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Abstract: In this research, the effect of water-silica slurry impacts on polylactic acid (PLA) processed
by fused deposition modeling (FDM) is examined under different conditions with the assistance of an
adaptive neuro-fuzzy interference system (ANFIS). Building orientation, layer thickness, and slurry impact
angle are considered as the controllable variables. Weight gain resulting from water, net weight gain, and
total weight gain are the predicting variables. Results uncover the accomplishment of the ANFIS model
to appropriately appraise slurry erosion in correlation with comparing real data. Both experimental and
ANFIS results are almost identical with average percentage error less than 5.45 x 10~°. We observed
during the slurry impacts tests that all specimens showed an increase in their weights. This weight
gain was finally interpreted to the synergetic effect of water absorption and the solid particles
fragmentations immersed within the specimens due to the successive slurry impacts.

Keywords: ANFIS; slurry impacts; polylactic acid; 3D printing; fused deposition modeling

1. Introduction

In recent years, polymer materials have a growing interest in different industrial
applications under conditions of slurry impacts, such as pipelines exposed to slurry stream
in refinery and offshore petroleum industry [1-5], and sewage systems [6,7]. This growing
attention to polymers is due to several factors: environmental requirements, cost reduction,
corrosion in metallic counterparts, weight reduction, and electrical and thermal insulating
properties [8]. The most common processing methods for polymers are molding and melt
extrusion processes. Currently additive manufacturing (AM, also called 3D printing by
the public), is a new manufacturing route for thermoplastic polymers such as PLA and
ABS. Additive manufacturing comprising a group of techniques that sharing the common
working principle of layer-by-layer manner to build the desired polymer, metal, ceramic, or
composite object. Fused Deposition Modeling (FDM) is one of the additive manufacturing
techniques for processing thermoplastics. In FDM, 3D polymer prototypes and objects are
built based its Computer-Aided Design (CAD) data. The process starts with a filament
which is heated and deposits successively by a nozzle on a printing bed.

PLA is one of the most used material for FDM since it is used for different industrial
applications. Moreover, PLA is renewable, compostable, biocompatible, and has good
damping properties and low cracking rate [9,10]. Furthermore, PLA has a potential in
slurry applications such as exterior automotive applications [11], the construction indus-
try [11], water pump impeller [12,13], water filters [14], pipes and fittings [15], and antenna
radomes [16]. Despite the clear understanding of slurry erosion behavior of metallic materi-
als due to slurry impacts, the current knowledge on the effect of slurry impacts on polymer
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material, especially additively manufactured polymers is limited. Therefore, it is crucial
to strengthen the literature theoretically and experimentally with predictive and reliable
information on the erosion behavior of printed polymers for a given engineering design
or application.

In this regard, developing intelligent systems and soft computing models for pre-
diction of the effect of slurry impacts on additively manufactured polymers has drawn
considerable research attention. Soft computing techniques are useful to provide math-
ematical relations when exact relations are not available. These techniques differ from
conventional computing methods in that they tolerate imprecision, uncertainty, partial
truth, approximation, and metaheuristics [17]. Two famous forms of artificial intelligence;
including neural networks and fuzzy systems, are used together to enhance the developed
models of 3D printed PLA [17]. Two famous forms of artificial intelligence; including
neural networks and fuzzy, were used together to enhance the developed models of 3D
printed polylactic acid.

An adaptive neuro-fuzzy inference system (ANFIS) is one of the soft computing
techniques which playing a great role in modeling accurate input-output matrix rela-
tionships [18]. ANFIS is ideal to predict weight gain based on input variables due to
the nonlinear condition in the 3D printed PLA process. Additionally, ANFIS has been
used in modeling and evaluating slurry erosion of metallic materials. For example, Has-
san et al. [19], developed a fuzzy model to evaluate and predict the slurry erosion of
5127 steel. Their developed model achieved a good agreement with experimental results.
The slurry erosive wear behavior of Al6061 alloy was predicted using fuzzy logic approach
by Ramesh et al. [20], and it was found that the predicted values were in close agreement
with the experimental results. An ANFIS model was proposed for estimation of erosion
rate of copper particles flow through an aluminum 3003 alloy elbow were developed by
Shamshirband et al. [21]. They reported that ANFIS model achieved high reliability in
forecasting maximum and total erosion rates. In the context of FDM, ANFIS has been used
recently to predict different printing output based on printing parameters. For example,
Dambatta et al. [22] used the layer thickness, orientation angle and structural geometry
to predict the volumetric shrinkage of FDMed products. Rajpurohit and Dave [23] used
ANFIS to anticipate the tensile strength of PLA printed parts based on the raster angle,
layer height, and raster width. Yadav et al. [24] studied the effects of extrusion temperature,
layer height, and material density of FDMed products on the tensile strength of materials
like PETG, ABS and multi-material (60% ABS + 40% PETG). They used ANFIS to estimate
the maximum tensile strength of these printed products.

To the best of our knowledge, no significant investigation has been directed to under-
stand the behavior of FDM processed PLA parts subjected to slurry impacts. To fill this
gap, the present study focusses on developing an ANFIS model to predict the output of
slurry impact of FDM-processed PLA products. The addressed printing parameters are
layer thickness, building orientation in addition to the impact angle induced by the slurry
particles on the printed products target surface.

2. Materials and Methods
2.1. 3D Printing Methodology and Parameters

Taguchi’s L9 orthogonal array is used for planning the experiments based on param-
eters affecting both the FDM processing and slurry impact as well as the levels at which
they varied, as shown in Table 1. Build orientation and layer thickness are the critical
parameters affecting the FDM process, and the impact angle parameter is a key factor
connected with the slurry impact condition. The input parameters and their levels are
considered according to the literature survey [25-28].
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Table 1. Taguchi’s L9 array of parameters and their levels considered for the experimentation.

Parameter Name Minimum Middle Maximum
BO Build orientation X 45 Y
LT Layer Thickness (mm) 0.1 0.2 0.3
1A Impact Angle (degree) 15 45 90

A Robota Pro+2® FDM 3D-printer (ROBOTA, Alexandria, Egypt) was used to fabricate
the PLA samples with the dimensions as shown in Figure 1 in X-, Y-, and 45°- build
orientations and 0.1, 0.2-, and 0.3-layer thicknesses. The PLA filament was obtained from
eSUN, Inc. (Shenzhen, China) with properties shown in Table 2. The 3D CAD model
of samples was created using Solidworks® CAD software (Dassault Systémes, Waltham,
MA, USA), and then converted into STL (stereolithiography) file format. The STL file was
then exported to Cura® software package (Ultimaker B.V., Utrecht, Netherlands) in which
processing parameters were set, the model was sliced, and G-code was generated and sent
to the FDM machine for manufacturing. All the specimens were built with a one direction
linear infill pattern, 90° raster angle, 100% infill density, 50 mm/sec print speed, 200 °C
extrusion temperature, 60 °C hot bed temperature.

‘0

Y- direction

NI

X- direction
(a) (b)

Figure 1. Test sample model: (a) Geometrical details and building orientation of the sample on the
FDM building platform; (b) one direction linear infill hatching pattern.

Table 2. PLA’s properties (supplier’s data).

Property Value
Density (g/ cm?) 1.24
Printing temperature (°C) 190-210
Tensile strength (MPa) 65
Distortion Temp (°C, 0.45 MPa) 56
Melt Flow Index (g/10 min) 5(190 °C/2.16 kg)
Elongation at break (%) 8

2.2. Slurry Impact Experimental Setup

The slurry impact tests were conducted on the whirling arm slurry erosion tester
(WASET) rig (Assiut university, Assiut, Egypt) on which the sand particles are driven and
accelerated by gravity fallen water. As shown in Figure 2, the WASET rig is comprised of
fresh slurry mixture unit (25 L capacity tank, stirrer, flow control valve, pipe), slurry cham-
ber (funnel, stirrer, vacuum pump, vacuum gauge), and sample mounting and rotation
unit (motor, speed controller, rotor, two horizontal whirling arms, two sample holders, and
impact angle fixture (0-90°)). Figure 3 shows a schematic diagram of the impact angle and
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impact velocity of the test. The details of operation and performance has been described

elsewhere [29,30].
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Figure 2. The whirling arm slurry erosion test (WASET) rig [30,31].

Figure 3. A schematic diagram of the impact angle and impact velocity of the test [32].

The predetermined amounts of fresh water and sand are added and mixed homo-
geneously in the mixing tank, then the slurry fed into the gravity flow-stabilizing funnel
through pipe then passing through the funnel orifice and impacting the as-printed samples
target surfaces (23 mm x 10 mm) with desired flowrate. Testing conditions for slurry
erosion of FDMed PLA are giving in Table 3. After each test run, samples were cleaned
with hot air jet and soft brush. The amount of mass loss/gain was estimated by weighting
the sample before and after the test run using a digital electronic balance (Sartorius A200,
Goettingen, Germany) with an accuracy of +0.1 mg. After testing, slurry mixture was

drained out.
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Table 3. Testing conditions for slurry impact of FDM-processed PLA.

Parameter Value
Testing velocity 15m/s
Impingement angles 15°, 45° and 90°
Orifice diameter 3 mm
Orifice to sample distance 40 mm
Erodent SiO,
Particle size 355~500 um
Concentration 1% wt.
Temperature 25°C
Material FDMed PLA

2.3. ANFIS Model

Each intelligent strategy has specific computational properties that make them appro-
priate for specific issues. For instance, while neural networks are acceptable at perceiving
patterns, they are bad at clarifying how they get at their decisions. Fuzzy logic frameworks,
which can dissuade uncertain data, are acceptable at clarifying their decisions yet they
cannot consequently procure the rules they use to settle on those decisions. These impedi-
ments have been a focal main impetus behind the production of keen hybrid frameworks
where at least two methods are consolidated in a way that conquers the constraints of
individual procedures.

To empower a framework of managing cognitive uncertainty in a way more like
humans, one may consolidate the idea of fuzzy logic into the neural networks. The
computational cycle imagined for fuzzy-neural systems (ANFIS) is as per the following.
It begins with the advancement of a fuzzy-neuron dependent on the comprehension of
biological neuronal morphologies, trailed by learning components. This prompts the
accompanying three stages in a fuzzy-neural computational process:

1—Advancement of fuzzy-neural system driven by biological neurons,
2—System of synaptic connections which consolidates fuzziness into neural network,
3—Advancement of learning calculations.

Neural networks are utilized to tune membership function of fuzzy frameworks
that are utilized as decision-making frameworks. Albeit fuzzy logic can encode master
information legitimately utilizing rules with linguistic labels, it typically takes a great deal
of effort to plan and tune the membership functions which quantitatively characterize
these linguistic labels. Neural networks learning strategies can mechanize this cycle and
generously lessen the improvement time and cost while improving execution [33].

The multi-layered neural network drives the fuzzy logic inference system appeared
in Figure 4 is utilized to fabricate the ANFIS model. ANFIS is a fuzzy inference system
executed in the framework of an adaptive neural network. ANFIS can be utilized to build
an input-output planning dependent on human information as fuzzy if-then rules just
as foreordained input-output data sets for neural network preparing. The membership
function boundaries are registered by the ANFIS demonstrating to follow the known trial
input-output data.

Inputs Output
—| Neural network Fuzzy >

A

A

Training process

Figure 4. Fuzzy neural system model.
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ANFIS was built in MATLAB software (MathWorks, Inc, Natick, MA, USA) and
different membership functions were used to train ANFIS. Three membership functions of
building orientation, layer thickness, and impact angle were chosen to create the ANFIS
model as shown in Figure 5. The generalized bell membership function gives the lowermost
training error of total weight gain, so it was implemented for the ANFIS training method
in this work. The fuzzy rule construction of ANFIS when generalized bell membership
function is adopted based on the Sugeno fuzzy model as shown in Figure 5.

XX

BO

\
STX .
L

(sugeno)
LT

b4

1A

Figure 5. Fuzzy role architecture of the generalized bell membership function.

ANFIS uses five network layers to achieve the following fuzzy interpretation steps as
shown in Figure 6. Where layer (1) is the input parameters, (2) is the fuzzy set database
layer, (3) is the fuzzy rule base structure layer, (4) is the decision making layer, and (5) is
the output defuzzification layer; more information are available in literature [34,35].

Layerl Layer2 Layer3 Layer4 Layer5
BO LT I4
‘4
Wi
wiF;
™w
WiFn
W”

t 11

BO LT I4

Figure 6. ANFIS architecture for three input Sugeno fuzzy model.

The five layers are described as follows:

Layer 1: the output of this layer is the step to which the given input satisfies the
linguistic label associated to this node. Generalized bell shape membership functions
(gbellmf) are generally used to represent the verbal terms as the connection between the
input parameters and output response is not linear, as shown in Figure 7.
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Figure 7. Membership functions of input parameters after training: (a) membership
function of building orientation (BO), (b) membership function of layer thickness (LT),
and (c) membership function of impact angle (IA).
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Third parameter membership functions:

ClA) = ———— ®G)

where {ailr a;o, a;3, bilr bi2/ bi3/ Ci1, Ci2, Ci3} are the parameter set.

As the values of these limits” modification, the functions shapes vary consequently as
shown in Figure 7, thus displaying several forms of membership functions on linguistic
tags Ai, Bi and Ci. Parameters in this layer are denoted to as attitude parameters.

Layer 2: The firing strength of the connected rule can be computed by every node.
The outputs are:

Top neuron:

w1 = Al (BO) X Bl (LT) X Cl (IA) (4)

Bottom neuron: w,, = A3(BO) x B3(LT) x C3(IA)
Layer 3: every node in this layer is considered by N to indicate the regulation of the
firing levels. The output of top and bottom neuron is normalized as follow:

Top neuron:
__ w1
wy = ©)
wptwy+...+wy

Bottom neuron: @y, = = ——-

Layer 4: the output in this layer is the result of the normalized level of firing and the
individual output of the main rule and last rule.
Top neuron:
w1k = W ({11BO + LT + C1IA) 6)

Bottom neuron: w,F, = w, (a,BO + b,LT + c,IA)
Layer 5: the node in this layer figures the general framework as the amount of every
input, i.e.;
TW =wF + wF, + ... + wyFy (7)

In the event that a training set {(XK, yk), k=1,...... , K} was given, the boundaries
of the hybrid neural network (which decide the state of the membership functions of
the premises) can be realized by descent-type strategies. The error for sample k can be
calculated by:

Ej = (y* — o) 8)

where y¥ is the required output and o is the modeled one by the hybrid neural network.
Throughout training, the output data set were utilized to perform 200 rounds of learning
with an average error of 5.45 x 10~° as shown in Figure 8.

x10° Training Error

Error

| 1 1 1 1 J
20 40 60 80 100 120 140 160 180 200
Epochs

Figure 8. Training error.
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3. Results and Discussion
3.1. Weight Gain of 3D PLA due to Slurry Impacts

From previous work by authors [36] the manufactured specimens at different building
conditions (Building orientation: BO, and layer thickness: LT) were tested under different
slurry impact conditions (Impact angle: IA). The slurry impacts on the specimens caused
weight gain for all the examined specimens at all building and testing conditions. The
observed weight gain of the specimens was postulated to two reasons: (a) water absorption,
and (b) the embedded sand particles in the surfaces of the specimens [36]. Figures 9 and 10
show the impacted surface of the specimens scanned using an optical microscope (OM)
and SEM, respectively. The OM images illustrate one of the reasons of the weight gain of
the specimens after the slurry impact tests, i.e., the immersed fragmentation of the solid
particles in the top surface of the specimens after the slurry impact test. Figure 10 illustrates
the boarders between the impacted and unimpacted areas using SEM images. The first
region is subjected to slurry impact and the other one is not. The areas that are subjected
to slurry impacts are shown in white color. The peaks of the beads are almost smashed,
and the surface of these areas is almost homogeneous without any severe hills or bottoms,
whereas the darker areas are the original surface after the 3D printing process where the
hills and bottoms of the printed beads are clear and the difference between them is high.
This is also clear from the 3D surface profile images shown in Figure 11 extracted from the
images of each sample after testing using the image analysis software (ImageJ, National
Institutes of Health, USA) for a quantitative comparison of surface topography. Figure 11
also reveals that in specimens which have the highest LT (i.e., 0.3 mm in S3, 56, S9), the
plastic deformation of these specimens in the impacted area is limited and, hence, resulted
in higher surface roughness.

Immersed solid particles

Immersed solid particles

Immersed solid particles / NN . - l

Immersed solid particles

Immersed solid particles

Immersed solid particles’ » .

Immersed solid particles y

Figure 9. Optical microscopy of the FDMed PLA specimens after subjecting them to the slurry impacts. S1 (BO: Y, LT: 0.1,
IA:15°),52 (BO: Y, LT: 0.2, IA: 45°), S3 (BO: Y, LT: 0.3, IA: 90°), 54 (BO: 45°, LT: 0.1, IA: 45°), S5 (BO: 45°, LT: 0.2, IA: 90°), S6
(BO: 45°, LT: 0.3, IA: 15°), S7 (BO: X, LT: 0.1, IA: 90°), S8 (BO: X, LT: 0.2, IA: 15°), and S9 (BO: X, LT: 0.3, IA: 45°).
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S1(BO:Y, LT:0.1,IA: 15°) : . S3 (BO:Y, LT: 0.3, IA: 90°)

h TR ]

i1mm BG0B8G061

Figure 10. SEM images of the 3D printed PLA specimens after subjecting to the slurry impacts.

Figure 12 shows the gain rate, Gr (mg/cm?), in the weight of each specimens after
impacting by 112.37 g of SiO, solid particles with 427.5 um average size. The gain rate, Gr,
was determined by dividing the absolute weight gain (mg) of the specimen by the eroded
surface area. The area of the eroded surface, EA, represents nearly the half of the specimen
top surface area, (i.e., 5 mm x 23 mm). In addition, weights of the absorbed water due to
the slurry impact tests were determined by drying the specimens after tests, and the weight
of the absorbed water for each specimen was determined by determining the difference
between the weights before and after the drying process, as shown in Figure 9. Finally, the
difference between the total gain weight and the weight of the absorbed water for each
specimen was determined to represent the net gain weight of the specimen after the slurry
impact test. The net gain weight is due to the penetrations and immersions of the solid
particles accompanied with the mass loss which may be occurred due to the successive
slurry impacts, as shown in Figure 9.

The highest total weight gain is observed at specimens S6 (BO: 45°, LT: 0.3 mm, and
IA: 15°) and specimen S9 (BO: X-direction, LT: 0.3 mm, and IA: 45°). In contrast, the lowest
weight gain is observed at specimens S7 (BO: X-direction, LT: 0.1 mm, and IA: 90°) and
specimen 54 (BO: 45°-direction, LT: 0.1 mm, IA: 45°).
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S1(BO: Y, LT: 0.1, IA: 15°) S2 (BO: Y, LT: 0.2, IA: 45°) S3 (BO: Y, LT: 0.3, IA: 90°)

S4 (BO: 45°, LT: 0.1, TA: 459),

S5 (BO: 45¢, LT: 0.2, [A: 90°), S6 (BO: 45°, LT: 0.3, TA: 15°)

57 (BO: X, LT: 0.1, IA: 90°) S8 (BO: X, LT: 0.2, [A: 159) 59 (BO: X, LT: 0.3, IA: 459)

Figure 11. Representative 3D surface plots of surface topography of FDMed PLA specimens after subjecting to the slurry impacts.
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12] ® Net gain weight (Mass loss + Immersed particles)
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Figure 12. Gain rate in the weight of the specimens, absorbed water, and the net gain after impacting
by 112.37 g of solid particles.

The impact angle (IA) and the layer thickness (LT) are the significant parameters
affecting the water gain, by increasing the LT the amount of the absorbed water during
testing time is increased. While the IA only is the main factor influencing the amount of the
embedded solid particles in the top surface of the impacted specimens. By decreasing the
IA, the amount of the immersed particles in the top surfaces of the specimens is increased.
At normal impact angles (IA = 90°), the impacted particles penetrate inside the top surface
of the specimen for a small distance without any shear, as the horizontal force of the
impacting force equals to zero at normal angles. Then, due to the successive impacts of
the new particles, the old-immersed particle will be removed, or it will be fractured and
leaving behind a small fragmentation immersed inside the top surface of the specimen.
However, at small IA, the high shearing force (horizontal component of the impacting
force) and the formed chips in front of the impacted particle will let the adhesion force
between the immersed particle and the specimen is very strong and the successive impacts
will hardly remove this particle and if there are some fragmentations due to the impacting
process, their sizes will be larger and, in turn, their weight gain will be increased due to
this process.

3.2. ANFIS Model Analysis

Using the developed ANFIS model, the weight gain variables of PLA material were
acquired from the three input variables. The combined effect of the three variables on the
output variation of slurry erosion can be shown in Figures 13-15. Figure 13 shows the
surface plots that explain the effects of the water silica slurry impacts parameters on total
weight gain.

According to Figure 13, impact angle (IA) has great effect followed by layer thickness
(LT) on total weight gain, while building orientation (BO) has a minor effect on total weight
gain. Similar kinds of observations have been obtained experimentally. Moreover, at low
level of impact angle, the layer thickness has a considerable effect on weight gain. The
total weight gain increases with increasing the layer thickness during all range of layer
thickness. Also, at low and medium levels of impact angles, the low and high levels of
building orientation do not have a considerable effect on weight gain. Additionally, at high
level of impact angles and layer thickness, the total weight gain increases with the increase
of building orientation.
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(b) 1A = 45° (c) 1A =90°

(d) BO=0° (e) BO = 45° (f) BO = 90°

Figure 13. Total weight gain (TW) in relation to change of building orientation (BO) and layer thickness (LT), and impact
angle (IA) at (a) IA = 15°, (b) IA =45°, (c) IA =90°, (d) BO = 0°, (e) BO = 45°, and (f) BO = 90°.

Water-gain

(a)IA=15° (b) IA = 45° (c) IA =90°

vWater-gain

Water-gain

(d) BO=0° (e) BO = 45° (f) BO = 90°

Figure 14. Water gain in relation to change of building orientation (BO), layer thickness (LT), and impact angle (IA) at
(a) IA = 15°, (b) IA = 45°, (c) IA = 90°, (d) BO = 0°, (e) BO = 45°, and (f) BO = 90°.
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Figure 15. Net weight gain in relation to change of building orientation (BO), layer thickness (LT), and impact angle (IA) at
(a) IA = 15°, (b) TA = 45°, (c) IA =90°, (d) BO = 0°, (e) BO = 45°, and (f) BO = 90°.

According to Figures 14 and 15, there is no clear pattern or relation between the
input parameters (impact angle, layer thickness, and building orientation) and output
parameters (water gain and net weight gain). Figure 14 shows the effects of input variables
on water gain. It can be observed from Figure 14 that, the maximum water gain takes
place at low level of impact angel, medium level of building orientation, and high level of
layer thickness.

Figure 15 shows the surface plots of the water silica slurry impacts parameters effect
on net weight gain. It can be seen from Figure 15 that, the maximum net weight gain
around 0.6 and appears at low building orientation and high layer thickness along with a
high impact angle.

4. Conclusions

In the present study, the effect of slurry impacts on PLA material manufactured by
FDM 3D printing technique was predicted under several building and testing conditions
using ANFIS. The obtained results from the presented ANFIS model were compared with
previously obtained experimental results and found to be almost identical. The three
studied factors are building orientation (BO), layer thickness (LT), and impact angle of the
slurry (IA). For all specimens, the weight gain is the main tendency after subjecting to the
water-sand slurry impact. The water absorption and the embedded particles/fragments
are the main reasons behind that weight gain. The results reveal that the developed ANFIS
model can be effectively adopted to model and predict the effect of slurry impacts on
PLA material processed by FDM. The precise output values ensure the effective use of the
developed ANFIS model.
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