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ABSTRACT

ADGO 2.0 is a web-based tool that provides com-
posite interpretations for microarray data compar-
ing two sample groups as well as lists of genes from
diverse sources of biological information. Some
other tools also incorporate composite annotations
solely for interpreting lists of genes but usually
provide highly redundant information. This new ver-
sion has the following additional features: first,
it provides multiple gene set analysis methods for
microarray inputs as well as enrichment analyses
for lists of genes. Second, it screens redundant
composite annotations when generating and pri-
oritizing them. Third, it incorporates union and sub-
tracted sets as well as intersection sets. Lastly,
users can upload their own gene sets (e.g. predicted
miRNA targets) to generate and analyze new com-
posite sets. The first two features are unique to
ADGO 2.0. Using our tool, we demonstrate analyses
of a microarray dataset and a list of genes for T-cell
differentiation. The new ADGO is available at http://
www.btool.org/ADGO2.

INTRODUCTION

High-throughput omics experiments often produce lists of
genes, and their biological interpretations have been of
substantial interest. Typical approaches examine the extent
of the overlap between a list of genes and predefined
annotated gene sets using hypergeometric distribution,
chi-square or Fisher’s exact test, which may be dubbed
collectively as gene list analysis (GLA) (1). For micro-
arrays, each gene has its own score (e.g. two sample ¢-stat-
istic or fold-change value) and an alternative approach,
called gene set analysis (GSA), is applicable without select-
ing a list of genes (2). In many cases, the ‘interpretation’ of

large-scale data indicates investigating the enrichment of
pre-set knowledge within the given data. Accordingly,
such enrichment analyses are widespread over omics re-
search regardless of the data analyzed (microarray, mass
spectrometry, ChIP-chip or next-generation sequencing).
In addition, a number of algorithms and tools have been
developed in this context (1-3).

In both approaches (GSA and GLA), the predefined
gene sets play key roles in biological interpretations.
Such gene sets are usually derived from biological data-
bases such as Gene Ontology (4) or KEGG (5), where they
share a common biological annotation for pathways, func-
tions, cellular localizations or targets of a common tran-
scription factor (TF), for instance. One important
problem with most existing methods is that they handle
only gene sets with unary annotations, thus limiting the
discriminating power of the method employed. For
example, suppose we want to examine whether a given
list of genes is enriched with the putative targets of some
TF. Because most gene sets that share a common TF
binding site are dominated with false positive targets,
this simple approach may not be very successful when
used to uncover the relevant TFs. However, if we take
intersections between the putative TF target sets and the
gene sets of Gene Ontology, some of them may define
biologically more relevant gene sets, which then may be
enriched with the gene list. With this rationale, composite
annotation gene sets were introduced for GSA (6) and
GLA (7), respectively. Thereafter, several software tools
were developed for GLA based on composite annotations
(8-10). ADGO (6) and ProfCom (9) use Boolean set op-
erations (intersection, union and subtraction) to generate
composite gene sets, and GENECODIS (11) and
COFECO (10) employ an association rule-mining algo-
rithm to extract co-occurring annotations. In any case,
the composite interpreters usually display quite a long
and redundant list of significant gene sets, many of
which largely overlap each other. Therefore, removing
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redundancy and abstraction appear to be an important
issue when utilizing composite annotations. Here, we
suggest three criteria for filtering composite gene sets for
GSA and GLA.

(1) If a composite set is largely overlapped with some
single set over a threshold, that set should be removed
a priori. In other words, if the members of sets are
very similar to each other, the single annotation
should have priority.

(2) A significant intersection or union set should be
screened, if any of the single sets used to generate
them are also significant.

(3) A significant subtracted set should be screened, if the
single set that contains the subtracted set is also
significant.

Taking into account these considerations, we constructed
web-based software called ADGO 2.0 to provide compos-
ite interpretations for both microarrays and lists of genes.
The previous version of ADGO was designed to illustrate
the idea of using composite annotations for GSA and
provided a single GSA method (6). The current version
was totally rebuilt considering the automatic updating of
(composite) gene sets, and extended in terms of both
coverage and methods.

MATERIALS AND METHODS
Supported analyses

ADGO 2.0 currently supports analyses of eight popular
organisms (Homo sapiens, Mus musculus, Rattus norvegicus,
Saccharomyces cerevisiae, Arabidopsis thaliana,
Caenorhabditis elegans, Drosophila melanogaster and
Escherichia coli.), and from four to seven kinds of anno-
tations (GO terms for biological processes, cellular com-
ponents, and molecular functions, KEGG pathways,
chromosome and cis-regulatory motifs, and OMIM) are
provided depending on the species selected. The user can
choose one of the four methods (Z-statistic, gene permu-
tation, sample permutation and Gene Set Enrichment
Analysis (GSEA)) for GSA and the two methods
(Fisher’s exact test and hypergeometric distribution) for
GLA. Only applicable methods are displayed depending
on the format of input data.

Construction of annotation gene set databases

For all of the gene sets from the seven annotation categ-
ories included in ADGO 2.0, we applied three types of
Boolean set operations (intersection, union and subtrac-
tion) to each pair of gene sets across different categories:
the 10-20% rule was applied for intersections and subtrac-
tion (6). In other words, a pair of single gene sets was
required to have at least 10 genes in common and the
two subtracted sets were required to contain at least
20% of the genes in each single set. Union operations
were applied if a pair of gene sets has five or more
elements in common. The ‘subtraction’ of two annotation
sets 4 and B is denoted by 4 — B, which is the intersection
of A and the complement of B. To ensure the generated
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composite set is a genuinely novel set, it was compared
with each single set and discarded if it has any overlap
with some single set over a threshold (‘Filtering
Composite Sets’). The overlap (%) is computed by the
portion of intersection between the composite set and a
single set over the union of these two sets. For the 60%
threshold, ~27% of all composite sets are screened for the
three categories of Gene Ontology. All of these single and
composite gene sets are prepared in the server in advance
and retrieved according to the user’s choice of gene set
categories. One important feature of ADGO 2.0 is that
the user can upload and analyze his/her own annotation
gene sets. If the user chooses some of the built-in gene sets
and uploads user gene set data, the server then generates
ad hoc composite sets and shows the computation results.
For this reason, it takes much more time for analyzing the
user’s gene sets.

Processing methods

If the user uploads microarray data or a list of genes, the
server detects the file format and displays relevant analysis
methods and other options. For a microarray input, four
gene set analysis methods are available. Among them,
‘Z-test’ (12) and ‘Gene permutation’ (13) are gene ran-
domization methods, and ‘Sample permutation’ (13) and
‘GSEA’ (14) are sample randomization methods. We used
the average r-value for the set score in the gene or sample
permutation methods. The Z-test is a parametric method
and is the fastest. GSEA is the most widely used but
usually takes more time for computing. This becomes
problematic when analyzing composite annotations, as
the number of gene sets to be handled increases in a quad-
ratic manner against the number of usual single annota-
tions. For this reason, we newly realized the algorithm
in C++. We fixed the power of the gene score as p =1
to deploy the weighted Kolmogorov—Smirnov gene set
statistic. For a gene list input, the ‘Fisher’s exact test’
and ‘Hypergeometric distribution’ are provided for the
analysis method.

For both GSA and GLA, we provide two types of fil-
tering methods for significant composite sets: The “Strong
Type’ and the “Weak Type’. For the strong-type option, a
significant composite set is screened if a single set involved
in generating the composite set is also significant. For the
weak-type option, a significant composite set is displayed
if it has a smaller P-value than those of the individual
single sets. Therefore, the weak-type option yields more
composite sets that are significant.

Input data types and options

For microarray input, the user can upload microarray
data with two sample groups. The first column should
be the header for gene IDs and the sample data values
should follow in the next columns. ADGO 2.0 accepts
both single and dual channel gene IDs for microarray
input. For a single channel input, the probe IDs for
Affymetrix, Illumina and Agilent chips are supported.
For a dual channel input, five types of gene IDs (gene
symbol, Ensemble, Entrez, Refseq and Uniprot) as well
as the systematic names for Saccaromyces cerevisiae are
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supported. The first sample group data should appear in
the first k& columns of data values and the second group
data should follow in the next / columns. k and / should be
specified in the ‘Sample Size’ option. ADGO 2.0 then
computes the two-sample r-statistic or average fold-
change values for each gene and proceeds. We have
another option for microarray input. If the user wants
to use gene scores other than the two-sample 7-statistic
or fold-change values, he/she can directly use the gene
score data (a single value for each gene).

For a gene list input, the same dual channel IDs are
supported. We constructed the reference (background)
genes for GLA by merging all the genes contained in
each annotation set. In any type of input data, the user
can also paste the data into the ‘Paste data panel’ without
uploading the data file. More detailed information is avail-
able from our web site (http://www.btool.org/ADGO?2).

Outputs

If the user executes the analysis, the server shows a list of
significant gene sets (single and composite) along with
gene set names, gene set id’s, members of each gene set,
P-values, False Discovery Rate (FDR) Q-values and
Bonferroni’s corrected P-values (Figure 1). The members
of each gene set are listed in a descending order of their
association strength. The gene set list is sorted according
to the FDR Q-values. Certainly, composite annotations
increase the number of annotation sets to be analyzed to
change the analysis results more or less. However, the
FDR Q-values reflect the increased number of gene sets

After table is shown below, you can download result download

and provide the adjusted significance threshold. The com-
putation results are also downloadable as a text file.

Analysis example

We present an example of gene expression data analysis
by ADGO 2.0 to demonstrate its utility. Schones et al. (15)
compared the gene expression patterns between resting
and activated T cells to understand the molecular
changes that occur during the T-cell differentiation
(GEO number: GSE10437). We computed the fold
changes of each gene in the microarray data to test a
GSA. We chose the ‘Z test’” method (Q-value cutoff:
0.01) and two annotation -categories: KEGG and
Chromosome. We checked three types of composite sets:
‘Single’ + ‘Intersection’ + ‘Subtraction’. Many KEGG
pathways related to immune responses including
‘Autoimmune thyroid disease’, ‘Antigen processing and
presentation’ and ‘Graft-versus-host disease’ were not sig-
nificant by themselves when we used only KEGG
categories. However, they were significantly induced if
we excluded the genes in the chromosome 6p21.3 set.
Interestingly, the same immune-related gene sets were sig-
nificantly downregulated when intersected with the 6p21.3
set. This suggests that some part of the chromosome
region 6p21.3 is locked during T-cell differentiation
while other immune-related genes outside this region are
activated. Indeed, this intersection set contained many
HLA (human leukocyte antigen) genes that were mostly
downregulated [i.e. HLA-DPBI (—3.19), HLA-DRA
(=1.97), HLA-DMA (-1.92), HLA-DRBI (—1.71),

Figure 1. Z-test results for the T-cell differentiation data set. See the text for an explanation and detailed options. If the user clicks ‘view’, the
members of each significant annotation set as well as their scores are shown.



HLA-E (—1.66), HLA-DBM (—1.54)], significantly affect-
ing the overall patterns of immune-related gene sets. See
Figure 1 for the list of significant gene sets. This example
illustrates how bi-directional expression patterns within a
gene set can be described precisely using composite
annotations.

We then selected the 200 most induced genes to test a
GLA. Using Fisher’s exact test and the three Gene
Ontology categories, we interpreted the list. In the first
trial, we chose the ‘Strong Type’ option, and we obtained
a list of gene sets associated with the input list, many of
which, as a single set, had strong relevance with T-cell
differentiation. Examples include the cytokine-related
processes ‘JAK-STAT cascade’, ‘regulation of tyrosine
phosphorylation’, ‘immunoglobulin production’, ‘regula-
tion of T cell activation” and “T-cell proliferation’ (15,16).
Additionally, some subtracted sets associated with ‘ribo-
some’ were detected. We then chose the ‘“Weak Type’ to
investigate more specific patterns within each single set.
Figure 2 shows the computation results. Several inter-
sected and subtracted gene sets appeared on top ranks.
Most ‘tyrosine phosphorylation” gene sets showed
stronger patterns when intersected with ‘growth factor
activity’. For example, ‘regulation of peptidyl-tyrosine
phosphorylation’ had a Q-value 1.377 x 10™* in the
strong-type analysis, but the intersection of ‘regulation
of peptidyl-tyrosine phosphorylation’ and ‘growth factor
activity’ had a much better Q-value of 7.208 x 107 in the
weak-type analysis. The former single set originally con-
tained 83 genes in total and actually included eight
members from the input list, while the latter intersection
set had a much smaller number of genes (25 in total), but
included seven members from the input list. This feature
makes the composite sets more precise descriptors of the
enrichment patterns.

After table is shown below, you can download result download
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DISCUSSION AND CONCLUSION

ADGQO 2.0 is currently a unique tool that supports GSA
methods based on composite annotations. We added GLA
methods to this new version. It provides several widely
used GSA methods including fast GSEA (14). Several
other tools [e.g. GENECODIS (11), ProfCom (9), and
COFECO (10)] provide analyses via composite annota-
tions only for GLA. GENECODIS and COFECO
employ the same type of algorithm and focus on the inter-
section of two or more annotation gene sets, while
ProfCom generates more general types of composite sets
using Boolean set operations (up to five single sets).
Shortcomings with these tools are that they display all
the significant gene sets without filtering redundant infor-
mation (GENECODIS and COFECO) or a partial list of
gene sets identified by a greedy search algorithm
(ProfCom). ADGO 2.0 generates composite gene sets
based on Boolean operations of two overlapping single
sets and screens composite sets that have redundant infor-
mation for both GSA and GLA. We may also consider
composite sets generated by three or more single sets as
ProfCom does, but this will increase the computational
complexity prohibitively and make it quite complicated
to establish legitimate rules (e.g. inclusion and exclusion
rules) to screen the redundant information.

Using our tool, we demonstrated how to incorporate
and interpret significant composite annotations when
analyzing microarray data and list of genes. Note that
many significant composite terms are hard to interpret
clearly. In most cases, we may not find evidence from
the literature because complex biological patterns have
been rarely explored so far. Therefore, our tool may be
used for an explorative research. If a composite pattern is
observed repeatedly across many data sets, it may be
validated experimentally.

Figure 2. Enriched gene sets for a list of upregulated genes in T-cell differentiation. The weak-type filtering criterion is applied for significant

composite sets.
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One interesting future work with our tool may be to
investigate the regulatory interactions between regulators
(TF or miRNA) and pathways using gene expression
profiles. Because sequence-based predictions of the
targets of TF or miRNA inevitably include abundant
false positives, taking the intersections of the putative
target genes with other gene sets may be useful for
exploring specific patterns in regulatory networks.
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