMRT plans(13,14) which use both conformal and IMRT fields to treat the target. Hybrid 
plans are sometimes preferred to full IMRT plans because they can reduce the volume of lung 
receiving low doses, and also because they have the potential to reduce the magnitude of dose 
deviations due to intrafraction motion.(14)  

 
II.	 Materials and Methods

A.	 Treatment plans
Fifteen separate dynamic IMRT plans and five hybrid IMRT plans were created for five patients 
(three IMRT plans and 1one hybrid IMRT plan per patient) using Eclipse 8.6 (Varian Medical 
Systems, Palo Alto, CA). Use of the patients’ CT and contour data was approved by an Insti-
tutional Review Board. In all cases the daily tumor dose was 200 cGy. Gantry angles for the 
IMRT plans were either (1) five coplanar, equally spaced angles, (2) 4–6 gantry angles selected 
to be the same as used in the patient’s original conformal plan, or (3) 4–5 angles selected by the 
planner based on experience and the above guidelines. There were no specific guidelines for 
collimator rotation. For the hybrid IMRT plans, 50%–60% of the daily dose was delivered using 
static conformal fields (typically AP:PA), and the remainder was delivered using 3–4 dynamic 
IMRT fields. The treatment planner created these plans using the above guidelines, but was not 
given any additional instructions about trying to minimize the effects of motion. Criteria for 
PTV coverage and critical organ constraints were the same as used in our clinical practice.
  
B.	 4D IMRT QA
Each field was evaluated using an experimental QA technique which includes the effects of tumor 
motion on the delivered dose. This technique is fully described and evaluated elsewhere,(15) and 
is summarized here. The field under investigation is delivered using a dose rate of 100 MU/min 
to a phantom comprising an ion chamber array (MatriXX; IBA Dosimetry America, Bartlett 
TN), and 3 cm solid water buildup. The ion chamber array comprises a 32 × 32 grid of ion 
chambers (volume: 0.08 cm3), with center-to-center distance of 7.62 mm. It can be configured 
to take movies (0.2 sec frames) of the delivered dose. Each dose frame is first interpolated to 
a 1 mm grid. The expected dose distribution is then calculated by summing all the individual 
dose frames, and blurring this cumulative dose with the respiration trace. The effect of tumor 
motion on the delivered dose is calculated by shifting each dose frame according to a respira-
tory motion trace, and the cumulative dose calculated. The delivered dose (with simulated 
motion) is then compared with the expected dose and the dose error calculated. This process is 
repeated for 10 evenly-spaced starting points in the respiration cycle, and finally the fraction 
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of the high-dose region (defined as the area within the 50% isodose on the expected dose dis-
tribution), which always passes a certain criteria (e.g., 5%), is calculated. This calculation is 
the percentage of pixels for which the daily dose error is always less than the criteria for all 
starting points in the respiration trace. An important characteristic of this technique is that after 
the dose movie is taken using a dose rate of 100 MU/min, the effect of different dose rates can 
be evaluated by changing the time stamp for each movie frame. Note that we use criteria of 
5% and 10% because it is unclear what dose error is acceptable on a daily basis for individual 
fields. The use of these two criteria will allow readers to make a judgment based on their own 
clinical experience.

Each field was evaluated using the above QA technique used to evaluate the effects of tumor 
motion with 3 and 5 second periods, and 1.5 and 2.0 cm peak-to-peak motion, for dose rates 
of 200 MU/min and 400 MU/min. Target motions of this size are found in real patients,(16) but 
these are towards the upper range of amplitudes reported in the literature. These values were 
selected because the QA technique described above has been shown to give good agreement 
with film for 2 cm peak-to-peak motion,(15) but is less reliable for 0.5 cm motion, presumably 
because of the relatively course grid size of the ion chamber array (7.6 mm). We separately 
repeated the field evaluations for 0.5 and 1.0 cm motions, but the results will be less reliable 
and are therefore reported qualitatively in the discussion section.  

The dose rates were selected to represent the dose rate used for most IMRTs in our clinic 
(400 MU/min) and a lower rate might be selected if the effects of motion are large. Each field 
was evaluated separately, with the gantry angle set to zero degrees. In all cases the motion was 
in the cranio-caudal direction, and modeled as a sin6 function (the motivation for this choice is 
described in the discussion section). This means that the QA for each field was completed for 
four different tumor motion combinations. We made the decision to evaluate each field sepa-
rately rather than evaluate the cumulative dose due to all fields in a given plan because one of 
the aims of the study is to identify outliers. That is, we are trying to identify situations where 
there may be patients for which dose discrepancies due to the interplay effect is unacceptably 
high. Evaluation of individual fields gives us more data to evaluate for these situations. It does, 
however, give conclusions that are very conservative, as typically the dose discrepancy per 
fraction can be expected to be less than the dose discrepancy per field.  

 
III.	 Results 

A.	 Treatment plans
Table 1 summarizes the main parameters of the treatment plans. It can be seen that the plans 
have a large average MLC separation, much larger than the 1 cm minimum suggested in pub-
lished work to minimize the interplay effect. For the hybrid plans, the IMRT fields provided an 
average of 42% (range 38%–45%) of the total dose (dose to a reference point in the center of 
the PTV). The hybrid plans tended to have slightly smaller average MLC separation and lower 
MUs than the plans which used only IMRT fields (see Table 1). This can be attributed to the 
fact that the IMRT fields in the hybrid plans are supplying less dose (so lower MUs) and are 
having to fill in deficiencies in the base conformal plans (giving slightly more complex MLC 
sequences with smaller MLC separations).
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Table 1.  Summary of the main parameters for the IMRT fields evaluated in this study.  

Parameter	 Plan Type	 Mean	 Standard Deviation	 Range

Collimator Angle (degrees)	 IMRT	 14	 24	 330 - 60
	 Hybrid	 0	 0	 0 - 0

X Field Size (cm)	 IMRT	 10.9	 2.0	 7.1 - 14.0
	 Hybrid	 12.5	 1.7	 9.8 - 14.8

MU (individual fields)	 IMRT	 135	 38	 79 - 251
	 Hybrid	 89	 20	 67 - 154

Average MLC Separation (cm)	 IMRT	 3.4	 0.7	 1.8 - 4.9
	 Hybrid	 2.7	 0.6	 0.8 - 3.5

B. 	 4D IMRT QA
The maximum dose errors found in all fields, for different dose rates and different respiratory 
motions, are shown in Table 2. The maximum error increases with peak-to-peak motion and 
also increases when the target period increases from 3 to 5 sec. The fields from hybrid plans 
have higher maximum dose errors than the fields from IMRT plans. The maximum dose error 
was seen to decrease when the dose rate was reduced from 400 MU/min to 200 MU/min.  

The percentage of treatment fields for which more than 98% of the target area (defined as 
the area within the 50% isodose) never fails 5% or 10% criteria is shown in Table 3 for differ-
ent dose rates and respiratory motions. Daily dose discrepancies increased in magnitude and 
frequency, particularly for a target period of 5 sec. In all cases, reducing the dose rate from 
400 MU/min to 200 MU/min resulted in all fields passing the 10% criteria, and large increases 
in the number of fields passing the 5% criteria.

Table 2.  Maximum dose errors found for single fields. The data for the hybrid plans is for the IMRT fields only.

	Dose Rate			   Peak-to-Peak Motion

	(MU/min)	 Period (s)	 Plan Type	 (cm)
				    1.5	 2.0

	 400	 3	 IMRT	 12.6%	 13.3%
			   Hybrid	 13.7%	 16.2%

	 400	 5	 IMRT	 15.7%	 18.4%
			   Hybrid	 30.1%	 31.8%

	 200	 3	 IMRT	 3.9%	 4.9%
			   Hybrid	 5.0%	 5.2%

	 200	 5	 IMRT	 9.5%	 10.3%
			   Hybrid	 12.0%	 13.5%
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Table 3.  The percentage of fields for which 98% of the target area (defined using the 50% isodose line) never experi-
enced a dose error larger than the stated criteria (5% or 10%) – that is, the percentage of fields which pass the criteria 
for all starting points in the respiratory cycle. The data for the hybrid plans is for the IMRT fields only.

	Dose Rate	 Pass			   Peak-to-Peak Motion

	(MU/min)	 Criteria 	 Period (s)	 Plan Type	  (cm)
					     1.5	 2.0

	 400	 5%	 3	 IMRT	 90	 88
				    Hybrid	 0	 0

	 400	 5%	 5	 IMRT	 18	 5
				    Hybrid	 0	 0

	 400	 10%	 3	 IMRT	 100	 100
				    Hybrid	 92	 75

	 400	 10%	 5	 IMRT	 85	 76
				    Hybrid	 33	 8

	 200	 5%	 3	 IMRT	 100	 96
				    Hybrid	 100	 100

	 200	 5%	 5	 IMRT	 100	 93
				    Hybrid	 42	 17

	 200	 10%	 3	 IMRT	 100	 100
				    Hybrid	 100	 100

	 200	 10%	 5	 IMRT	 100	 100
				    Hybrid	 100	 100

IV.	D ISCUSSION

This work has shown that, for the fields evaluated here, the maximum daily dose discrepancy 
per field when treated with a dose rate of 400 MU/min was 18% for IMRT fields (2 cm peak-to-
peak motion). The maximum dose discrepancy for IMRT fields which were planned as part of 
a hybrid plan was 32%. The actual difference between the two treatment types is much smaller 
than this since, for a hybrid plan, only 38%–45% of the total dose comes from the IMRT fields. 
This means that a worst-case scenario of 32% dose discrepancy for each IMRT field would 
translate into less than 15% when weighted by the IMRT contribution. Reducing the dose rate 
from 400 MU/min to 200 MU/min reduced the maximum dose discrepancy to 10.3% for IMRT 
plans and 13.5% for the hybrid plans. Again, the actual difference between the two treatment 
types is smaller than this.  

Considering all fields evaluated here, for 200 MU/min and all target motions, the dose to 
more than 98% of the target area was always within 10%. There will be some points with daily 
dose errors per field larger than 5%. For comparison, the reader is reminded that a 5% dose 
discrepancy is not unusual for some dose calculation algorithms when calculating dose to a 
lung tumor.(17) Similarly, hotspots larger than this (10%–20%) are not unusual.  

We used the same techniques to evaluate 0.5 and 1.0 cm peak-to-peak motion. The coarseness 
of the detectors in the ion chamber array and associated relatively poor spatial sampling mean 
that the results for these smaller motions may be less reliable than the results for the larger mo-
tions. We found that for motion of 1 cm or less, the maximum dose discrepancy was less than 
10% for all fields, and that 98% of the target area was within 5% for all fields. This was for 400 
and 200 MU/min. This implies that even if 200 MU/min is used for peak-to-peak motion above 
1 cm, there is no need to reduce the dose rate if the motion is 1 cm or less. However, because 
of the uncertainties in the experimental technique for these smaller amplitudes, this must be 
considered only a tentative conclusion, and more evaluation is necessary.

Most previous studies into the interplay effect have shown that these effects average out after 
many fractions.(4,5) We also found that the average of the doses calculated for each individual 
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starting point in the respiratory phase gave a dose distribution that agreed with the expected 
dose distribution within 1%. However, Seco et al.(1) showed that there are situations where 
although the average dose discrepancy will be small, the dose discrepancy can still be large for 
a minority of patients. This may happen when there is not an even distribution in the starting 
point of the respiratory cycle where the beam is turned on. Similarly, several authors have shown 
that the dose discrepancy per fraction can be expected to be less than the dose discrepancy for 
individual fields.(5) Again, it can be expected that this depends on the combination of points 
in the respiratory cycle where the individual beams are turned on. The dose for an individual 
field for an individual fraction, as evaluated here, can be (very) conservatively considered as 
the worst-case scenario. That is, if any single field has a maximum dose discrepancy of X%, 
then the maximum dose discrepancy for any fraction – or even the entire treatment – will be 
X%. This is a very conservative approach that does not rely on averaging of different starting 
points in the respiratory cycle. For most patients, the overall dose discrepancies can be expected 
to be much smaller than those reported here.

One of the possible advantages of hybrid IMRT plans is that they reduce the potential for 
dose discrepancies due to the interplay effect. We found, however, that the interplay effect is 
worse for these fields. This can be attributed to the fact that they are somewhat more complicated 
fields, with smaller average separation between the MLCs and, because they use lower MUs 
(as treating lower doses), the MLCs move faster. However, if the results for the hybrid IMRT 
fields of Table 2 are scaled by the relative contribution of the IMRT fields, then the peak-to-
peak dose discrepancies of the hybrid fields is very similar to that of the regular IMRT fields. 
In other words, the impact of the interplay effect for hybrid plans is larger for individual fields, 
but should be similar for the daily treatment when the majority of the treatment is treated using 
conformal fields.

Therefore, based on this analysis of 91 individual fields and four different respiratory motions, 
we propose that a reduced dose rate of 200 MU/min is effective in reducing the interplay effect 
when treating targets with large (e.g., 2 cm) motion. This conservative strategy can be expected 
to keep maximum daily dose discrepancies within 10% for all the target volume for all fields, 
and within 5% for the majority of its volume. For an IMRT plan with 500 MU/min, this would 
increase the treatment time by 75 sec, so it should not have a large impact on the clinical work-
flow. This work has also demonstrated the use of a new QA technique to evaluate the impact of 
target motion on the delivered dose. This could be extended to be used as a routine QA method 
for IMRT plans. If an ion chamber array is already being used for QA, then there would be no 
additional measurements necessary. The only change would be that before the delivered dose 
distribution was evaluated, the dose frames would be shifted to simulate motion.

It should be noted that all plans evaluated here used daily prescription doses of 200 cGy.  
Increasing the daily dose can be expected to result in slower MLC motion and, therefore, reduced 
daily dose discrepancies. Although for hypofractionated treatments there is less chance for the 
daily discrepancies to average out, the reduced daily discrepancies mean that the interplay effect 
is not likely to give significant cumulative dose discrepancies.

The results presented here modeled the patient motion as sin6, with all motion in the superior-
inferior direction. Sin6 was selected because previous work showed that the interplay effect 
is worse for sin6 than sin2 and sin4 motion.(1,10) The majority of motion in the lung is in the 
superior-inferior direction.(16,18) Real patient motion is, however, not as regular as this. There 
is also a large patient-to-patient variation in the actual shape of the respiratory cycle. This work 
does not include the effects of these variations.  

 
V.	C onclusions

Interplay between target motion and MLC motion can result in discrepancies in the daily deliv-
ered dose. In particular, these increase with increasing target motion. This work has analyzed 
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the effects of tumor motion on the daily delivered dose for 91 fields (dynamic IMRT and hybrid 
plans), and shown that for amplitudes up to 2 cm, reducing the dose rate to 200 MU/min is 
effective in keeping daily dose discrepancies for each treatment field within 10%.
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