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Abstract

Background

Initial administration of�60% nitrous oxide (N2O) to rats evokes hypothermia, but after

repeated administrations the gas instead evokes hyperthermia. This sign reversal is driven

mainly by increased heat production. To determine whether rats will behaviorally oppose or

assist the development of hyperthermia, we previously performed thermal gradient testing.

Inhalation of N2O at�60% causes rats to select cooler ambient temperatures both during

initial administrations and during subsequent administrations in which the hyperthermic

state exists. Thus, an available behavioral response opposes (but does not completely pre-

vent) the acquired hyperthermia that develops over repeated high-concentration N2O

administrations. However, recreational and clinical uses of N2O span a wide range of con-

centrations. Therefore, we sought to determine the thermoregulatory adaptations to chronic

N2O administration over a wide range of concentrations.

Methods

This study had two phases. In the first phase we adapted rats to twelve 3-h N2O administra-

tions at either 0%, 15%, 30%, 45%, 60% or 75% N2O (n = 12 per group); outcomes were

core temperature (via telemetry) and heat production (via respirometry). In the second

phase, we used a thermal gradient (range 8˚C—38˚C) to assess each adapted group’s ther-

mal preference, core temperature and locomotion on a single occasion during N2O inhala-

tion at the assigned concentration.

Results

In phase 1, repeated N2O administrations led to dose related hyperthermic and hypermeta-

bolic states during inhalation of�45% N2O compared to controls (� 30% N2O compared to

baseline). In phase 2, rats in these groups selected cooler ambient temperatures during

N2O inhalation but still developed some hyperthermia. However, a concentration-related

increase of locomotion was evident in the gradient, and theoretical calculations and regres-

sion analyses both suggest that locomotion contributed to the residual hyperthermia.
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Conclusions

Acquired N2O hyperthermia in rats is remarkably robust, and occurs even despite the avail-

ability of ambient temperatures that might fully counter the hyperthermia. Increased locomo-

tion in the gradient may contribute to hyperthermia. Our data are consistent with an

allostatic dis-coordination of autonomic and behavioral thermoregulatory mechanisms dur-

ing drug administration. Our results have implications for research on N2O abuse as well as

research on the role of allostasis in drug addiction.

Introduction

To identify the thermoregulatory and motivational consequences of nitrous oxide (N2O)

administration in rats, we have conducted a wide range of studies involving the use of direct

and indirect calorimetry, temperature telemetry, thermal gradients, place preference, N2O self

administration and stress hormone release [1–15]. To date, our work has primarily involved

clamped administrations of�60% N2O.

When first administered at these levels N2O increases heat loss and causes hypothermia [3,

5, 6, 8, 9, 11, 13, 16]. Following several administrations, core temperature instead remains

within the normal ‘homeostatic’ range during administration–the hallmark of hypothermic

tolerance–but this tolerance mostly results from an acquired increase of metabolic rate. More

remarkably, with further administrations the rats exhibit hyperthermia, hypermetabolism and

elevated heat loss during N2O administration [6, 8, 9, 11, 13]. We regard this situation as an

instance of allostatic—not homeostatic—regulation involving an energetically inefficient over-

correction of a regulated outcome [17]. Moreover, the switch from initial hypothermia to

eventual hyperthermia represents a clear and multiply replicated instance of a ‘sign-reversal’

[18], a phenomenon of particular interest in pain and addiction research because the chronic

use of pain-reducing drugs such as morphine can make those drugs acquire pain-promoting

properties (e.g., opioid-induced hyperalgesia [19]) and because the chronic use of recreational

drugs with initially pleasurable effects can make those drugs induce negative affective and

hedonic properties that perversely become major drivers of addiction [20, 21]; reviewed in

[17].

When given the choice of thermal conditions in a thermally graded alleyway during 60%

N2O inhalation, rats selected cooler ambient temperatures both during initial administrations

when hypothermia occurred, and also during subsequent administrations when hyperthermia

occurred [7, 11]. The combination of hypothermia and cool-seeking behavior during initial

administration might be interpreted as a ‘regulated hypothermia’ [22] that serves a protective

function because hypothermia reduces the harmfulness and lethality of toxicants [23]. How-

ever, the combination of acquired intra-administration hyperthermia with a persisting prefer-

ence for cooler ambient temperatures [11, 12] represents an acquired dis-coordination

between autonomic and behavioral effectors, another proposed feature of allostatic regulation

[12, 17] that may represent a basis for the transition to a variety of disordered biobehavioral

disease states such as drug addiction and obesity [10, 12, 17].

We previously reported that initial administrations of 30% or 50% N2O did not alter core

temperature, but did increase heat loss; core temperature homeostasis was preserved owing to

simultaneous increases in heat production [5]. These data demonstrate that drug administra-

tions that have no effect on core temperature may nonetheless have significant biological

effects on the physiological and behavioral determinants of core temperature–a lesson that

Concentration-related biobehavioral thermoregulatory adaptations to chronic nitrous oxide administration

PLOS ONE | https://doi.org/10.1371/journal.pone.0194794 April 19, 2018 2 / 22

https://doi.org/10.1371/journal.pone.0194794


emphasizes the interpretational challenges associated with using core temperature in toxicol-

ogy screens [24]. Similarly, some rats are insensitive to 60% N2O’s typical hypothermic effect

during initial administration because increased heat loss is offset by a prompt increase of heat

production [3, 13].

Importantly, rats that exhibited minimal hypothermia during initial 60% N2O administra-

tion engaged in significantly more N2O self-administration in comparison to hypothermia-

sensitive rats, and the minimal hypothermia animals also exhibited elevated metabolic heat

production in a final test session in the calorimeter [13]. These data indicate that a robust (but

usually hidden) regulatory phenotype can explain what looks like initial drug insensitivity as

defined by the relative stability of core temperature during drug administration (core tempera-

ture has long used to define and study drug sensitivity and tolerance in animal models [4, 10,

25, 26], and has also been used to screen for toxicants [24]). This perspective suggests a “reac-

tive” explanatory basis for the well-documented finding that humans who appear relatively

insensitive to alcohol upon initial administration based on easily measured but complexly

determined “distal” outcomes are at greater risk for subsequently developing drug use disor-

ders than are their more initially sensitive counterparts [27, 28]. Lower initial sensitivity to the

antinociceptive effect of morphine is also a predictor of opiate addiction in rats [29]. The point

is that “initial insensitivity” to a drug of abuse may not be what it appears to be (true insensitiv-

ity), but can instead mask a regulatory hyper-reactiveness that participates in the addictive

process.

‘Dose-response’ data are critically important for understanding the drug’s broader spec-

trum of physiological and behavioral actions, and are of major value for designing studies

aimed at specific questions of interest. Therefore, in the present study, groups of rats with tele-

metric temperature implants were adapted in a calorimeter to 12 administrations of N2O at

one of six concentrations ranging from 0% to 75% and then subsequently tested at their

assigned N2O concentration in an instrumented thermally graded alleyway to measure behav-

ioral temperature preference, locomotion and core temperature.

Materials and methods

Subjects and ethics approval

Male Long-Evans rats (Charles River, N = 72, ~21 d of age upon arrival) were maintained in

an AAALAC-accredited facility on a 12h:12h light/dark cycle (lights on at 0700 h) at an ambi-

ent temperature of 22 ± 1˚C. Rats were group-housed in polycarbonate tubs with unrestricted

access to water and pelleted chow (5053 PicoLab Rodent Diet 20, Animal Specialties and Pro-

visions, Quakertown, PA). All animal procedures were approved by the University of Wash-

ington Institutional Animal Care and Use Committee.

Surgery

A telemetric temperature sensor was implanted surgically into each rat’s peritoneal cavity

under isoflurane anesthesia (3–5% for induction and 1–3% for maintenance) while the rat was

on a 39˚C heating pad. Meloxicam (an NSAID) was provided in the drinking water (0.02 mg/

ml H2O) from 1 day before to 2 days after surgery. Rats were ~ 28–30 d of age at surgery. Rats

were allowed to recover for at least 7 d after surgery before beginning studies.

Design and procedures

In brief, this study involved two phases: phase 1 consisted of 12 3-h N2O administrations at

one of six concentrations during which heat production and core temperature were measured

Concentration-related biobehavioral thermoregulatory adaptations to chronic nitrous oxide administration

PLOS ONE | https://doi.org/10.1371/journal.pone.0194794 April 19, 2018 3 / 22

https://doi.org/10.1371/journal.pone.0194794


in calorimeters maintained at the accustomed housing temperature (22 ± 1˚C); phase 2 con-

sisted of testing the same rats one time in a thermally graded alleyway during which core tem-

perature, selected ambient temperature and locomotion distance were measured during a 3-h

exposure to the same N2O concentration as in phase 1. The gradient allows the animals to

choose ambient temperatures ranging between 8 and 38˚C. These exposures commenced at

the same time as the calorimetry exposures (see below). Phase 1 was intended to quantify

thermoregulatory adaptations to serial N2O exposures [6, 8] involving N2O concentrations

for which no prior serial adaptation studies exist, while phase 2 was designed to jointly assess

thermal preference behavior, locomotion and core temperature when the animals were in the

drug adapted state. For phase 1, rats (n = 12 per group by random assignment) received 12

N2O administrations in a calorimeter at a concentration of 0%, 15%, 30%, 45%, 60%, or 75%.

The duration of each calorimeter session was 5-h, consisting of a 2-h control gas baseline

(0100-1200h) followed by 3-h N2O delivery that commenced at noon (1200-1500h). Sessions

occurred on M, W and F. Core temperature (measured via telemetry) and heat production

(estimated via respirometry) were obtained during the calorimetry sessions throughout the

baseline period and for the 3-h of N2O exposure. For phase 2 of the study, each rat received its

assigned N2O concentration during a 3-h interval that commenced at noon in the course of

being housed in a thermally graded alleyway for 24h; rats were placed in the gradient at 4pm

(1600h) on the day prior to the day upon which the 3-h N2O session occurred.

Calorimetry and N2O systems

Our calorimetry system and gas delivery systems are described in detail elsewhere [3, 6, 8]. In

brief, six gas-tight calorimetry systems equipped for telemetric core temperature assessment

served as the N2O exposure chambers (6.86 liter volume). The N2O gas concentrations were

composed of 21% oxygen (O2) and the assigned % of N2O with the balance being nitrogen

(N2). Gas mixtures were made from medical grade N2O, O2 and N2 using a mass flow control-

ler for each gas with the blend delivered to each chamber at a constant flow rate of 1.5 liters/

min. Heat production was quantified based on oxygen consumption using an equation ori-

ginally derived by Weir [30] that represents an attractive way to accurately estimate heat pro-

duction when carbon dioxide (CO2) production is not measured (N2O interferes with CO2

measurement). The equation is:

Heat production (W) = 349 × fractional O2 delta × incurrent gas flow rate (liters/min)

where the fractional O2 delta is the difference in the fractional O2 concentrations between the

incurrent and excurrent gas streams and the gas flow rates are adjusted to standard pressure

and temperature, dry. The basis for the validity of this equation is explained in [30–34]. In

brief, it works because the error in O2 consumption (VO2) that would accompany the use of

VO2 (liters/min) = fractional O2 delta × incurrent gas flow rate (liters/min) when the respira-

tory quotient (RQ, the ratio of CO2 production to O2 consumption) does not equal one is

almost exactly cancelled by the energy liberated per liter of O2 consumed at the actual RQ

value in effect.

The first calorimeter exposure session began� 7 d after surgery and recovery. Mean body

mass at first exposure was 155.9 ± 23.42 (SD) g.

Thermal gradient

This study employed two identical custom-built gas-tight thermal gradients (described in

detail [7, 11, 12] based on Gordon’s design [35, 36]. In brief, a water jacket on each end of the

gradient enables two recirculating water baths to pump warm water to one end and cool water

to the other, creating a temperature continuum ranging from 8˚C to 38˚C along the length of
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the gradient’s insulated copper shell. A removable acrylic alleyway (182.9 cm long, 12.06 cm

high, 12.06 cm wide) is suspended from an internal support structure within the thermal gra-

dient. The rat’s location in the alleyway is detected using 24 infrared beams that are placed 19

mm above the alleyway floor and positioned 76.2 mm apart along the length of the alleyway

ending 38.1 mm from either end. A thermistor with 0.1˚C accuracy is positioned 10 mm above

each of the 24 infrared transmitters and measures the ambient temperature at the rat’s loca-

tion. An antenna made from two continuous 22 gauge solid strand insulated wires surrounds

the lateral walls of the alleyway and receives the telemetric core temperature signal from a sen-

sor within the rat’s peritoneal cavity. Uniform illumination during the light portion of the

24-h light/dark cycle is provided by 128 evenly spaced white light LEDs that run the length of

the alleyway and project their light upward from top edge of the internal support structure.

Pelleted chow and water were freely available in the center of the alleyway. Room air was

purified, dehumidified and compressed to provide the control gas, and was delivered to the

thermal gradient at a flow rate of 10 liters/min. The N2O gas concentrations were made as

described above and delivered to the thermal gradient at a flow rate of 10 liters/min. Concen-

trations of N2O, O2, and CO2 were measured using an infrared gas analyzer that sampled gas

via a T-connector placed in the incurrent and excurrent gas lines connected to the gradient’s

copper shell.

Telemetry, data acquisition and instrument control

Telemetric measurement of core temperature was accomplished using a commercial system

from Data Sciences International (Saint Paul, MN) that consists of a Data-Exchange Matrix,

Physio-Tel Receiver (Model RPC-1), Dataquest ART 4.2 software, and an implantable battery-

powered temperature sensor (model TA-F40) implanted in the rat’s peritoneal cavity. The

antenna system used in each direct calorimeter consists of two radio ferrite coils oriented per-

pendicularly to each other and epoxied underneath a Plexiglas platform that holds them 2 mm

above the floor of the direct calorimeter. The antennae wires exited the calorimeter through a

gas-tight port and were connected to the RPC-1 receiver base. The antenna wires located in

the thermal gradient are exteriorized through a sealed port in the copper shell and are con-

nected to the RPC-1 receiver base by adding second wire wrappings to the receiver base’s two

ferrite coils so that the external wire antenna can conduct its radio signal to the receiver. All

other instrument control and data acquisition were performed using custom programs written

in LabVIEW 6.8 (National Instruments, Austin, Texas).

Data reduction

For phase 1 (the 12 calorimetry sessions), the dependent variables were core temperature and

heat production. Core temperature was recorded at 15 s intervals while heat production data

were recorded at 10 s intervals. For depictions of within-session time plots, mean core temper-

ature and heat production were calculated for each 6-min bin. For statistical analyses, calorim-

eter outcomes were analyzed as changes (Δ) from baseline values that were defined as the

means of the final 12 min of the baseline period. Statistical analyses were performed on aver-

aged change data (means) across each half of each 3-h administration period.

For phase 2 (thermal gradient testing), ambient temperature at the rat’s selected position

within the gradient was logged at the time the rat’s position was recorded. The rat’s position

was recorded at 7-sec intervals based on 24 infrared beams that were spaced 7.62cm apart

along the length of the alleyway. Distance travelled was computed as the average value of the

difference between successive time-stamped rat-position values multiplied by 7.62 cm. Dis-

tance was summed within each 6-min bin. Selected ambient temperature was calculated as the

Concentration-related biobehavioral thermoregulatory adaptations to chronic nitrous oxide administration
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mean temperature of the thermistor(s) corresponding to the interrupted infrared beam loca-

tion(s). Core temperature data were recorded at 30-s intervals. For within-session time plots,

mean core temperature and mean selected ambient temperature values were computed within

each 6-min time bin. For statistical analyses of gradient data, core temperature and selected

ambient temperature for each rat were each averaged (means) across each half of the 3-h

administration period. As the animals were placed in the gradient the day before measure-

ments, baseline was defined as the mean value over the 60 min prior to N2O onset. To compute

total distance in the thermal gradient studies, individual binned distance data were summed

across each half of the N2O exposure. Distance data and estimates of energy costs of locomo-

tion were summarized as median, 25th percentile and 75th percentile values due to skewness

and unequal variances between dose groups.

Locomotion energy cost estimates

To estimate individual energy costs of locomotion (E in units of W/kg), distance within each

6-min bin was converted to mean speed (S) in units of m/s and entered into the formula for

the minimal energy cost of transport (mCOT) [37]:

E
M
¼ 10:7M� 0:316S

(We use E instead of HP for thermal gradient locomotion metabolic rate estimates because a

substantial fraction of the total energy cost of locomotion (>25% [38]) is not expressed as

heat, whereas trivial locomotion occurs in calorimeter studies due to limited space). Thus HP

was estimated as 75% of E. In estimating locomotion costs we excluded the term correspond-

ing to the energy cost due to the sum of the cost of support (COS) and resting metabolic rate

(RMR) (given as the intercept value in [37]) because our system does not allow resolving

whether the rat is standing or not. This is important because COS + RMR represents an impor-

tant contributor to the gross energy cost of locomotion (= mCOT + COS + RMR). We pre-

dicted the effect of mCOT on Tcore by summing estimates of mCOT and assuming that rats

had a specific heat of 3.47 J/(g˚C) [39].

Statistical analyses

The first two 6-min bins of heat production data following time zero were omitted from analy-

sis due to the potential for artifactual values in this interval [3]. To jointly assess the effects of

N2O concentration, session and the concentration by session interaction, the correlated longi-

tudinal calorimetry data were analyzed using the linear mixed-model program in SPSS Statis-

tics 24 (IBM, Somers, NY). Session and dose were treated as fixed effects, and change scores

were adjusted for baseline. First-order autoregressive covariance structures were specified for

longitudinal analyses [40]. For comparisons between concentration groups within each ses-

sion, the GLM univariate approach in SPSS was employed; 95% confidence intervals and p-val-

ues were adjusted for baseline values. Core and selected ambient temperature in the gradient

were analyzed with adjustment for baseline using the GLM univariate procedure in SPSS. Dis-

tance data were analyzed for significance using Mood’s median test in SPSS Statistics v. 24.

For within-session time plots of absolute heat production in the initial vs. final exposure

N2O sessions, heat production was adjusted for body mass, an important determinant of meta-

bolic rate [41], which increased over the course of the 12 exposure sessions. Because heat pro-

duction during N2O inhalation is affected by a complex and incompletely understood array of

drug effects and biobehavioral control system adaptations, the adjustment for heat production

was based on the coefficient estimate identified by the regression of baseline pre-exposure heat

Concentration-related biobehavioral thermoregulatory adaptations to chronic nitrous oxide administration
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production on body mass across the 12 N2O exposure sessions using linear mixed model anal-

ysis to account for the correlated nature of the within-subject data. Specifically, adjusted heat

production (HP) was calculated as follows:

HPadjusted;ij ¼ HPij þ bð �M � MijÞ

b ¼ coefficient idendified from regression ¼ 0:0022

HPij ¼ individual rat0s unadjusted HP in session j

HPadjusted;ij ¼ individual rat0s adjusted HP in session j
�M ¼ grand mean of body mass across all 12 exposure sessions ¼ 259:7 g

Mij ¼ individual rat0s body mass in session j

Results

Phase 1–repeated N2O administrations

As predicted, phase 1 resulted in substantial thermal adaptations over the course of the 12

administrations of N2O (Figs 1, 2 and 3; Figs 2 and 3 depict mean changes of the N2O-treated

rats from the control rats while S1 and S2 Figs depicts mean changes from baseline.). Mixed

model analysis of core temperature data averaged over the first 90 min of administration

indicated highly significant effects of session and the concentration by session interaction

(p<0.0001), but the main effect of concentration was non-significant (p = 0.20), consistent

with the core temperature sign-reversals from hypothermia to hyperthermia in the three high-

est concentration groups (particularly evident in Fig 2). For heat production, the effects of

drug concentration and session were highly significant (p<0.0001), and there was a significant

concentration by session interaction (p = 0.004). The magnitudes of the thermal adaptations

from the first to the twelfth administrations depicted in Fig 2 are worth noting for the three

highest concentration groups: core temperature values increased (mean ± SE) by 0.75±
0.111˚C (45% N2O), 1.47±0.116˚C (60% N2O), and 2.18±0.199˚C (75% N2O); all p<0.0001.

Corresponding heat production values increased by 0.24±0.062 W (45% N2O), 0.50±0.089 W

(60% N2O), and 0.63±0.146 W (75% N2O); p�0.003.

In the second 90 min of drug administration, the pattern of results for core temperature is

an attenuated version of that in the first 90 min in that departures from normothermia were

generally of lesser magnitude (compare Figs 2 and 3). Nonetheless, mixed model analysis of

core temperature data averaged over the second 90 min indicated highly significant effects of

session and the concentration by session interaction (p<0.0001) as well as a significant main

effect of concentration (p = 0.0002). For heat production, all terms were highly significant

(p<0.0001).

Phase 2—Thermal gradient test

To assess the impact of behavioral thermoregulation on core temperature during N2O admin-

istration in the adapted state, the rats were tested once in the thermally graded alleyway at

their assigned % N2O. As depicted in Figs 4 and 5, N2O administration at concentrations of

Fig 1. Temporal profiles depicting concentration-dependent thermal adaptations to 12 steady-state nitrous oxide exposures in rats. The time plots

depict mean core temperature and body-mass adjusted heat production in the first and twelfth 3-h N2O exposure sessions (indicated by the numbers in

each concentration group). Bars indicate period of N2O inhalation. Thin lines depict outcomes during control gas (custom control air, o% N2O)

administration; dashed thin line denotes first control session, solid thin line, denotes twelfth control session). N = 12 per dose group. During the course

of the calorimetry studies, body mass increased by ~125% whereas baseline HP increased by ~35% (error bars are 95% confidence intervals). The

regression equation for HP was used to adjust HP for body mass in the time series plots (see Materials and Methods). N2O, nitrous oxide; Tcore, core

temperature; HP, heat production.

https://doi.org/10.1371/journal.pone.0194794.g001
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�45% elicited significant hyperthermia relative to the control gas condition while�30% N2O

evoked reliable hyperthermic changes relative to baseline. Note that the hyperthermic changes

occurred despite reliable decreases in thermal preference for�30% N2O, indicating incom-

plete behavioral compensation for the effect of presumed increases of heat production that

mediates hyperthermia.

In the second 90 min, none of the concentration groups exhibited mean changes in core

temperature that were reliably different from control (Fig 5). However, both the 60% and 75%

groups exhibited reliable decreases in selected temperature, suggesting that this behavioral out-

come helped normalize core temperature.

Importantly, our data revealed a highly significant dose-related stimulatory effect of N2O

on total locomotion in first 90-min of N2O administration (Fig 6).

This finding raises the possibility that the heat byproduct of locomotion contributes to an

increase of core temperature (and so offsets the effect of reduced selected temperature to pro-

mote heat loss). Consistent with this possibility are the estimated total effects on core tempera-

ture made by the minimum cost of transport (mCOT; see Materials and Methods) (Fig 6).

Note that this analysis underestimates the gross thermal contribution of locomotion, which

also includes a non-trivial but unknown contribution from resting metabolic rate plus an

increment caused by the cost of support (see Materials and Methods). In a further exploration

of this issue, linear mixed model analysis of the time series data revealed that locomotion dis-

tance was indeed a highly significant positive predictor of core temperature in a model that

included both N2O concentration and distance (1st 90 min: estimated change in Tcore = 0.032

±0.0068˚C per m of locomotion; p<0.0001; 2nd 90 min: estimated change in core tempera-

ture = 0.029±0.0075˚C per m; p = 0.0001). Interestingly, after accounting for the independent

effect of distance, the omnibus effect of N2O concentration per se was non-significant (1st 90

min, p = 0.07). Another indication that locomotion may have been a major driver of hyper-

thermia is that core temperature was essentially normothermic and statistically indistinguish-

able across all except the highest concentration groups in the 2nd 90 min of administration (Fig

5) when activity had dropped off and become similar among the zero through 60% N2O

groups (Fig 6). The essential point is that locomotion in the thermal gradient may have con-

tributed to the hyperthermia observed in that setting (whereas limited space in the calorimeter

setting greatly limits locomotion).

Discussion

We performed the current study to gain further insight into the nature of the acquired meta-

bolic rate and behavioral adaptations made in response to serial drug administrations using

our thermoregulatory models [3, 7]. Key strengths include steady-state administration of a

minimally metabolized gas [42] to simplify data interpretation by eliminating pharmacokinetic

and metabolite-based explanations; telemetry to preclude handling and stress confounding;

and continuous measurements of a ‘high priority’ homeostatic variable [43] along with its

underlying determinants using calorimetry (e.g., heat production) [3] and thermal choice via

thermal gradient testing [7]. As thermoeffector loops are proposed to work in a relatively inde-

pendent fashion [44, 45], an important aim in the present study was to assess not just the regu-

latory response magnitudes but also the functional directions of the metabolic heat production

and behavioral thermoregulatory responses to N2O administration following chronic N2O

Fig 2. Nitrous oxide minus control gas differences in core temperature and heat production in each of the twelve 3-h exposure sessions (first

90 min). 95% confidence intervals that do not include zero are significantly different from control at p<0.05. N = 12 per dose group. C.I.,

confidence interval; N2O, nitrous oxide; Tcore, core temperature; HP, heat production.

https://doi.org/10.1371/journal.pone.0194794.g002
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inhalation sessions among six concentration groups. Accordingly, we documented core tem-

perature and heat production across twelve 3-h N2O administrations at concentrations rang-

ing from 0% to 75% N2O; and we then measured each adapted group’s thermal preference and

locomotion along with their relationship to core temperature during N2O inhalation at the

accustomed concentration in a thermally graded alleyway. Our findings extend previous

knowledge involving high N2O concentrations (�60%) by demonstrating that serial N2O

administrations to rats at concentrations as low as 30% promote dose-related hyperthermic

intra-administration states indicative of thermal allostasis, and that the animals will behavior-

ally oppose the acquired hyperthermic states by selecting cooler ambient temperatures when

tested in the thermal gradient. Yet the extent to which the cooler ambient temperature behav-

ioral response countered the hyperthermic core temperature effect was incomplete on its face,

as core temperature during the first 90-min of N2O inhalation was reliably above baseline

for� 30% N2O and was reliably higher than the control group’s for� 45% N2O. Our working

interpretation of this result is multifactorial as the present work demonstrates that N2O inhala-

tion in adapted rats stimulates locomotion in the thermal gradient in a dose-related fashion.

As such, locomotion-based heat production in the thermal gradient (discussed below) might

combine with another source(s) of heat production that occurs in the limited confines of our

calorimeters to cause hyperthermia. We hypothesize that the ‘other source’ involves stress-

related neurochemical signaling. Consistent with this proposition, we recently found that

acute 60% N2O administration at normal laboratory temperature in Plexiglas chambers stimu-

lated corticosterone, epinephrine, and norepinephrine [15], key neuroendocrine effectors of

the hypothalamic-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) -mediated

biobehavioral stress responses. One of these responses, moreover, was reported to be a type of

non-shivering thermogenesis observed during conditioned fear and mediated by beta-adren-

ergic signaling, but which does not involve interscapular brown adipose tissue (iBAT) [46].

Congruent with the latter finding, we previously found that serial administrations of 60% N2O

in Plexiglas chambers led to the hyperthermic sign-reversal but did so in the absence of a role

for iBAT as documented by both telemetry and infrared thermography [14], pointing to a ther-

mogenic mechanism of unknown origin. This work and related data highlight two important

and underappreciated concepts that are, 1) a number of tissues other than BAT are capable of

non-shivering heat production (including white adipocytes under stimulation by the sympa-

thetic nervous system; interspersed among white adipose tissue, these cells are also named

’beige’ or ’brite’ cells [47–49]); and, 2) the SNS can activate thermogenic tissues in a selective

fashion [46, 50]. We note also that while the limited space in our calorimeters and Plexiglas

chambers does limit locomotion, increased standing and rearing can nonetheless occur and so

might contribute to elevated heat production in those settings. Therefore, a future goal should

be to better distinguish between the roles of purely facultative vs. behavioral sources of elevated

heat production during drug administrations or other interventions such as conditioned fear

testing in relatively confined spaces.

The present study builds upon previous work from our group and highlights issues that do

not align well with the standard homeostatic model of regulation. In our first thermal gradient

study [7] naïve rats tested once in the thermal gradient during 60% N2O inhalation exhibited

substantial hypothermia (~2˚C) in combination with a marked decrease of selected ambient

temperature (~10˚C). This result seemed commensurate with the concept of “regulated hypo-

thermia” [22] and it seemed appropriate to interpret those results as such [7]. This initial work

Fig 3. Nitrous oxide minus control gas differences in core temperature and heat production in each of the twelve 3-h exposure sessions

(second 90 min). For explanation see legend for Fig 2.

https://doi.org/10.1371/journal.pone.0194794.g003
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naturally begged the question of whether rat would behaviorally assist the hyperthermic sign

reversal once that was established (an acquired “regulated hyperthermia”), although we

thought it more likely that the rats would use behavior to facilitate tolerance development and

oppose the development of hyperthermia. To test that hypothesis [12], rats were given ten 3-h

60% N2O administrations in our thermal gradient apparatus held at a fixed temperature of

21˚C and they acquired the hyperthermic sign reversal, just as observed when studied in the

calorimeter. In the next test we turned the gradient on and the rats prevented an increase in

core temperature by selecting cooler temperatures [12]. This finding suggested that when

provided the opportunity to behaviorally counter an acquired allostatic hyperthermia in a

familiar environment, rats would do so such that core temperature is restored to its normal

tight homeostatic range. But it subsequently became clear that the tendency to acquire the

hyperthermic sign reversal is exceedingly robust, because in our next study [11], when rats

were adapted to twelve 3-h 60% N2O administrations given in the active gradient (ambient

temperature range of 8–38˚C), they too developed a significant hyperthermic sign reversal–

and did so while consistently selecting cooler ambient temperatures. Thus, while it seems clear

that N2O-adapted rats can prevent hyperthermia by using behavior [12], the broader picture

now indicates that the long-term biobehavioral adaptation to a wide range of N2O concentra-

tions favors the acquisition of intra-administration hyperthermia even when the animals are

provided with the opportunity to completely obviate its development by selecting sufficiently

cool ambient temperatures. Indeed it is worth emphasizing that, theoretically, the animals

could have prevented hyperthermia because the coldest pole of our thermal gradient is 8˚C.

Accordingly, it is noteworthy that in the first 90 min of N2O administration, the 60 and 75%

N2O groups changed average thermal preference values by a seemingly modest amount, from

25–26˚C (approximately thermoneutral for rats [51]) to “only” about 20–21˚C, i.e., to values

not much different then the fixed 22˚C ambient temperature in the calorimeter studies. But

exactly what this means in terms of heat transfer is difficult to say, firstly because those animals

did intermittently select substantially cooler temperatures (e.g., they went below 12˚C 10% of

the time) whereas control animals in the 0% N2O group almost completely avoided tempera-

tures below 21˚C (<5% of the time). Secondly, it is inadvisable to equate thermal conditions

between the calorimeter and gradient environments based on ambient temperature alone,

because the ‘weightings’ of convection, conduction, radiation and evaporation likely differ in

those environments. The point is that the determinants of body heat balance during N2O inha-

lation are complex and conditioned on the environment in which testing occurs. Emphasizing

this, the present work identified an unexpected mechanism for hyperthermia in the thermal

gradient, because we now recognize that heat production via increased locomotion might be

an important driver of hyperthermia in that environment. This hypothesis is supported both

by calculations involving the energy cost of transport, and by the highly significant correlation

between locomotion and core temperature during gradient testing. Indeed, when N2O dose

group was adjusted for locomotion, adjusted core temperatures were similar between groups

(p = 0.07), suggesting that were it not for the concentration-related locomotion-stimulating

effect of N2O, the relatively modest degree of cool-seeking behavior may have been sufficient

to more completely prevent hyperthermia in the higher drug concentration groups. At this

point our working hypothesis is that the animals are regulating core temperature at a ‘balance

Fig 4. Time series plots of core temperature and selected ambient temperature during a single nitrous oxide exposure in the thermally graded

alleyway following 12 drug administrations in the calorimetry phase of the study. Despite access to ambient temperatures that presumably would

have prevented hyperthermia (8˚C at the coldest end), rats in the higher dose groups selected only modestly lower temperatures and still developed

hyperthermia in the earlier part of administration. N = 12 per group. Data are mean ± 95% confidence limits. Tcore, core temperature; Tsel, selected

ambient temperature; N2O, nitrous oxide.

https://doi.org/10.1371/journal.pone.0194794.g004
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point’ that reflects the net result of increased non-shivering heat production, increased lo-

comotion and augmented heat loss by selecting cooler ambient temperatures. Consistent

with the idea that the observed hyperthermia during N2O inhalation in the gradient mainly

reflected elevated locomotion, a reexamination of the data in our previous active gradient

study [11] indicates that the development of hyperthermia proceeded in tandem with the

development of increased locomotion (Fig 2 in [11]). In any event, our findings seem difficult

to explain based on the concept of homeostasis, and are more compatible with an allostatic

view of regulation [10, 17] in which the mismatched concurrent activation of opposing effector

responses can result in clear departures from homeostasis.

We have given thought to potential mechanisms of thermal choice behavior during N2O

inhalation. In one study involving restrained Sprague-Dawley rats, 40% N2O inhalation in a

warm environment (30˚C ambient temperature) increased tail blood flow [52]. If this response

occurs in unrestrained Long-Evans rats tested in our thermal gradient, it might tend to moti-

vate a preference for a cooler ambient temperature by warming thermoreceptors in the tail.

Arguing against this possibility, however, are the results of a study in our laboratory in which

unrestrained and well-habituated Long-Evans rats were evaluated for tail temperature using

infrared thermography at 21–22˚C ambient temperature [14]. Surprisingly, tail temperature

did not increase during any of the nine administrations of 60% N2O; in fact, tail temperature

actually decreased during the initial administration [14]. This result suggests that N2O in-

halation does not increase tail blood flow in our study animals and, therefore, suggests that

increased tail blood flow is not involved in the N2O’s effect on thermal preference.

N2O abuse is an underappreciated and growing problem [53]; indeed N2O ranks as the sec-

ond most popular recreational drug in the UK [54]. Whether our findings are relevant to

human use of this drug is an important but largely unanswered question. Work involving sin-

gle cool water immersion sessions during inhalation of 25–30% N2O indicated that the drug

augmented hypothermia development by lowering the core temperature threshold for activa-

tion of shivering thermogenesis [55–57]. However, to our knowledge, the effects of repeated
N2O administrations on thermoregulatory outcomes in humans simply have not been the sub-

jects of published research. A related literature involves alcohol, a drug that shares a number of

properties with N2O [58–60], including in humans an initial hypothermic effect that can be

followed by a hyperthermic sign reversal during prolonged administration [61].

The question of N2O’s thermal effects in humans would seem to be of importance because

the maintenance of body and brain temperature within narrow limits is of high priority to sur-

vival in homeothermic species [43]. Brain temperature is an especially vital homeostatic vari-

able, and brain hyperthermia markedly alters neuronal function including the sensitivity of

neurons to neurotransmitters, and increases the toxicological effects of drugs (reviewed in

[62]). Body hyperthermia, as observed in the present study, would be expected to increase

brain temperature unless the peripheral effect is offset by a reduction of neuronal heat produc-

tion due to reduced activity, but human data suggests that acute N2O inhalation does not alter

global cerebral metabolic rate [63]. Accordingly, it seems that the intra-administration body

hyperthermia observed in the present study would increase brain temperature. Importantly,

however, to our knowledge the effects of repeated N2O administrations on brain temperature

or intra-brain heat production are completely unknown. If repeated N2O administrations

Fig 5. Analysis of baseline-adjusted mean changes in core temperature and selected ambient temperature during nitrous oxide exposure in the

thermally graded alleyway. 95% confidence intervals that do not include zero are significantly different from baseline at p<0.05. Numbers above

error flags are p-values for the group differences from the control gas condition. N = 12 per group. Overall baseline core temperature was 37.0˚C

(95% C.I. = 36.9, 37.1) while baseline selected temperature was 24.9˚C (95% C.I. = 24.3, 25.7). Tcore, core temperature; Tsel, selected ambient

temperature; N2O, nitrous oxide; C.I. confidence interval.

https://doi.org/10.1371/journal.pone.0194794.g005
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cause an increase of brain metabolic rate, then this and the peripheral hyperthermia would

presumably be additive and might drive brain temperature to levels with significant neurotoxic

implications. This area of inquiry may be of interest given that recreational N2O use is re-

ported to be rapidly increasing in a number of settings [54] and often involves chronic use

with toxic effects [64]. Indeed, our data indicating that chronic administration of lower con-

centrations of N2O can engender significant systemic temperature effects in rats should foster

questions regarding the widespread misbelief that recreational N2O abuse is relatively benign.

The mistaken notion that N2O is a “safe” drug derives from the drug’s long history of use and

excellent safety record when administered clinically as a component of anesthesia or as an

anxiolytic and analgesic agent in sub-anesthetic concentrations.

N2O has both neuroprotective effects (owing to its effect as an NMDA antagonist [65]) and

neurotoxic actions, but some work in rats indicates that the neuroprotective effects are out-

weighed by a homocysteine-mediated neurotoxic cascade that persists long after N2O inhala-

tion [66]. One report indicates that prolonged anesthesia with N2O acts to cause inflammation

of the cerebral microvasculature and brain [67]. Important to note is that these studies evalu-

ated the toxic / impairing effects of N2O using procedures in which the drug was co-adminis-

tered with other anesthetic agents. The important point is that our data indicating that chronic

administrations of relatively low concentrations of N2O tend to promote hyperthermia in

combination with reports implicating N2O as a CNS inflammatory agent would seem to add

further caution against the notion that N2O is a ‘safe’ recreational agent.

The data from this study will be valuable in designing future studies on the behavioral phar-

macology of N2O. Our previous work primarily has involved N2O concentrations of 60% and

greater, but the present data indicate robust effects at 45% N2O on core temperature and heat

production (but a less robust effect on thermal preference) and that even repeated administra-

tions of 30% N2O have small but significant thermal effects. The robustness of N2O’s thermal

effects is underscored by our previous finding that attempts to extinguish the allostatic hyper-

thermia were not successful [9]. Future research on N2O allostasis investigating hyperthermic

sign reversals that result from the concurrent activation of opposing autonomic and behavioral

effectors should consider using N2O concentrations in the range of 45–75% N2O. However,

the magnitude of the effect sizes for measures of core temperature, heat production and

selected temperature suggest that studies using 60%-75% N2O are optimal to study dysregula-

tion using this model of drug-induced allostasis.

Supporting information

S1 Fig. Reliabilities and effect sizes of mean changes from baseline evoked by nitrous oxide

exposure (first 90 min). These metrics are indicated by 95% confidence intervals for baseline-

adjusted changes in core temperature and heat production in the first and second 90 min of

each of the 12 3-h exposure sessions. The x-axis depicts selected session numbers but data for

all sessions are presented. N = 12 per dose group. Note the concentration related pattern of the

first 90 min results during initial and final administrations. Note also that 30% N2O evokes sig-

nificant (p<0.05) acquired changes in the first 90 min, providing evidence for system sensitiv-

ity to a N2O concentration that might be deemed sub-threshold if based on outcomes during

initial administration. N2O, nitrous oxide; C.I., confidence interval; Tcore, core temperature;

Fig 6. Concentration-related stimulatory effect of nitrous oxide on total locomotion and its estimated influence on core temperature during

thermal gradient testing. Data are medians bounded by 25th and 75th percentiles. P-values for comparisons with control gas condition are indicated.

Estimated changes in core temperature are based only on minimum cost of transport and ignore the influence of resting metabolic rate and the cost of

support (see Materials and Methods); hence the total contribution of locomotion to body heat content is probably higher. N = 12 per group. Tcore,

core temperature.
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S2 Fig. Reliabilities and effect sizes of mean changes from baseline evoked by nitrous oxide
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