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Abstract: Treatment of pancreatic ductal adenocarcinoma (PDAC), a dismal disease with poor
survival rates, is hampered by the high prevalence of chemotherapy resistance. Resistance is accom-
panied by macrophage infiltration into the tumor microenvironment, and infiltrated macrophages are
key players in chemotherapy resistance. In the current manuscript, we identify CCAAT/enhancer-
binding protein delta (C/EBPδ) as an important transcription factor driving macrophage-dependent
gemcitabine resistance. We show that conditioned medium obtained from wild type macrophages
largely diminishes gemcitabine-induced cytotoxicity of PDAC cells, whereas conditioned medium
obtained from C/EBPδ-deficient macrophages only minimally affects gemcitabine-induced PDAC
cell death. Subsequent analysis of RNA-Seq data identified the pyrimidine metabolism pathway
amongst the most significant pathways down-regulated in C/EBPδ-deficient macrophages and size
filtration experiments indeed showed that the low molecular weight and free metabolite fraction most
effectively induced gemcitabine resistance. In line with a role for pyrimidines, we next show that sup-
plementing macrophage conditioned medium with deoxycytidine overruled the effect of macrophage
conditioned media on gemcitabine resistance. Consistently, macrophage C/EBPδ-dependent resis-
tance is specific for gemcitabine and does not affect paclitaxel or 5-FU-induced cytotoxicity. Overall,
we thus show that C/EBPδ-dependent deoxycytidine biosynthesis in macrophages induces gemc-
itabine resistance of pancreatic cancer cells.

Keywords: CCAAT/enhancer-binding protein delta; CEBPD; gemcitabine; drug resistance; pancre-
atic cancer; PDAC

1. Introduction

Pancreatic adenocarcinoma (PDAC) is a devastating disease with one of the worst
survival rates of all human cancers [1]. Despite improvements in the treatment of can-
cer in general, hardly any progress has been made in PDAC treatment and the average
survival rate remains around 6-8 months. Five years after diagnosis, more than 90% of
PDAC patients have died, while 10-year mortality rates approach 99% [2,3]. The dismal
prognosis of PDAC patients is largely due to the fact that most patients present with locally
advanced or metastatic disease and are consequently ineligible for curative resection [4].
Chemotherapy-based therapies therefore remain standard of care [5], but chemotherapeutic
treatments only minimally affect PDAC progression [6,7], therefore improving the efficacy
of chemotherapy in PDAC is of utmost importance.

Macrophages are specialized phagocytic cells of the innate immune system critically
involved in host defense and tissue homeostasis [8]. In cancer biology, macrophages are
traditionally considered anti-tumorigenic, as seminal papers showed that macrophages
may kill tumor cells by secreting cytotoxic molecules, such as TNF-α, IL-12, nitric oxide
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(NO) and reactive oxygen species (ROS) [9,10]. Once recruited to the tumor, however,
macrophages are reprogrammed to prevent killing of cancer cells. Such reprogrammed
M2 or tumor associated macrophages (TAMs) not only show limited cytotoxicity towards
cancer cells but actually become pro-tumorigenic and potentiate tumor growth [11–13].
Indeed, TAMs induce epithelial-to-mesenchymal transition (EMT) [14–16] and limiting
macrophage infiltration decreases the number of metastatic lesions [17]. In addition, TAM
numbers are associated with therapy resistance in PDAC [18,19], and pharmacological
depletion of TAMs enhanced the therapeutic response to gemcitabine in tumor-bearing
KPC mice [20].

CCAAT/enhancer-binding protein delta (C/EBPδ), also known as nuclear factor inter-
leukin (IL)-6β, is a member of the C/EBP family of transcription factors [21]. It modulates
many biological processes involved in cancer biology and C/EBPδ acts as tumor suppres-
sor in multiple tumor types [22–25]. In PDAC, C/EBPδ is down-regulated in cancer cells,
and reduced C/EBPδ expression correlates with poor prognosis [26]. As opposed to low
C/EBPδ expression in PDAC cells, most stromal cells show strong C/EBPδ expression [27].
In particular, the expression of C/EBPδ in macrophages seems interesting, as C/EBPδ is
well-known to regulate macrophage-dependent chemokine and cytokine expression [28],
whereas C/EBPδ also may affect macrophage polarization [29]. Considering the impor-
tance of cytokine production and macrophage polarization in drug resistance [30], we
hypothesized that macrophage C/EBPδ would have an impact on drug resistance of PDAC
cells. By using C/EBPδ-deficient macrophages, we show that macrophage C/EBPδ drives
gemcitabine, but not 5-FU or paclitaxel, resistance in a deoxycytidine-dependent manner.

2. Materials and Methods
2.1. Cell Culture

PANC-1, MIA PaCa-2 and BxPc3 PDAC cells (ATCC, Manassas, VA, USA) were cul-
tured in DMEM (Lonza, Basel, Switzerland), whereas wild type and C/EBPδ knock out
RAW264.7 macrophages, generated and characterized as described previously [31], were
cultured in IMDM medium (Gibco, Thermo Fischer Scientific, Waltham, MA, USA). All me-
dia were supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, 100 units/mL
penicillin, and 500 µg/mL streptomycin (all Lonza, Basel, Switzerland) according to routine
cell culture procedures. Cells were maintained in a humidified incubator at 37 ◦C and
5% CO2. All PDAC cell lines were authenticated by STR profiling (Promega PowerPlex,
Leiden, Netherlands), and tested for mycoplasma by PCR monthly.

2.2. Conditioned Medium Collection and PDAC Cytotoxicity Assays

Wild type and C/EBPδ knock out RAW264.7 macrophages were grown to 70% conflu-
ence in a T75 flask, after which the growth medium was refreshed. After 24 h, medium was
collected, sterilized through a 0.2 µm filter and stored at −20 ◦C. PDAC cells, seeded in
100 µL complete medium in 96-well plates were, upon adherence of the cells, incubated in
conditioned medium (diluted 1:1 in complete DMEM) supplemented with gemcitabine,
5-FU or paclitaxel. Based on IC50 analysis (Figures S1 and S3), PANC-1 cells were treated
with 20 nM gemcitabine, 5 nM paclitaxel or 4 µM 5-FU, MIA PaCa-2 cells were treated with
15 nM gemcitabine, 20 nM paclitaxel or 2 µM 5-FU, whereas BxPc3 cells were treated with
10 nM gemcitabine, 4 nM paclitaxel or 4 µM 5-FU. After 96 h, drug-induced cytotoxicity
was assessed essentially as described before [32]. In detail, PDAC cells were washed and
incubated with crystal violet (3% formaldehyde, 0.5% crystal violet in H2O) at room tem-
perature. After 20 min, the crystal violet solution was removed, cells were washed 3 times
with tap water, and 75 µL/well DMSO was added to solubilize the formed crystals. After
20 min of incubation on a plate shaker at room temperature, the absorbance was measured
at 600 nm on a Synergy HT plate reader (BioTek Instruments, Winooski, VT, USA).
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2.3. Size Separation of Proteins in Conditioned Media

RAW264.7 conditioned media, collected as described above, were separated using
10 kD Molecular Weight Cut Off ultra-centrifugal filters (Amicon-Ultra, Millipore, Ireland).
The concentrated >10 kD fraction was resuspended in IMDM to the original volume before
storage at 4 ◦C, whereas the flow-through fraction (<10 kD) was stored at 4 ◦C until used in
experiments.

2.4. RT-qPCR and RNA-Seq

RNA was extracted form TriReagent lysed cells according to routine procedures.
Eluted RNA was analyzed spectrophotometrically using a NanoDrop 2000 (Thermo Fisher
Scientific, Waltham, MA, USA). All samples were treated with RQ1 RNAse-Free DNAse
(Promega Benelux BV) and reverse-transcribed into cDNA using M-MLV Reverse Transcrip-
tase (Promega Benelux BV, Leiden, The Netherlands), random hexamers (Fisher scientific)
and 10 mM dNTPs (Fermentas, Fisher scientific, Landsmeer, The Netherlands). The Sensi-
FAST™ SYBR® No-ROX Kit (GC biotech, Waddinxveen, The Netherlands) was used to
perform real-time quantitative RT-PCR on a LightCycler® 480 Instrument II (Roche Molec-
ular Systems, Inc., Almere, The Netherlands). Expression levels were normalized to the
expression of the reference genes TBP, B2M and UBC using the primers listed in Sup-
plementary Table S1. RNA-Seq results and the corresponding experimental design were
described previously [31] and represent transcriptional differences between wild type and
C/EBPδ-deficient RAW264.7 cells. The complete sequence libraries are publicly available
through the National Center for Biotechnology Information gene expression omnibus under
the following accession number: GSE173552. Differential gene expression was analyzed
using the R2 microarray analysis and visualization platform (R2: Genomics Analysis and
Visualization Platform. Available online: http://r2.amc.nl; last accessed 12 January 2022)
with a false discovery adjusted p-value less than 0.01. To analyze the function of the differ-
entially expressed genes, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were conducted with a p-value cutoff off less than 0.005.

2.5. Statistical Analysis

All data are expressed as means ± SEM. Differences between multiple groups were
analyzed by one-way ANOVA with Bonferroni correction for multiple testing, whereas
t-tests were used for comparisons between 2 groups. Analyses were performed using
GraphPad Prism version 8 (GraphPad Software, Inc., La Jolla, CA, USA). Statistically
significant differences were considered with a p-value less than 0.05.

3. Results
3.1. Macrophage C/EBPδ Drives Gemcitabine Resistance of Pancreatic Cancer Cells

To investigate the importance of C/EBPδ in macrophage-dependent resistance to
gemcitabine, we employed wild type and C/EBPδ-deficient RAW264.7 macrophages. Con-
ditioned medium of these cells was compared to control medium in gemcitabine-induced
pancreatic cancer cell cytotoxicity assays (Figure 1A). As shown in Figure 1B–D, conditioned
medium obtained from wild type macrophages induced gemcitabine resistance in MIA
PaCa-2 (Figure 1B), BxPc3 (Figure 1C) and PANC-1 (Figure 1D) cells. Of note, conditioned
medium obtained from C/EBPδ-deficient macrophages did not affect gemcitabine-induced
cytotoxicity of any of the pancreatic cancer cells tested. To exclude a direct effect of condi-
tioned medium on cell viability, MIA PaCa-2 cells were incubated in conditioned medium
in the absence of gemcitabine, showing that conditioned medium indeed did not affect cell
viability by itself (Figure S2).

http://r2.amc.nl
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Figure 1. Macrophage C/EBPδ drives gemcitabine resistance of pancreatic cancer cells. (A) Sche-
matic overview of the experimental set up. (B–D) Viability of Mia PaCa-2 (B), BxPc3 (C) and PANC-
1 (D) pancreatic cancer cells in control medium (---), conditioned medium obtained from wild type 
macrophages (WT) and conditioned medium obtained from C/EBPδ-deficient macrophages (KO) in 
the presence of gemcitabine. Shown is the mean ± SEM of two to three independent experiments 
performed in sixplo. **** p < 0.0001. 

3.2. C/EBPδ Deficiency Inhibits Pyrimidine Syntheses in Macrophages 
Macrophage-secreted chemokines and growth factors are suggested to induce drug 

resistance [18], suggesting that macrophage C/EBPδ potentiates gemcitabine resistance by 
enhancing chemokine/cytokine secretion. Analysis of recently obtained RNA-Seq data to 
determine transcriptional changes induced by C/EBPδ deletion in macrophages 
(GSE173552 [31]) revealed, however, no apparent changes in the expression of chemo-
kines/cytokines. KEGG pathway enrichment analyses of differentially expressed genes 
between wild type and C/EBPδ-deficient macrophages, in fact, identified the pyrimidine 
metabolism pathway amongst the most significant pathways down-regulated by C/EBPδ de-
ficiency (Figure 2A). Detailed analysis of the pyrimidine metabolism pathway showed that 34 

Figure 1. Macrophage C/EBPδ drives gemcitabine resistance of pancreatic cancer cells. (A) Schematic
overview of the experimental set up. (B–D) Viability of Mia PaCa-2 (B), BxPc3 (C) and PANC-1
(D) pancreatic cancer cells in control medium (—), conditioned medium obtained from wild type
macrophages (WT) and conditioned medium obtained from C/EBPδ-deficient macrophages (KO) in
the presence of gemcitabine. Shown is the mean ± SEM of two to three independent experiments
performed in sixplo. **** p < 0.0001.

3.2. C/EBPδ Deficiency Inhibits Pyrimidine Syntheses in Macrophages

Macrophage-secreted chemokines and growth factors are suggested to induce drug
resistance [18], suggesting that macrophage C/EBPδ potentiates gemcitabine resistance
by enhancing chemokine/cytokine secretion. Analysis of recently obtained RNA-Seq
data to determine transcriptional changes induced by C/EBPδ deletion in macrophages
(GSE173552 [31]) revealed, however, no apparent changes in the expression of chemok-
ines/cytokines. KEGG pathway enrichment analyses of differentially expressed genes
between wild type and C/EBPδ-deficient macrophages, in fact, identified the pyrimidine
metabolism pathway amongst the most significant pathways down-regulated by C/EBPδ
deficiency (Figure 2A). Detailed analysis of the pyrimidine metabolism pathway showed
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that 34 genes were significantly decreased in C/EBPδ-deficient macrophages (Figure 2B) of
which the 9 most down-regulated genes were confirmed by RT-PCR analysis (Figure 2C).
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Figure 2. C/EBPδ deficiency inhibits pyrimidine syntheses. (A) The p-values and names of the most
over-represented KEGG pathways, calculated on the basis of all the differentially expressed genes be-
tween wild type and C/EBPδ-deficient macrophages. (B) Heatmap of all the differentially expressed
genes from the pyrimidine metabolism pathway. (C) RT-PCR validation of the top differentially
expressed genes of the pyrimidine metabolism pathway. * p < 0.05; ** p < 0.01; *** p < 0.005; ns:
not significant.
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3.3. Macrophage C/EBPδ Drives Gemcitabine Resistance in a Deoxycytidine-Dependent Manner

The pyrimidine metabolism pathway has previously been shown to affect gemcitabine
resistance [33,34]. Indeed, deoxycytidine directly competes with gemcitabine thereby
inhibiting its uptake and activation, leading to diminished intracellular gemcitabine activity
and reduced gemcitabine-induced cytotoxicity [33]. It is thus tempting to speculate that
macrophage C/EBPδ drives gemcitabine resistance in a deoxycytidine-dependent manner.
To prove or refute this hypothesis, we first subjected conditioned medium obtained from
wild type macrophages to a size filtration spin column with a 10 kD cutoff to separate
proteins from free metabolites (Figure 3A). As shown in Figure 3B, the flow through
the fraction containing free metabolites was almost as effective in inducing gemcitabine
resistance as control, non-filtrated, conditioned medium. The fraction that retained on
the filter (containing proteins but also residual metabolites) was clearly less effective in
inducing gemcitabine resistance of pancreatic cancer cells. In line with these findings
that suggest that the resistance-inducing factor is not a protein, heat denaturation of
the conditioned medium (15 min 100 ◦C) prior to transfer to pancreatic cancer cells did
not diminish gemcitabine resistance (Figure 3C). Based on a model in which C/EBPδ-
dependent deoxycytidine biosynthesis in macrophages induces gemcitabine resistance
of pancreatic cancer cells, exogenous administration of deoxycytidine should overrule
the effect of macrophage C/EBPδ. As shown in Figure 3D–F, deoxycytidine co-treatment
indeed limits gemcitabine-induced cytotoxicity to a similar extent in control, wild type
and C/EBPδ-deficient conditioned medium. Of note, supplementing control or C/EBPδ-
deficient conditioned medium with low dose deoxycytidine (0.4 uM) already results in
similar gemcitabine resistance as induced by wild type conditioned medium (compare the
0.4 uM bars of panels D and F with the 0 uM bar of panel E). Supplementing control or
conditioned medium with the pyrimidine deoxyguanosine did not induce gemcitabine
resistance (Figure 3G–I), in line with the notion that deoxyguanosine does not compete
with gemcitabine uptake and activation.
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3.4. Macrophage C/EBPδ-Dependent Resistance of Pancreatic Cancer Cells Is Specific for 
Deoxycytidine Analogs 

The data above suggest that macrophage C/EBPδ induces gemcitabine resistance by 
potentiating deoxycytidine biosynthesis and secretion. For this hypothesis to be true, mac-
rophage C/EBPδ-induced resistance should be limited to gemcitabine. Consequently, we 
next assessed the effect of macrophage C/EBPδ on paclitaxel-, a cytotoxic agent routinely 
used in pancreatic cancer treatment that acts independent of DNA replication, and 5-FU-

Figure 3. Macrophage C/EBPδ drives gemcitabine resistance in a deoxycytidine-dependent manner.
(A) Schematic overview of the experimental set up. (B) Viability of Mia PaCa-2 pancreatic cancer cells
in control medium (—), unfractionated conditioned medium obtained from wild type macrophages
(Ctrl-CM), in the flow through fraction containing free metabolites (<10 kD) and in the fraction that
retained on the filter (remains) in the presence of gemcitabine. **** p < 0.0001; ns: not significant.
(C) Viability of Mia PaCa-2 pancreatic cancer cells in control medium (—), boiled DMEM (DMEM
100 ◦C) or boiled conditioned medium obtained from wild type macrophages (CM 100 ◦C) in the
presence of gemcitabine. **** p < 0.0001. (D–F) Viability of Mia PaCa-2 pancreatic cancer cells
in control medium (D) or conditioned medium obtained from wild type (E) or C/EBPδ-deficient
macrophages (F) in the presence of gemcitabine and the indicated concentration of deoxycytidine
(dCTP). (G–I) Viability of Mia PaCa-2 pancreatic cancer cells in control medium (G) or conditioned
medium obtained from wild type (H) or C/EBPδ-deficient macrophages (I) in the presence of
gemcitabine and the indicated concentration of deoxycytidine (dCTP). Shown is the mean ± SEM
of experiments performed in sixplo. Note that the light grey bars in panels (D–I) (—) represent cell
viability in control conditions (i.e., control medium supplemented with gemcitabine).

3.4. Macrophage C/EBPδ-Dependent Resistance of Pancreatic Cancer Cells Is Specific for
Deoxycytidine Analogs

The data above suggest that macrophage C/EBPδ induces gemcitabine resistance
by potentiating deoxycytidine biosynthesis and secretion. For this hypothesis to be true,
macrophage C/EBPδ-induced resistance should be limited to gemcitabine. Consequently,
we next assessed the effect of macrophage C/EBPδ on paclitaxel-, a cytotoxic agent rou-
tinely used in pancreatic cancer treatment that acts independent of DNA replication, and
5-FU-, a pyrimidine nucleoside-based cytotoxic agent with different transport and acti-
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vation properties as deoxycytidine [33], induced cell death (Figure 4A). In line with our
hypothesis, conditioned medium obtained from both wild type and C/EBPδ-deficient
macrophages did not induce resistance to 5-FU or paclitaxel in MIA PaCa-2 (Figure 4B),
PANC-1 (Figure 4C) or BxPc3 (Figure 4D) cells. Of note, conditioned medium did slightly
enhance 5-FU- and paclitaxel-induced cytotoxicity in PANC1 and BxPc3 cells. Except for
5-FU-treated BxPc3 cells, this effect was similar for conditioned medium obtained from
wild type and C/EBPδ-deficient macrophages.
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Figure 4. Macrophage C/EBPδ selectively induces resistance to gemcitabine. (A) Schematic overview
of the experimental set up. (B–D) Viability of Mia PaCa-2 (B), BxPc3 (C) and PANC-1 (D) pancreatic
cancer cells in control medium (—), conditioned medium obtained from wild type macrophages (WT)
and conditioned medium obtained from C/EBPδ-deficient macrophages (KO) in the presence of 5-FU
or paclitaxel. Shown is the mean ± SEM of an experiment performed in sixplo. *** p < 0.0001; ns:
not significant.

4. Discussion

In the current study, we aimed to elucidate the importance of macrophage C/EBPδ
in drug resistance of pancreatic cancer cells. We confirm that macrophage-derived condi-
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tioned medium induces gemcitabine resistance of pancreatic cancer cells and show that
conditioned medium obtained from C/EBPδ-deficient macrophages no longer induces
gemcitabine resistance. The fact that resistance, which occurs in most PDAC patients within
weeks of treatment initiation, profoundly limits the efficacy of gemcitabine treatment [35],
underscores the potential importance of our findings and suggests that C/EBPδ is a key
factor underlying the poor prognosis of PDAC patients.

Single agent gemcitabine chemotherapy has been the backbone of PDAC treatment
for many years [36–39], but combination therapy with folinic acid, fluorouracil, irinotecan
and oxaliplatin (FOLFIRINOX) recently replaced gemcitabine as first-line treatment modal-
ity [40]. The increased clinical benefit of FOLFIRINOX comes, however, at the expense of
increased toxicity [41]. In view of the substantial toxicity of FOLFIRINOX, understanding
the underlying mechanisms by which PDAC patients become resistant to gemcitabine is
not just of scientific importance. The identification of C/EBPδ as a driver of macrophage-
dependent gemcitabine resistance suggests that patients with low C/EBPδ expression in
their macrophages may be particularly eligible for gemcitabine treatment. On the contrary,
patients with high macrophage C/EBPδ levels should preferably not be treated with gemc-
itabine, as they are prone to be resistant and experience limited benefit of treatment. Future
studies should prove or refute the validity of this tantalizing hypothesis.

Macrophage numbers in or around tumors are typically associated with poor prognosis
and reduced overall survival [11–13]. In line with this, pharmacological macrophage
depletion was recently shown to enhance the therapeutic response to gemcitabine in a
preclinical murine PDAC model [20]. These data not only confirm the general concept
that macrophages, despite their cytotoxic nature, exert a pro-tumorigenic role [42] but also
suggest that macrophage depletion could be an attractive option to increase the clinical
efficacy of gemcitabine. Of note, however, is that specific macrophage subsets may possess
tumor-suppressive functions based upon which it has been suggested that macrophage
reprogramming rather than depletion may be the most promising strategy to pursue [20,43].
We identify C/EBPδ as an attractive candidate to reprogram macrophages in the setting
of gemcitabine therapy in PDAC patients. Our data suggest that combination therapy of
gemcitabine and a C/EBPδ inhibitor will enhance gemcitabine efficacy and will improve
treatment response in PDAC patients. In particular, patients with high C/EBPδ positive
macrophage numbers are likely to benefit from combination therapy, but this hypothesis
needs to be addressed in preclinical PDAC models before one could pursue to clinical
studies. Although no C/EBPδ inhibitor has yet been clinically approved, a recent study
showed that two histone deacetylase (HDAC) inhibitors, suberoylanilide hydroxamic acid
(SAHA) and trichostatin A (TSA), abolished endogenous C/EBPδ mRNA expression levels
in THP-1 macrophages [44]. Whether these HDAC inhibitors do reduce C/EBPδ levels in
tumor associated macrophages and subsequently potentiate gemcitabine efficacy in PDAC
remains to be established in future experiments.

C/EBPδ plays a pleiotropic role in cancer biology and may either potentiate or inhibit
cancer progression in a context-dependent manner. In PDAC, tumor cell C/EBPδ expression
is lost and re-expression of C/EBPδ in PDAC cell lines slowed down proliferation and
decreased the clonogenic capacity [26]. In contrast, however, primary tumor growth was
not affected in C/EBPδ-deficient mice but metastases were observed in numerous organs
of tumor cell grafted wild type mice but not in C/EBPδ-deficient mice [27]. Here, we
extend the notion that C/EBPδ seems to exert opposing effects in tumor and non-tumor
cells by showing that macrophage C/EBPδ limits the cytotoxicity of gemcitabine towards
pancreatic cancer cells. Of note, a previous study suggested that macrophage C/EBPδ
induced chemoresistance of breast cancer cells to both cisplatin and 5-FU [45]. The latter is
especially interesting as we here show that wild type and C/EBPδ-deficient macrophages
both do not induce resistance of pancreatic cancer cells towards 5-FU, further underscoring
the context-dependent role of C/EBPδ in tumor biology.

Gemcitabine resistance of pancreatic cancer cells is multifactorial [46] and may result
from pancreatic cancer cell autonomous processes, for instance mitochondria-mediated
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apoptosis [47,48] or nucleoside transporter down-regulation [49], and from interactions be-
tween pancreatic cancer cells and stromal cells. Tumor associated macrophages may induce
gemcitabine resistance of pancreatic cancer cells by several mechanisms (excellently re-
viewed by Yang and colleagues [50]). Most importantly for the current study, macrophages
release a spectrum of pyrimidine species of which deoxycytidine molecularly competes with
gemcitabine uptake and metabolism thereby hindering its efficacy as a chemotherapy in
PDAC [34]. We here confirm the importance of macrophage-derived deoxycytidine in gem-
citabine resistance and identify C/EBPδ as a key transcription factor driving deoxycytidine
biosynthesis in macrophages. In line with its specific effect on deoxycytidine biosynthe-
sis, macrophage C/EBPδ did not impact resistance to either 5-FU or paclitaxel. Indeed,
conditioned medium obtained from both wild type and C/EBPδ-deficient macrophages
did not induce resistance to 5-FU and paclitaxel, but actually slightly enhanced 5-FU- and
paclitaxel-induced cytotoxicity in PANC-1 and BxPc3 cells. At this moment, we do not have
an explanation for the small additive effect of macrophage conditioned medium on 5-FU-
and paclitaxel-induced cytotoxicity, but most importantly our data highlight that C/EBPδ
specifically acts upon gemcitabine resistance of pancreatic cancer cells and that C/EBPδ is
not a generic player in PDAC chemoresistance. Interestingly, however, pancreatic cancer
cells are more resistant to gemcitabine than other chemotherapeutic drugs [46], making
C/EBPδ an attractive transcription factor in the setting of chemoresistance in PDAC.

5. Conclusions

In conclusion, we here show that macrophage C/EBPδ drives gemcitabine resistance
of pancreatic cancer cells in a deoxycytidine-dependent manner. Our data contribute to
a better understanding of gemcitabine resistance in PDAC which may ultimately aid in
improved prognosis of this dismal disorder.
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