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SUMMARY

Both tumors and aging alter the immune landscape of tissues. These interactions may play an 

important role in tumor progression among elderly patients and may suggest considerations for 

patient care. We leverage large-scale genomic and clinical databases to perform comprehensive 

comparative analysis of molecular and cellular markers of immune checkpoint blockade (ICB) 

response with patient age. These analyses demonstrate that aging is associated with increased 

tumor mutational burden, increased expression and decreased promoter methylation of immune 

checkpoint genes, and increased interferon gamma signaling in older patients in many cancer types 

studied, all of which are expected to promote ICB efficacy. Concurrently, we observe age-related 

alterations that might be expected to reduce ICB efficacy, such as decreases in T cell receptor 

diversity. Altogether, these changes suggest the capacity for robust ICB response in many older 

patients, which may warrant large-scale prospective study on ICB therapies among patients of 

advanced age.

In brief

Erbe et al. use multi-omics databases to evaluate biomarkers that are used to predict the 

response of patients with cancer to ICB in the context of aging. Erbe et al. find that biomarkers 

associated with ICB response are enriched in tumors from older patients relative to their younger 

counterparts.

Graphical Abstract
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INTRODUCTION

The association of cancer incidence with age is well established, and the phenomenon of 

age-related immune decline has been recognized for even longer (Gardner, 1980). Mutations 

and DNA methylation have been shown to accumulate with age and drive carcinogenesis 

(Tomasetti et al., 2017; Horvath, 2013; Klutstein et al., 2017; Xie et al., 2018). Recent 

research has highlighted the specific changes that contribute to the general decline of 

the immune system that occurs as individuals age (Aw et al., 2007). Understanding the 

effect such alterations have on the anti-tumor immune response is critical for the informed 

development and application of immunotherapies to elderly patients.

Outside the context of cancer, older individuals are generally observed to have less effective 

immune responses to disease (Gardner, 1980). This observation is commonly associated 

with systemic immune aging. In particular, loss of T cell receptor (TCR) diversity (Britanova 

et al., 2014), decreased capacity of cytotoxic cells (Solana and Mariani, 2000), and increased 

inflammatory signaling (Franceschi et al., 2000) have been identified as age-related immune 

changes. These studies note the potential significance of these forms of immune aging 

on cancer, and indeed systemic immune aging has received considerable attention in 

the context of its effect on cancer development and progression (Fulop et al., 2018). 

Still, the potential translation of these findings to cancer therapeutics and patient care 

requires further comprehensive evaluation of the interplay between systemic immunity and 

the tumor immune microenvironment resulting from aging, particularly in the context of 
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immunotherapy. In spite of the general immune decline associated with aging, the majority 

of clinical trial analyses suggest that elderly patients experience no reduced benefit or even 

increased benefit as compared with younger patients on immune checkpoint blockade (ICB) 

therapies (Kugel et al., 2018; Elias et al., 2018; Jain et al., 2020). However, there is still 

some contention on this point (Daste et al., 2017), and elderly patients are less likely to be 

treated with ICB therapies than their younger counterparts (Hurez et al., 2018; Jain et al., 

2020).

High-throughput molecular data from atlas studies provide new opportunities to 

comprehensively characterize the immune landscape of tumors (Thorsson et al., 2018) and 

are now sufficiently powered to evaluate aging-related changes (Wu et al., 2019; Shah 

et al., 2020; Chatsirisupachai et al., 2021). This study leverages genomics and clinical 

data from 9,523 patients across 31 cancer types from The Cancer Genome Atlas (TCGA); 

37,961 patients across 8 cancer types from the Genomics Evidence Neoplasia Information 

Exchange (GENIE); 15,557 patients with breast, colon, or head and neck cancers from 

Caris Life Sciences (CLS); 1,818 patients with breast cancer from Molecular Taxonomy 

of Breast Cancer International Consortium (METABRIC); and genomics data from a 

pan-tissue reference of 948 non-cancer individuals from the Genotype-Tissue Expression 

(GTEx) Project (see Supplemental Data S1 for a summary of patient characteristics in 

each cohort) to evaluate such age-related changes in the tumor immune landscape. Because 

the immune microenvironment mediates ICB response, we focus our analysis of these 

large-scale data to evaluate the impact of aging on the molecular and cellular biomarkers 

of ICB response, such as PDL1 expression (Patel and Kurzrock, 2015), tumor mutational 

burden (TMB) (Yarchoan et al., 2017), (Goodman et al., 2017), cell-type composition of 

the immune tumor microenvironment (ITME) (Frankel et al., 2017), TCR diversity (Han et 

al., 2020), expression of other immune checkpoint genes (Taube, 2014), and expression of 

inflammation-related pathways, such as interferon gamma (Cristescu et al., 2018; Higgs et 

al., 2018) and transforming growth factor β (TGF-β) signaling (Tauriello et al., 2018). We 

further compile these analyses into a web application, Cancer Associations with Molecular 

Aging (CAMA), to allow for further customized analyses of the cellular and molecular 

pathways altered with age pan-cancer. Our analyses from CAMA in the context of ICB 

biomarkers suggest that the aged ITME upregulates major pathways associated with immune 

response, although additional indicators of immune decline warrant future prospective 

clinical studies to provide databases of combined genomics and clinical data in order to 

directly evaluate the impact of age on the ITME in the context of ICB response.

RESULTS

TMB increases with age in most cancers, while TCR diversity decreases

The large number of public domain genomics datasets from primary tumors and normal 

tissue in the literature provides the opportunity to characterize the impact of age on the 

ITME and ICB biomarkers. Due to the widespread use of TMB as a primary clinical 

biomarker of ICB therapy (Yarchoan et al., 2017; Goodman et al., 2017), we first examine 

the relationship of TMB with patient age. As has been previously reported among TCGA 

samples (Chalmers et al., 2017; Qing et al., 2020), we find TMB significantly increases 
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with patient age at diagnosis (1.02% increase per year of age, p < 1 × 10−16) (Figure 

1A) pan-cancer in TCGA when modeling cancer type as a covariate. This association 

is further observed within most cancer types (Figures 1B and 1C), although both lung 

adenocarcinomas (−1.31% per year, q = 0.0072) and uterine carcinomas (−2.02% per year, 

q = 0.0022) demonstrate decreased TMB with age. To validate these findings, we also 

investigate the relationship of age and TMB within the larger mutational dataset provided by 

GENIE for eight ICB-approved cancer types. This analysis identifies a significant increase 

in TMB with age in all eight cohorts (Figures 1D and 1E). In contrast with TCGA, non-

small cell lung cancer samples in the GENIE cohort show a small increase in TMB with 

age (0.2% increase per year, q = 6.13 × 10−4). We further identify significant increases in 

TMB among elderly CLS patients with colorectal and breast cancer (q = 4.92 × 10−15 and 

q = 6.39 × 10−11, respectively) (Figure S1). In contrast with TCGA and GENIE, the null 

hypothesis is not rejected in human papillomavirus (HPV)-negative head and neck cancers 

(q = 0.244) (Figure S1). These results provide a robust indication of TMB increases with age 

across most, if not all, ICB-approved cancer types.

The canonical interpretation of TMB as a biomarker for ICB therapy is that more mutations 

generally implies more immunogenic mutations, which in turn makes it more likely for an 

antigen to be displayed via major histocompatibility complex (MHC) class I that T cells 

are able to recognize, allowing them to target the corresponding tumor cells. Another factor 

in the likelihood of this recognition event is the number of antigens T cells infiltrating the 

tumor are able to recognize, defined by the TCR sequence carried by each T cell. The 

overall decline in the total number of unique TCR clones as part of the normal aging process 

(Yager et al., 2008; Britanova et al., 2014; Egorov et al., 2018) is well established in the 

literature. The process of thymic involution (the loss of thymus tissue with age) eventually 

ends the production of naive T cells and is the major driver of normal age-related decreases 

in T cell clonality (Aspinall and Andrew, 2000). However, the impact of carcinogenesis 

on age-related T cell clonality has not been fully characterized. To quantify aging-related 

changes in TCR clonality specific to the ITME, we leveraged estimates of TCR sequences 

previously generated with the miTCR algorithm (Bolotin et al., 2013) by Thorsson et 

al. (2018) from RNA sequencing (RNA-seq) data in TCGA to determine the association 

between TCR clonality and age. We define our metric of clonal diversity as the Shannon 

entropy multiplied by the number of unique clones divided by the total number of TCR 

sequencing reads to correct for variation in total number of T cells in each tumor sample. We 

determine that this TCR clonality measure significantly decreases with age for pan-cancer 

TCGA samples, including cancer type as a covariate (−0.0051 normalized Shannon entropy 

per year; p = 1.48 × 10−8) (Figure 1F), corresponding to a 0.26% predicted decrease per year 

in tumor TCR clonality relative to the mean normalized Shannon entropy of 1.95 observed 

with pan-cancer. Among individual cancer types, we observe a significant increase in TCR 

clonality with age in patients with lung adenocarcinoma (0.013 per year; q = 3.99 × 10−3) 

and significant decreases in patients with breast cancer (−0.01 per year; q = 2.63 × 10−3), 

uterine cancer (−0.012 per year; q = 0.011), melanoma (−0.015 per year; q = 3.99 × 10−3), 

and gastric cancer (−0.01 per year; q = 0.040) (Figure S2). These results indicate a general 

decrease in TCR clonality with age, although not necessarily a uniform one across cancer 

types.
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Age correlates with ICB-related gene expression among both patients with cancer and 
normal individuals

In addition to TMB and TCR clonality as biomarkers of ICB therapies, immune checkpoint 

gene expression can also be used as a biomarker for specific inhibitors. PDL1 expression 

is an established clinical biomarker to predict patient response to anti-PD1/PDL1 treatment 

(Patel and Kurzrock, 2015). More broadly, the efficacy of ICB immunotherapy is linked 

to the expression of target genes and their complementary receptors, such as PD1, PDL1, 
CTLA4, CD80, and CD86 (Taube, 2014), as well as to associated genes, such as PDL2, 
JAK2, LAG3, HAVCR2, TGFB1, and CXCL9 (Conway et al., 2018). Although the 

expression of these genes is important for the efficacy of ICB therapy, their expression 

as a function of aging has not been studied. In order to understand the relationship of the 

expression of these genes and age, we performed differential expression analysis in both 

TCGA and CLS tumor samples, as well as normal GTEx tissue samples.

In TCGA, we identify that of these listed genes, PDL1, CD80, HAVCR2, LAG3, PDL2, 
and CXCL9 expression significantly increase with age (Figure 2A; p values and effect 

sizes are provided in Table 1), including cancer type as a covariate. We compare these 

findings with reference non-cancer samples from GTEx to assess whether there is any 

age-associated expression change in these genes in normal tissues (Figure 2A; Table S1). 

As in the cancer tissue samples in TCGA, PDL1, HAVCR2, LAG3, PDL2, and TGFB1 
expression significantly increase with age among GTEx normal samples pan-tissue, while 

JAK2 significantly decreases,andnosignificantchangeisidentifiedinCD86expression (p values 

and effect sizes are in Table S1). CTLA4 and CD80 are very lowly detected across samples 

in GTEx and therefore do not enable comparison (see STAR Methods). These results 

indicate that the gene expression differences observed in tumor samples are likely largely the 

result of the systemic effects of aging, possibly involving the higher levels of inflammation 

that have been reported in older individuals (Fulop et al., 2018; Kovtonyuk et al., 2016).

We further investigate age-related changes in expression of these genes within each cancer 

type in CLS, TCGA, and META-BRIC. Analysis of the CLS cohorts of colorectal, head 

and neck, and breast cancers identifies a significant increase in PDL1 expression via 

immunohistochemistry (q = 1.03 × 10−9), as well as increases in HAVCR2 (q = 0.0077), 

LAG3 (q = 7 × 10−4), and PDL2 (q = 0.0357) RNA expression in colorectal cancer in elderly 

patients (Figure 2B) and a significant increase in LAG3 expression (q = 0.0112) in patients 

with HPV-negative head and neck cancer (Figure 2C), while no significant changes in 

immune checkpoint gene expression were identified in the breast cancer cohort (Figure 2D). 

We identify significantly increased expression of PDL2 and CXCL9 in lung adenocarcinoma 

with age in TCGA (Figure S3). Head and neck, colorectal adenocarcinomas, and gastric 

cancer tumors in TCGA also demonstrate increased age-related expression trends in PDL1, 

although they do not reach statistical significance, while melanoma, breast, bladder, and 

kidney cancers do not show any age-related association (Figure S3). We note that some 

TCGA studies have relatively low numbers of patient RNA-seq samples, limiting the 

statistical power of subtype-specific analyses, particularly when evaluating two highly 

heterogeneous variables (age and cancer type). Finally, we evaluate differential expression 

with patient age among METABRIC breast cancer samples and identify a significant 
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decrease in CD80 expression (q = 0.044) and no significant differences in the other immune-

checkpoint-related genes assayed with age (Supplemental Data S2).

Gene set enrichment indicates age-related signaling changes in pathways associated with 
ICB response

To further evaluate the role of transcriptional regulation on ICB biomarkers, we performed 

additional analysis of several molecular pathways that have been shown to predict patient 

response to ICB therapies, including high interferon gamma signaling (Higgs et al., 2018), 

low TGF-β signaling (Tauriello et al., 2018), and low WNT pathway signaling (Martin-

Orozco et al., 2019). These pathways are indicative of an immunostimulatory and immune-

inhibitory tumor microenvironment, respectively. To determine if the expression of any of 

these pathways is altered with patient age, we perform differential expression and Gene 

Ontology (GO) term enrichment on both TCGA tumor samples and GTEx normal samples. 

We observe increased enrichment of the GO_RESPONSE_TO_INTERFERON_GAMMA 

term in both TCGA tumors (normalized effect size [NES] = 2.05; q = 1.19 × 

10−3) and GTEx normal (NES = 2.37; q = 2.84 × 10−3) samples with increasing 

age, decreased GO_RESPONSE_TO_TRANSFORMING_GROWTH_FACTOR_BETA 

in TCGA tumors (NES = −2.11; q = 1.03 × 10−3), decreased 

signaling through the GO_CANONICAL_WNT_SIGNALING_PATHWAY in 

TCGA tumors (NES = −2.00; q = 1.03 × 10−3), and decreased 

GO_POSITIVE_REGULATION_OF_CANONICAL_WNT_SIGNALING_PATHWAY in 

both TCGA tumors (NES = −1.57; q = 0.021) and GTEx normals (NES = −1.69; q = 

5.64 × 10−3) (Figure 3A).

We further sought to evaluate the impact of aging on these pathways within cancer types. 

Of particular note, we observe increased enrichment of interferon gamma signaling terms 

with age in most ICB-approved cancers, including colon, esophageal, head and neck, kidney, 

lung, and gastric cancer cohorts (Figure 3B). However, in melanoma and breast cancer 

cohorts, interferon gamma signaling significantly decreases with age, and bladder cancers 

demonstrate no significant difference (Figure 3B). We identify decreased TGF-β signaling in 

breast, kidney, and gastric cancers; increased TGF-β signaling in lung and bladder cancers; 

and no significant change in the other aforementioned cohorts (Figure S4A). We additionally 

observe decreased WNT signaling terms in breast, esophageal, kidney, melanoma, and 

gastric cohorts; increased signaling in lung and bladder cancers; and no significant change in 

colon and head and neck cohorts (Figure S4B). Although these results display heterogeneity 

in the relationship of age and the expression of tumor immune pathways, they suggest a 

general shift toward a more immunostimulatory signaling environment in older patients in 

most ICB-approved cancer types, which would be expected to improve response to ICB 

therapies. The similar association identified in the normal tissues corresponding to these 

tumor types from GTEx data further indicates that this shift may relate to the general 

increase in inflammation that has been repeatedly linked to biological aging (Kovtonyuk et 

al., 2016; Fulop et al., 2018; Franceschi et al., 2000).
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Age-related changes in promoter methylation align with most of the observed shifts in 
gene and pathway expression

Due to previous work suggesting that DNA methylation regulates tumor expression of PDL1 
(Asgarova et al., 2018; Micevic et al., 2019), we hypothesize that, to the extent the observed 

expression increases in immune checkpoint genes occur within individual cancer types, they 

are driven by changes in DNA methylation. We leverage merged 450k and 27k methylation 

array data from TCGA (Thorsson et al., 2018) and use Illumina methylation array mappings 

to annotate CpGs to the promoters of specific genes. We find that of two probes annotated 

to the PDL1 promoter region, methylation of one of the probes significantly decreases 

with age pan-cancer (q = 3.27 × 10−10; −0.3% of mean probe intensity per year of age), 

while the other does not demonstrate any significant change (q = 0.232). Methylation of 

CpGs annotated to the promoters of LAG3, CTLA4, CD86, CD80, and HAVCR2 also 

decreases with age pan-cancer (Table 2). One CpG annotated to the TGF-β promoter is 

hypermethylated with age, while another has no significant change (Table 2). No CpGs 

within these data were annotated to CXCL9. We further investigate CpG methylation within 

individual cancer types. Similar to the gene expression patterns, we observe considerable 

heterogeneity in these data across cancer types (Figure S5). Although most cancers approved 

for ICB therapy have decreasing promoter methylation trends with age among the majority 

of these CpGs, many do not reach statistical significance. However, both gastric and 

esophageal cancers demonstrate significant decreases in promoter methylation of PDL1 and 

CD86 with increasing age.

We additionally investigate whether age-related promoter methylation appears in 

concordance with observed changes in pathway expression pan-cancer in TCGA 

samples. Although there is no significant change in methylation of gene 

promoters annotated to the GO_RESPONSE_TO_INTERFERON_GAMMA term (q = 

0.663), GO_RESPONSE_TO_TRANSFORMING_GROWTH_FACTOR_BETA promoter 

methylation increases with age (NES = 1.97; q = 4.36 × 10−4), as does 

GO_CANONICAL_WNT_SIGNALING_PATHWAY (NES = 2.05; q = 4.36 × 10−4). These 

promoter methylation increases are concordant with the observed expression decreases of 

these pathways with increasing age. Taken together, these results suggest that age-related 

methylation changes, as have been reported to occur in normal aging and oncogenesis 

(Easwaran and Baylin, 2019; Easwaran et al., 2012; Horvath, 2013), may drive some of the 

observed age-related expression-related changes in ICB therapy biomarkers.

Deconvolution of immune-cell-type abundance in tumor samples reveals an age-related 
decrease in T cell abundance and increase in macrophage abundance

Ultimately, ICB response relies on the balance between cellular subtypes contributing to 

immune attack and immunosuppression in the ITME. As a result, the immune cell infiltrate 

of the tumor microenvironment has been shown to be associated with response to ICB 

therapies, particularly the relative infiltration of T cells and natural killer (NK) cells with 

macrophages and myeloid derived supressor cells (Frankel et al., 2017). The large number 

of primary tumor transcriptional profiles across disease subtypes available from TCGA 

provides a unique cohort to estimate the impact of age on tumor immune cell composition. 

We apply the MIXTURE immune-cell-type deconvolution algorithm (Fernández et al., 
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2021) to infer the absolute proportions of immune cell types from RNA-seq data derived 

from pan-cancer TCGA samples. The algorithm provides an absolute proportion that 

describes the portion of total immune content that a particular immune cell type makes up in 

a sample but is normalized to be comparable across all samples in the dataset by multiplying 

the inferred relative proportion by a scaling factor that measures the total immune content 

in the sample. We then fit a linear model with age, including cancer type and patient sex as 

covariates, for each immune cell type (listed in Table S2) to assess changes in immune cell 

infiltration as patients age. We find that overall T cell abundance slightly but significantly 

decreases with age in the ITME (−6.03 × 10−4 per year; mean proportion, 0.198; q = 

0.00175) (Figure S6A; Table 3), while macrophages slightly but significantly increase in 

abundance (1.08 × 10−3 per year; mean proportion, 0.662; q = 4.45 × 10−4) (Figure S6B; 

Table 3). Detectable changes in the infiltration of NK cells, dendritic cells, B cells, and other 

myeloid populations do not occur with age pan-cancer (Table 3).

To compare the effect of aging in the ITME with that on the immune cell compositions of 

normal tissues, we applied MIXTURE to GTEx consortium RNA-seq data of post-mortem 

samples from individuals without cancer (GTEx Consortium, 2017) to infer cell-type 

abundance across tissues. These results provide a non-cancer baseline for immune changes 

that occur across many individuals of varying ages to compare with our observations from 

tumor data. Similar to our TCGA and METABRIC analyses, we fit a linear model to each 

cell type in order to determine associations between cell-type abundance and age both 

across and within normal tissues. In contrast with our findings in the pan-cancer ITME, in 

pan-tissue analyses, we observe a significant increase in overall T cell absolute proportion 

with age (8.97 × 10−4 per year; mean proportion, 0.106; q = 0.001) (Figure S7A; Table 

3). We further fail to find significant changes in macrophage levels (q = 0.870) with age 

(Figure S7B). Additionally, we observe increases in NK cell proportion (0.0019 per year; 

mean proportion, 0.062; q = 5.13 × 10−14) (Figure S7C) and decreases in other myeloid cell 

(monocytes, mast cells, eosinophils, neutrophils) (−0.0018 per year; mean proportion, 0.470; 

q = 0.0235) (Figure S7D) proportion that were not found among TCGA tumor samples. 

Recall that each effect size must be evaluated relative to the average proportion of immune 

infiltrate that cell type makes up (e.g., NK cells are expected to increase in abundance 153% 

over 50 years of life on average, while myeloid cells are expected to decrease only 19% 

over that same period despite essentially the same absolute proportion change per year). 

These results indicate differences between systemic immune aging and the effects of age on 

immune tumor infiltrate. Most notably, a very large systemic increase in NK cell abundance 

does not appear to be reflected in the tumors of older patients.

To determine the variance in age-related effects that occur within different cancer types, 

we then evaluate the association between age and immune composition for each cancer 

type with at least 100 samples that could be successfully deconvoluted by the MIXTURE 

algorithm. Non-significant deconvolution is generally due to a low content of the immune 

cells the algorithm searches for, and with this filtering only 8 tumor types in TCGA have 

over 100 samples after filtering. Although several cancer types demonstrate age-related 

trends in T cell and macrophage abundance, these are found to be statistically significant 

only in breast cancers (Figure 4A). To determine if these results are robust across cohorts 

and whether lack of statistical significance in some cancer types is related to a lack 
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of statistical power, we further examine large breast, head and neck, and colon cancer 

cohorts produced by CLS. As methodological validation, a different immune-cell-type 

deconvolution program, quanTIseq (Finotello et al., 2019), was used to estimate cell-type 

abundance from RNA-seq data. Among 6,462 patients with breast cancer, a significant 

increase in M2 macrophage infiltration was identified with increasing age, but no significant 

difference was observed among infiltrating T cell abundance (Figure 4B). In contrast, within 

7,924 patients with colorectal cancer and 527 patients with HPV-negative head and neck 

cancer, no significant differences in macrophage or T cell immune cell fraction are observed 

(Figure S8) (full results of immune infiltration and age are reported as Supplemental Data 

S3). We further investigate this association among 1,818 METABRIC patients with breast 

cancer, again using MIXTURE for immune-cell-type deconvolution. We identify a similar 

decrease in T cell abundance with age (−6.57 × 10−4 per year; mean proportion, 0.268; q 

= 0.00188) and increase in macrophage abundance with age (1.38 × 10−3 per year; mean 

proportion, 0.45; q = 8.21 × 10−9) (Figure 4C), as well as a significant decrease in B cell 

abundance (4.22 × 10−4 per year; mean proportion, 0.0554; q = 8.51 × 10−4) that we did not 

observe in TCGA breast cancer data. This analysis thus identifies age-related macrophage 

proportion increases with patient age across three different breast cancer cohorts (TCGA, 

METABRIC, and CLS) using two different computational microdissection methods.

Patient age associates with little to no detectable difference in survival outcomes after ICB 
treatment

Although the genomics datasets we have examined can help uncover the molecular and 

cellular pathways of mechanistic biomarkers for ICB that are altered by age, they cannot 

directly evaluate therapeutic response. Previous analyses of the impact of age on ICB 

therapeutic efficacy in clinical trials (Kugel et al., 2018; Elias et al., 2018; Daste et al., 

2017; Jain et al., 2020) have remarked on the limited numbers of older patients treated with 

ICB available for their analyses and the need for further investigation of this subject. To 

provide additional insight into this question, we investigate the relationship between age and 

outcome. A recently published cohort of anti-PD1-treated patients with renal cell carcinoma 

(Braun et al., 2020) had age available for 985 patients, along with progression-free survival 

(PFS) and overall survival (OS). We identify no statistically significant difference in PFS or 

OS with age, both based on a log rank test (p = 0.25 and p = 0.29, respectively) (Figure 

S9) and multivariate Cox proportional hazards analysis (hazard ratio [HR] = 0.994 [0.987–

1.001], p = 0.09 and HR = 1.001 [0.994–1.009], p = 0.72, respectively), including sex, 

number of prior therapies, and metastatic origin as covariates. We also investigate survival 

differences in 11,888 ICB-treated patients with melanoma, lung, kidney, head and neck, or 

urothelial cancers collected by the US Department of Veterans Affairs (USVA) (La et al., 

2020). A multivariate Cox proportional hazards model fit for patient OS, including cancer 

type and sex as covariates, identifies a statistically significant reduction in OS, of small 

effect size, for patients with increasing age (HR = 1.005 [1.001–1.009]; p = 0.01).

High-throughput molecular databases inform an atlas of immune aging in cancer and 
healthy tissues

Understanding the impact of patient age on likelihood of response to immunotherapies is 

a subject of clear clinical relevance, and investigating relevant biomarkers of said response 
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forms the central focus of this work. Still, the comprehensive analysis of these data was 

based on general characterization of aging-related molecular shifts in tumors and the tumor 

microenvironment. To that end, we provide a web application containing these results to 

enable custom analyses of the relationship of age to molecular changes genome-wide: 

http://www.lab-apps.onc.jhmi.edu/CAMAAtlas. The CAMA atlas is informed from analysis 

of 9,523 patients across 31 cancer types from TCGA, 37,961 patients across 8 cancer 

types from GENIE, 1,818 patients with breast cancer from METABRIC, and a pan-tissue 

reference of 948 non-cancer individuals from GTEx.

In brief, the web-based application includes distinct panels for each of the analyses of 

distinct molecular modalities and datasets, based upon the data that are available from 

each cohort. The application allows for exploration of associations of TMB with age by 

cancer subtype in both TCGA and GENIE. The application further allows for customized 

evaluation of tumor-subtype changes relative to tissue-specific changes in gene expression 

through differential expression analyses in TCGA and GTEx, respectively. Although the 

analyses presented in this study are limited to gene expression changes in ICB biomarkers, 

the CAMA web application allows users to search for genes of interest across the entire 

genome allowing for evaluation of further age-related changes in the immune context and 

beyond. The application allows for further evaluation of the regulatory changes associated 

with these transcriptional alterations through GO enrichment analysis (TCGA and GTEx) 

and DNA methylation changes with patient age (TCGA). The CAMA atlas is thus intended 

to act as an initial resource for further studies of the relationship between molecular features 

of cancers and aging. The relationship of a particular molecular feature (gene expression, 

gene promoter methylation, pathway enrichment, cell-type abundance) with age can be 

queried by individual cancer type or across cancers. This atlas is meant to provide a resource 

that broadly characterizes cancer genomic associations with patient age and can be used to 

perform customized analyses. These relationships are often available in multiple cohorts, 

allowing for computational validation of identified associations.

DISCUSSION

This study presents an atlas of age-related shifts in the genomic, transcriptomic, and 

immune tumor environment. The effect of patient age on tumor characteristics has not 

been thoroughly explored in most cancer types. Here we analyze genomics and clinical 

databases from a total of 77,732 cancer patients with 31 different cancer types to 

generally characterize relevant associations between age and these molecular markers, which 

we provide the broad results of as the CAMA atlas (http://www.lab-apps.onc.jhmi.edu/

CAMAAtlas).

We hypothesize that the relationship between age and cancer makes understanding the 

impact of aging on cellular and molecular pathways an important consideration for precision 

medicine. Indeed, the general link between increased age and reduced immune effectiveness 

has naturally inspired caution and concern about the treatment of elderly patients with 

ICB therapies. Therefore, in this study, we leverage multiple large-scale cancer genomic 

cohorts to characterize the impact of age on established ICB biomarkers and contextualize 

previous clinical findings that older patients counterintuitively experience either no reduced 
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benefit or increased benefit from ICB immunotherapies as compared with younger patients 

(Kugel et al., 2018; Elias et al., 2018; Jain et al., 2020). Our analysis identifies several 

possible explanations for these data based on currently established and developing predictors 

of ICB response. Patient age at diagnosis is associated with increases among several 

biomarkers associated with effective ICB response, including notably increased TMB, 

increased expression and decreased promoter methylation of immune checkpoint genes, 

increased interferon gamma signaling, decreased TGF-β signaling, and decreased canonical 

WNT signaling. The induction of these immunostimulatory biomarkers may be related 

to normal mutational accumulation with age, the increased inflammation that has been 

observed in normal systemic aging (Kovtonyuk et al., 2016; Fulop et al., 2018; Franceschi et 

al., 2000), and previously identified age-related methylation changes (Easwaran and Baylin, 

2019;Easwaran et al., 2012; Horvath, 2013). Expected to act in opposition to these immune 

effects, we observe concurrent features of immunosuppression with age, such as decreased 

TCR diversity and T cell infiltration, as well as increased macrophage abundance, in some 

cancer types. However, it is critical to note that the effect size of TCR decreases with 

age in pan-cancer is quite small (on average, a −0.26% change per year of age). Further, 

the decrease in T cell abundance and increase in macrophage abundance is not only small 

(on average, −0.3% and 0.16% change per year, respectively), it is also only statistically 

significant in one individual cancer type: breast. Altogether, these results support an 

adapting immune landscape with age that nonetheless retains characteristics associated with 

effective ICB response. Nonetheless, we note that all results of this work are correlative, and 

thus a large-scale prospective study collecting genomics for immunotherapy-treated elderly 

patients is warranted to generate a causal understanding of the effects of age on the immune 

response to cancer.

We complement our molecular studies with corresponding analysis of patient outcomes 

from large-scale clinical databases for two large cohorts of ICB-treated patients containing 

patients across an array of ages. Among the renal cell carcinoma cohort published by Braun 

et al. (2020), we identify no significant difference in PFS or OS with age, supporting the 

results of previous clinical studies. However, among a large group of patients collected 

by the USVA, we find a small decrease in OS with age. It is notable that this slight OS 

difference observed could be related to general age-related frailty rather than differences in 

immunological efficacy. This point is supported by previous work published on this USVA 

cohort, which showed that a frailty status assessment considerably better differentiated 

therapeutic response in each cancer type than did patient age (La et al., 2020). The 

immunological biomarkers assessed in this study further support the interpretation that most 

of the small worsening in survival outcomes sometimes observed for older patients is the 

result of increased systemic frailty rather than decreased efficacy of the therapy itself. Future 

large-scale cohort studies of aged populations with combined outcomes, frailty measures, 

and genomics data are critical to fully delineate the relative impact of frailty and functional 

mechanisms of ICB response on its efficacy in the elderly population.

This study additionally includes normal tissues in our analyses in order to understand 

whether the associations noted appear to be a normal consequence of age or an interaction 

between aging and tumor biology. The associations established between age and ICB 

biomarkers largely recapitulate in GTEx normal samples (ICB gene expression, immune 
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pathway enrichment), or, when not assessed here, have already been thoroughly established 

in the literature (TCR diversity [Aspinall and Andrew, 2000; Yager et al., 2008; Britanova 

et al., 2014; Egorov et al., 2018]; mutational accumulation [Morley, 1998]). The major 

exception identified to this concordance between tumor and normal aging is the large 

increase in NK cells with age in normal tissues, which has been previously identified in 

the literature (Solana and Mariani, 2000; Gounder et al., 2018). This NK cell increase is 

not observed pan-cancer and is observed in only one cancer type cohort studied, Caris 

breast, where there was only a ∼5% increase, on average, between the youngest and the 

oldest patients, compared with a ∼150% increase in GTEx samples. This result suggests that 

although NK cell proportion increases with age, they either are not able to proportionately 

respond to immune stimuli and infiltrate into the aged tumor tissues or that aging biology 

interacts with tumor biology to inhibit the infiltration of NK cells. NK cells have been 

shown to play a significant role in ICB efficacy and general tumor immunity (Shimasaki et 

al., 2020; Freeman et al., 2019; Lo et al., 2020; Jhunjhunwala et al., 2021), and thus this 

observation may be therapeutically relevant, particularly if these accumulated NK cells can 

be stimulated to infiltrate the tumors of elderly patients.

Beyond their relevance to ICB alone, the molecular and cellular changes inferred from the 

CAMA atlas may support selection of precision medicine strategies based on molecular and 

cellular changes in elderly patients. For example, we identify macrophage increases with age 

in three different breast cancer cohorts (TCGA-BRCA, METABRIC, CLS-Breast) with two 

different computational microdissection methods (MIXTURE and quanTIseq). Combination 

therapeutics to target immunosuppressive cells are emerging as a common therapeutic 

approach to sensitize tumors to immunotherapies. For example, there are several strategies 

currently in development to target tumor-associated macrophages (Chanmee et al., 2014; 

Lee et al., 2019; Poh and Ernst, 2018). These results suggest that elderly patients with breast 

cancer may be particularly promising candidates for these therapies. Thus, characterizing 

age-related changes in these distinct cellular populations in the tumor microenvironment can 

further illuminate combination therapeutic strategies specific for elderly patients.

To ensure that our data were sufficiently powered to analyze aging-related effects of tumors 

and their microenvironments, we leverage large-scale databases that contain predominantly 

bulk profiling technologies. It is important to note the limitations of bulk expression data for 

some of the analyses in this work. Notably, our aging-related analyses of cell types relies on 

computational microdissection to provide estimates of proportional representation on each 

cell type in each sample studied. However, these techniques are effective only for samples 

with substantial immune infiltration, limiting the number of tumors that could be included 

in this analysis. Moreover, these bulk data do not enable discovery of cell-type-specific 

molecular pathways that are altered by aging. Some computational methods have been 

developed to attempt to regress out effects of individual cell types on bulk expression data to 

perform such cell-type-specific differential expression analysis. However, these techniques 

will be confounded in cases in which immune genes also serve as cell-type markers, limiting 

the applicability of these techniques for the analyses in our atlas. A further limitation of 

computational microdissection methods used is that they estimate cell-type abundance, but 

not cell state. Single-cell data are essential to further evaluate immune cell functionality and 

quality in the ITME. Although large-scale single-cell studies of aging have been generated 
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in healthy tissue for mouse models (Tabula Muris Consortium, 2020), to date these studies 

are for small cohorts in tumors that are not sufficiently powered to identify immune cell state 

transitions associated with aging. Therefore, future single-cell pan-cancer characterization 

from projects such as the Human Tumor Atlas Network (Rozenblatt-Rosen et al., 2020) will 

be critical to validate these results and further expand our atlas to delineate the role that 

aging-related changes to immune cell function play in cancer.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Queries regarding this work should be directed to Elana J. Fertig 

(ejfertig@jhmi.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the Key resources table.

• All analysis code is available on GitHub at: https://github.com/rossinerbe/

ImmuneAgingAnalysis, the repository for which is archived with Zenodo at 

https://doi.org/10.5281/zenodo.5119645.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Relevant information on the publicly available cohorts analyzed in this work are provided 

as supplemental data. Further information on these cohorts is available at the sites list in the 

Key resources table.

METHOD DETAILS

RNA-Sequencing Data—TCGA RNA-sequencing data processed and 

normalized according to https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/

Expression_mRNA_Pipeline/ was downloaded from the GDC Data Portal on August 8th, 

2019, filtering for all TCGA samples with patients above 30 years of age. Patients under 

30 were excluded to focus on ITME changes in adult populations, which are more likely to 

generalize to the majority of cancer patients.

GTEx RNA-sequencing counts version 8 were downloaded from the GTEx Portal on 

November 12th, 2019. Only individuals over 30 were included in the final analysis, to be 

comparable with filtering of TCGA. Characteristics of these cohorts are listed in Table S4.

METABRIC RNA-seq counts were downloaded from cBioPortal on October 20th, 2020 as 

provided by (Pereira et al., 2016).
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TMB Data—To find the association of patient age and number of tumor mutations we 

downloaded the mutation counts provided for each sample pan-cancer in TCGA from the 

GDC data portal on August 8th, 2019. GENIE TMB counts were downloaded from the GDC 

data portal for all patients with cancers on January 13th, 2021.

TCR Clonality Data—TCR clonality was estimated from TCGA RNA-seq data using the 

miTCR algorithm (Bolotin et al., 2013), as previously published by (Thorsson et al., 2018). 

These data were published publicly on the GDC data portal and downloaded from the link 

provided in the Key resources table for use in this study.

DNA Methylation Data—Merged 450k and 27k DNA methylation array data 

preprocessed by Thorsson et al. (2018) were published on the GDC data portal and 

downloaded from the link provided in the Key resources table for use in this study.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R version 4.0.2. Statistical significance is 

evaluated as p < 0.05 after the Bonferroni-Hochberg procedure was applied in cases of 

multiple hypothesis testing.

Modeling the Age Associations of Number of Tumor Mutations and 
Normalized TCR Clonality—We transformed the TMB counts data with a natural log, 

which we used to fit a log linear model and Cox proportional hazards model, using cancer 

type as a covariate in the log linear model and cancer type and age at diagnosis as covariates 

for the Cox model. We additionally fit log linear models between TMB and patient diagnosis 

age within each TCGA cancer type study.

TCR clonality is assessed using miTCR (Bolotin et al., 2013) results previously published 

by Thorsson et al., 2018 (Thorsson et al., 2018). Our immune cell type deconvolution results 

demonstrate there may be decreased infiltration of T cells with increasing age, so to avoid 

biasing our results, the Shannon Entropy is multiplied by the number of unique TCR clones 

divided by the total number of TCR reads. We then fit a linear model for the association of 

age with this TCR clonality measure, including patient sex and cancer type as covariates. 

We again use a Cox Proportional hazards model to assess if normalized Shannon entropy is 

a relevant survival prognostic, using the same survival function and covariates as described 

above. We additionally fit linear models between normalized Shannon entropy and patient 

diagnosis age within each TCGA cancer type study.

Differential Expression Analysis with Age—Differential expression analyses from 

both TCGA and GTEx data were performed on all samples from individuals of at least 

30 years of age. The R edgeR package version 3.30.3 was used for normalization and 

identification of differentially expressed genes with age. Age at diagnosis was modeled 

as a continuous variable, including cancer type as a covariate for the TCGA analysis 

and tissue type as a covariate for the GTEx analysis. Immune cell type proportions were 

included as covariates in each analysis to account for age-related differences in abundance. 

Genes were considered differentially expressed below an FDR adjusted p value of 0.05. 

Differential expression analysis for diagnosis age was analogously performed on each cancer 
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type separately that had at least 100 samples, though cancer type was naturally no longer 

included as a covariate.

Gene Set Enrichment Analysis—The fgsea R package version 1.14.0 (Sergushichev, 

2016) was used to perform gene set enrichment analysis from differential expression results 

with age from TCGA and GTEx, produced as described above. GO terms were downloaded 

from MsigDB (Liberzon et al., 2011) using the msigdbr R package Version 7.2.1. GO 

enrichment was determined for all terms both pan-cancer and within each TCGA cancer 

type study and terms related to Interferon Gamma, TGFb, and WNT were visualized.

Differential Methylation Analysis with Age—Merged 450k and 27k DNA methylation 

array data was used to examine the relationship between age and DNA mathylation. A linear 

model for diagnosis age was fit using R version 4.0.2 to data from each CpG, including 

cancer type as a covariate. CpG methylation was considered significantly different with age 

if the FDR adjusted p value for the diagnosis age term was less than 0.05. Annotations of 

CpG sites to gene promoters were retrieved from the IlluminaHumanMethylation27k.db 

R package Version 1.4.8. The same process was repeated among each TCGA cancer 

type study, using a linear model between each CpG and patient diagnosis age. Gene set 

enrichment analysis was performed by using the differentially methylated CpGs that are 

annotated to gene promoters. This analysis was performed as described above using the R 

fgsea package version 1.14.0 (Sergushichev, 2016).

Immune Cell Type Deconvolution from Bulk RNA-Sequencing Data—The 

MIXTURE algorithm (Fernández et al., 2021) builds on the nu-Support Vector Regression 

framework used by CIBERSORT (Newman et al., 2015) for particular use with noisy 

tumor samples. MIXTURE applies Recursive Feature Selection to make the cell type 

deconvolution more robust to noise and collinearity, and was thus designed to improve 

performance on tumor data.

We run MIXTURE using a population-based null distribution and the nu-SVM Robust RFE 

method on the preprocessed RNA-sequencing data from both TCGA and GTEx. A signature 

expression matrix (LM22 from Newman et al.) (Newman et al., 2015) is used to determine 

the proportion of 22 immune cell types in each sample. MIXTURE returns both relative and 

absolute proportions of immune cells. Absolute proportions were used for all analyses of 

TCGA and GTEx datasets. MIXTURE provides a p value for the cell type deconvolution 

performed. Only samples with a deconvolution p value less than 0.05 were used in the final 

analyses, leaving 3576 patient samples remaining in TCGA and 1689 in GTEx. A further 

29 TCGA patients had received treatment prior to sample collection, and were removed to 

avoid biasing of results.

Modeling the Association of Immune Cell Type with Age—Linear models are fit 

to investigate the association between the absolute proportion of each immune cell type and 

the initial diagnosis age in TCGA. The models are fit separately for each cancer type as 

well as jointly with cancer type and patient sex as covariates. Significance is assessed using 

Benjamini-Hochberg FDR correction for multiple testing across all cell types tested.
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Higher order cell types are defined by adding together individual substituent cell type values 

and dividing by the sum of all cell types, the result of which is used as the predictor variable 

in the linear model (which immune subtypes correspond to which higher order cell types is 

shown in Table S1).

GTEx data was similarly analyzed using linear models, including sex and tissue type as 

covariates.

Survival Modeling for Patient Age among Braun et al. (2020) and USVA 
cohorts—We fit multivariate Cox proportional hazards models to survival data from 985 

anti-PD1 treated patients with renal cell carcinoma collected by Braun et al. (2020) (using 

progression free survival and overall survival data provide in table S1 of Braun et al., 

2020) and to 11,888 ICB treated patients with melanoma, lung, kidney, head and neck, or 

urothelial cancers, collected by the United States Department of Veteran Affairs. This model 

was fit using the R survival package version 3.1–12. We additionally produce Kaplan-Meier 

survival curves based on the Braun et al., 2020 dataset, separating the curves into 65 and 

under and 66 and older age groups for each dataset. These curves were fit using the R 

survival package version 3.1–12 and the R survminer package version 0.4.8.

Caris Life Sciences Data and Analyses—15,557 Caris samples were analyzed using 

next-generation sequencing (NextSeq, 592 Genes and WES, NovaSEQ), IHC and WTS 

(NovaSeq) (Caris Life Sciences, Phoenix, AZ). PD-L1 expression was tested by IHC 

using 28–8 and 22c3 (Agilent) and SP-142 (Spring Biosciences) (positive cut-off > 1% 

for CRC and HNC, > 5% for BC). TMB was measured by totaling somatic mutations per 

tumor. Immune checkpoint gene expression was normalized to the median expression in 

the lowest age quartile. Immune cell fraction was calculated by quanTIseq (Finotello et al., 

2019). Immunotherapy biomarkers, immune checkpoint gene expression and immune cell 

fraction was compared across four age quartiles. Median transcripts per million (TPM) were 

normalized to the median TPM value in quartile 1. Statistical significance was determined 

using chi-square and Wilcoxon rank sum test and adjusted for multiple comparisons using 

the Benjamini-Hochberg procedure.

ADDITIONAL RESOURCES

The CAMA atlas, containing associations of patient age to various molecular features of 

their tumors: http://www.lab-apps.onc.jhmi.edu/CAMAAtlas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We investigate the relationship of patient age and ICB therapy biomarkers

• Favorable ICB biomarkers are generally more prevalent in elderly patients

• The CAMA web application provides a multi-omics atlas of aging in cancer
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Figure 1. TMB generally increases and TCR diversity decreases with patient age at diagnosis
(A) Scatterplot of log2 tumor mutational burden by patient diagnosis age pan-cancer in 

TCGA data. The linear trend predicted by a multivariate linear model that includes cancer 

type as a covariate is shown.

(B) Bar plot of the negative log10 p values for the age term of linear models fit for TMB in 

each TCGA cancer type study.
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(C) Bar plot of the coefficient estimates per year for the age term of linear models fit for 

each TCGA cancer type study. Positive coefficients indicate increased mutational burden 

with increasing age.

(D) Bar plot of the negative log10 p values for the age term of linear models fit for TMB 

within eight cancer types commonly treated with ICB therapies in data from GENIE.

(E) Bar plot of the coefficient estimates per year for the age term of linear models fit for 

TMB within eight cancer types commonly treated with ICB therapies in data from GENIE.

(F) Scatterplot of normalized Shannon entropy of TCR sequences by patient diagnosis age 

pan-cancer in TCGA data. The linear trend predicted by a multivariate linear model that 

includes cancer type as a covariate is shown.
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Figure 2. Patient age at diagnosis correlates with increased expression of immune checkpoint 
genes in some cancer types
(A) Dot plot of differential expression statistics for immune checkpoint therapy-related 

genes with age. Compares results from pan-cancer TCGA samples and pan-tissue GTEx 

samples.

(B) Caris Life Sciences colorectal cancer cohort PDL1 immunohistochemistry (top) and 

immune checkpoint gene expression data in median transcripts per million (bottom). 

Asterisk indicates a false discovery rate (FDR)-adjusted *p < 0.05.

(C) Caris Life Sciences HPV-negative head and neck cancer cohort PDL1 

immunohistochemistry (top) and immune checkpoint gene expression data in median 

transcripts per million (bottom). Asterisk indicates a FDR-adjusted *p < 0.05.
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(D) Caris Life Sciences breast cancer cohort PDL1 immunohistochemistry (top) and 

immune checkpoint gene expression data in median transcripts per million (bottom).
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Figure 3. Patient age associates with a more immune-stimulatory signaling tumor 
microenvironment
(A) Dot plot of gene set enrichment results pan cancer in TCGA and pan-tissue in GTEx for 

interferon gamma, TGF-β, and canonical WNT pathways.

(B) Heatmap of estimated effect sizes for gene set enrichment across TCGA studies for 

all interferon-gamma-related GO terms. Positive values indicate increased enrichment with 

increasing age. Asterisk indicates a FDR-adjusted *p < 0.05.
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Figure 4. Macrophage infiltration increases with age in patients with breast cancer
(A) Heatmap displaying the effect size coefficient estimates from linear models fit between 

immune-cell-type absolute proportion and patient age in each TCGA cancer type study. 

Green squares represent an increase in abundance of that immune cell type with increasing 

age, white represents no change, and blue a decrease. Asterisk indicates a FDR-adjusted *p 

< 0.05.

(B) Violin plots from the Caris Life Sciences breast-cancer cohort (n = 6,462) corresponding 

to tumor-infiltrating immune cell fraction across different age groups among M2 

macrophages and T cells. Asterisk indicates a FDR-adjusted *p < 0.05.

(C) Violin plots from 1,818 patients with breast cancer from METABRIC, comparing T 

cell and macrophage absolute proportion across patient age groups. Asterisk indicates a 

FDR-adjusted *p < 0.05.
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Table 1.

Differential expression of immune checkpoint genes by age in TCGA

Gene LogFC (per year) t-Statistic p value q value

CXCL9 0.007 3.945 0.001 0.003

PDL2 0.004 3.380 0.001 0.004

LAGS 0.004 3.187 0.001 0.007

CDSG 0.004 3.002 0.003 0.012

HAVCR2 0.003 2.642 0.008 0.028

PDL1 0.003 2.612 0.009 0.030

CDS6 0.002 2.131 0.033 0.083

TGFB1 −0.002 −2.070 0.039 0.094

CTLA4 −0.001 −0.575 0.566 0.693

JAK2 0.000 −0.563 0.574 0.700

PD1 −0.001 −0.421 0.674 0.779

Differential expression results for immune checkpoint genes and immune-checkpoint-related genes pan-cancer in TCGA. The results are shown for 
the association with patient diagnosis age, including cancer type as a covariate. LogFC, log fold change for each year of age.
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Table 3.

Immune-cell-type proportion by age in TCGA

Estimate (per year) t-Statistic p value q value

T cells −0.0006 −3.44233 0.000585 0.001754

Macrophages 0.001075 3.967909 7.42 × 10−5 0.000445

B cells −0.00028 −1.87737 0.060566 0.121131

NK cells 3.82 × 10−6 0.055398 0.955826 0.955826

Dendritic
cells

−0.00015 −1.49017 0.136286 0.204429

Misc. myeloid −4.97 × 10−5 −0.50055 0.616722 0.740066

Coefficients, statistics, p values, and q values for the diagnosis age term in the linear model fit for each immune cell type in TCGA data pan-cancer. 
Cancer type and sex were included as covariates for each of these models. Note that estimated coefficients are per additional year of age at 
diagnosis. Misc., miscellaneous.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Cancer Genome Atlas https://portal.gdc.cancer.gov/ https://figshare.com/articles/dataset/TCGARNA-seq/12030318

Genomics Evidence Neoplasia 
Information Exchange

https://portal.gdc.cancer.gov/ https://github.com/rossinerbe/ImmuneAgingAnalysis/blob/master/Data/
genie_public_clinical_data.tsv

Molecular Taxonomy of Breast 
Cancer

https://www.cbioportal.org/study/
summary?id=brca_metabric

https://cbioportal-datahub.s3.amazonaws.com/brca_metabric.tar.gz

Genotype-Tissue Expression 
Project

https://www.gtexportal.org/home/
datasets

GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz

GDC - The Immune Landscape of 
Cancer – TCR Statistics

https://gdc.cancer.gov/about-data/
publications/panimmune

mitcr_sampleStatistics_20160714.tsv

GDC - The Immune Landscape of 
Cancer – DNA Methylation

https://gdc.cancer.gov/about-data/
publications/panimmune

jhu-
usc.edu_PANCAN_merged_HumanMethylation27_HumanMethylation450.betaValue_whitelisted.tsv

Analysis of relationship of patient 
age and biomarkers of immune 
response

This manuscript https://github.com/rossinerbe/ImmuneAgingAnalysis/tree/master/Data

Software and algorithms

R version 4.0.2 https://cran.r-project.org/bin/windows/
base/old/4.0.2/

N/A

edgeR version 3.30.3 https://bioconductor.org/packages/
release/bioc/html/edgeR.html

N/A

fgsea version 1.14.0 https://bioconductor.org/packages/
release/bioc/html/fgsea.html

N/A

MIXTURE https://github.com/elmerfer/MIXTURE N/A

Survival version 3.1–12 https://cran.r-project.org/web/packages/
survival/index.html

N/A

quanTIseq https://icbi.i-med.ac.at/software/
quantiseq/doc/

N/A

Analysis code from this 
manuscript

This manuscript https://github.com/rossinerbe/ImmuneAgingAnalysis

Other

IlluminaHumanMethylation27k.db 
version 1.4.8

https://bioconductor.org/packages/
release/data/annotation/html/
IlluminaHumanMethylation27k.db.html

N/A
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