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Abstract
DNA sequences that read the same from 5′ to 3′ in either strand are called inverted repeat sequences or simply IRs. They 
are found throughout a wide variety of genomes, from prokaryotes to eukaryotes. Despite extensive research, their in vivo 
functions, if any, remain unclear. Using Saccharomyces cerevisiae, we performed genome-wide analyses for the distribu-
tion, occurrence frequency, sequence characteristics and relevance to chromatin structure, for the IRs that reportedly have 
a cruciform-forming potential. Here, we provide the first comprehensive map of these IRs in the S. cerevisiae genome. The 
statistically significant enrichment of the IRs was found in the close vicinity of the DNA positions corresponding to poly-
adenylation [poly(A)] sites and ~ 30 to ~ 60 bp downstream of start codon-coding sites (referred to as ‘start codons’). In the 
former, ApT- or TpA-rich IRs and A-tract- or T-tract-rich IRs are enriched, while in the latter, different IRs are enriched. 
Furthermore, we found a strong structural correlation between the former IRs and the poly(A) signal. In the chromatin formed 
on the gene end regions, the majority of the IRs causes low nucleosome occupancy. The IRs in the region ~ 30 to ~ 60 bp 
downstream of start codons are located in the + 1 nucleosomes. In contrast, fewer IRs are present in the adjacent region 
downstream of start codons. The current study suggests that the IRs play similar roles in Escherichia coli and S. cerevisiae 
to regulate or complete transcription at the RNA level.
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Introduction

The multifarious structures and physical properties of DNA 
are thought to provide additional structural and functional 
dimensions to chromatin organization and gene expression 

(Schroth et al. 1992; Herbert et al. 1998; Liu et al. 2001; 
Ohyama 2001; Fukue et al. 2004, 2005; Paeschke et al. 
2005; Sumida et al. 2006; Kamiya et al. 2007; Jain et al. 
2008; Qin and Hurley 2008; Strawbridge et al. 2010; Du 
et al. 2013; Kimura et al. 2013; Nishikawa and Ohyama 
2013). The occurrence of diverse DNA structures usually 
requires special sequence characteristics or defined sym-
metry elements, which are frequently found in the genomes 
of both prokaryotes and eukaryotes. For example, alter-
nating purine–pyrimidine sequences, periodically occur-
ring A-tracts, inverted repeat (IR) sequences, homopurine/
homopyrimidine sequences and guanine-rich sequences 
lead to the formation of left-handed Z-DNAs, curved 
DNAs, cruciforms, triple-stranded H-DNAs (triplexes) 
and four-stranded G-quadruplexes, respectively (Sinden 
1994). Except for curved DNAs, however, the other struc-
tures additionally require local DNA underwinding for their 
occurrence (Paleček 1991; Van Holde and Zlatanova 1994; 
Krasilnikov et al. 1999; Kouzine and Levens 2007; Sun and 
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Hurley 2009). The dynamic processes of DNA replication 
and transcription generate the local DNA underwinding.

A DNA sequence that reads the same from 5′ to 3′ in 
each strand is known as an IR or a palindrome. IR sequences 
are commonly found in a wide variety of genomes, from 
prokaryotes to eukaryotes (Warburton et al. 2004; Wang and 
Leung 2009; Strawbridge et al. 2010; Cer et al. 2013; Du 
et al. 2013). Some of these sequences can form cruciforms 
with the aid of energy from negative supercoiling of DNA 
and in turn, cruciforms can reduce the negative superhelic-
ity in that region (Lilley 1980; Lilley and Markham 1983; 
Courey and Wang 1988; Paleček 1991; Van Holde and Zla-
tanova 1994; Shlyakhtenko et al. 1998; Krasilnikov et al. 
1999; Oussatcheva et al. 2004; Kouzine and Levens 2007). 
Thus, cruciforms have the potential to influence nucleosome 
formation and/or positioning and the local chromatin struc-
ture in eukaryotes. Numerous studies have sought to clarify 
the biological functions of IR sequences or cruciform struc-
tures, and suggested their participation in DNA replication 
(Pearson et al. 1996; Zannis-Hadjopoulos et al. 2008; Brázda 
et al. 2011), transcription (Dai et al. 1997; Dai and Rothman-
Denes 1998; Jagelská et al. 2010; Brázda et al. 2012; Coufal 
et al. 2013; Miura et al. 2018), recombination (Lin et al. 
1997; Shlyakhtenko et al. 2000; Lobachev et al. 2002; Wang 
and Leung 2006) and genome or chromosome instability 
(Wang and Leung 2006; Inagaki et al. 2013; Javadekar and 
Raghavan 2015). Furthermore, a recent study showed that 
short IRs with cruciform-forming potential are hotspots for 
genome instability in human cancer cells (Lu et al. 2015; 
Bacolla et al. 2016). Many reports have also suggested the 
presence of cruciform-binding proteins (for review, Brázda 
et al. 2011; Qian and Adhya 2017). However, determining 
the presence of cruciforms and identifying their biological 
role have generally been difficult, particularly in eukaryotic 
systems (Gentry and Hennig 2016).

With the availability of genome sequence databases, we 
can now easily search for IR sequences in genomic DNA. 
Thus, genome-wide analyses of IR sequences would pro-
vide a powerful means to assess their biological signifi-
cance. Recently, genome-wide computational analyses for 
the distribution of IR sequences have been performed for 
the proteobacterium Escherichia coli and the budding yeast 
Saccharomyces cerevisiae (Strawbridge et al. 2010; Du et al. 
2013; Miura et al. 2018). In E. coli, a strong enrichment 
of IRs with cruciform-forming potential was found in the 
adjacent regions downstream of the stop codon-coding sites 
(referred to as ‘stop codons’) and on and around the posi-
tions corresponding to mRNA ends (referred to as ‘gene 
ends’). Furthermore, most of the IRs with a repeat unit 
length of ≥ 8 bp and a spacer size of ≤ 8 bp were parts of 
the intrinsic terminators (Miura et al. 2018). For the S. cer-
evisiae genome, Strawbridge et al. reported that the IRs were 
significantly enriched and highly clustered in the intergenic 

regions (in this study, the genome was partitioned into cod-
ing and non-coding regions, referred to as ‘genic’ and ‘inter-
genic’ regions, respectively), especially in the 3′-flanking 
regions of the genic regions, while their occurrence in cod-
ing sequences was random (2010). These studies revealed 
the somewhat similar features for the occurrence of IRs 
or cruciform motifs between prokaryotes and eukaryotes. 
However, many unanswered questions still remain for the 
IRs in the yeast genome, including where they are located 
in the 3′-flanking regions of the genic regions, what pri-
mary structures they adopt, whether there is some relation-
ship between their primary structures and positions in the 
genome, how these sequences influence chromatin structure 
in vivo, and so forth. Addressing these questions would pro-
vide clues toward clarifying the biological significance of 
IRs or cruciforms.

In the current study, we constructed the first S. cerevisiae 
genome-wide comprehensive map of the IRs that report-
edly have a cruciform-forming potential. Furthermore, by 
introducing the information about the DNA positions cor-
responding to polyadenylation [poly(A)] sites [referred to 
as ‘poly(A) sites’] (i.e., gene ends), we could perform more 
accurate analyses than previously possible for the biological 
relevance of the focused IRs. We found that the IRs occur 
frequently in the close vicinity of poly(A) sites and ~ 30 to 
~ 60 bp downstream of start codon-coding sites (referred to 
as ‘start codons’), and these enrichments are statistically sig-
nificant. However, the effects of these IRs on the chromatin 
structure are different: the majority in the former regions 
excludes nucleosomes, while the IRs in the latter regions are 
incorporated into the + 1 nucleosomes. The DNA sequence 
analysis revealed that the enriched IRs comprise three dif-
ferent types: two types are in the close vicinity of poly(A) 
sites and another type is in the open reading frame (ORF) 
region. Furthermore, we found a strong structural correla-
tion between the former two types and the poly(A) signal. 
Moreover, our analyses provided clues about the functions of 
the IRs conserved between E. coli and S. cerevisiae.

Materials and methods

Genome sequence and gene annotation

We obtained the full genome sequence of S. cerevisiae from 
the Saccharomyces Genome Database (SGD, https ://www.
yeast genom e.org). Gene annotations for S. cerevisiae were 
from SGD (R64) and Park et al. (2014).

Partitioning of the genome

We defined the ‘genic’ and ‘intergenic’ regions as follows: 
genic: ORF, 5′- and 3′-UTRs (untranslated regions) and 

https://www.yeastgenome.org
https://www.yeastgenome.org


577Current Genetics (2019) 65:575–590 

1 3

OUR-1, -2, and -3 (OUR: overlapping untranslated region; 
OUR-1, the 5′-UTR of one gene partially or completely over-
laps that of another gene; OUR-2, the 3′-UTR of one gene 
partially or completely overlaps the 5′-UTR of another gene; 
OUR-3, the 3′-UTR of one gene partially or completely 
overlaps that of another gene); and intergenic: ‘TAN’ (the 
region between tandem genes), ‘DIV’ (that between diver-
gent genes) and ‘CON’ (that between convergent genes). 
The information about the transcription start sites (TSSs) 
and the poly(A) sites for protein-coding genes was obtained 
from Park et al. (2014) and that about the start codons and 
the stop codons was obtained from the SGD. The terms ‘tan-
dem’, ‘divergent’ and ‘convergent’ refer to the directions of 
transcription for the abutting genes. For intergenic regions, 
only those that had two clear ends, such as two TSSs, a 
poly(A) site and a TSS, or two poly(A) sites, were analyzed. 
In the cases where two protein-coding genes contain a pseu-
dogene, tRNA gene, rRNA gene or these genes in between, 
the entire region between the two protein-coding genes was 
not subjected to further analyses.

IR identifier

We used the computer program ‘CIRI’, which judges a given 
sequence as a target IR when the repeat unit length is longer 
than or equal to 5 bp, the spacer length is 0–8 bp and the 
entire IR length is longer than or equal to 13 bp (Miura et al. 
2018). The CIRI program was run against the S. cerevisiae 
genome.

Genome‑wide distribution map of IR sites

The method was recently reported (Miura et  al. 2018). 
Briefly, the location of each IR was mapped by the position 
of the central base pair. When an IR is located inside a larger 
IR, only the outer IR was used for the analyses. To construct 
the genome-wide distribution map of the IR sites, the Circos 
software (Krzywinski et al. 2009) was used. Furthermore, 
we developed a web-based server, ‘Cruciform-formable 
IRs in the S. cerevisiae genome (CFIRs-Sc)’ (http://www.
wased a.jp/sem-ohyam a/CFIRs -Sc), which is an application 
for browsing the map interactively.

Regional distribution profiles of IRs

The regional distribution profiles of IRs were drawn using 
two homemade scripts. One sorts the IRs into the partitioned 
regions (ORF, 5′- and 3′-UTRs, etc.). The other measures 
the distance between a given IR and each end of the relevant 
region.

Randomized control sequences and statistical 
analysis

The S. cerevisiae genome was partitioned into coding (ORF) 
and noncoding (non ORF) regions, according to its SGD 
annotations. The sequence randomization was performed 
by the method of Strawbridge et al. (2010) and Miura et al. 
(2018). Using 100 randomized genomes as the “control 
genomes”, we obtained control data. Using the test datum 
and the corresponding 100 control data for each bin of 10 bp, 
the Grubbs test was performed to examine whether the for-
mer was a significant outlier.

Sorting of the IR sequences

Based on the AT content, the occupancy of the longest A (or 
T)-tract (greater than or equal to three runs of A or T) and 
the occupancy of the longest (ApT)n [or (TpA)n] (n ≥ 1) in 
a repeat unit, the IR sequences were sorted into seven types 
(types I–VII).

Nucleosome occupancy

The MNase-seq data were downloaded from the NCBI 
SRA database under the accession number SRR2045610, 
and processed to generate the BED files of the paired-end 
read data corresponding to 16 chromosomes (Ocampo et al. 
2016). Using the files and the iNPS algorithm (Chen et al. 
2014), the nucleosome positions in each chromosome were 
determined. When a given region was incorporated into a 
nucleosome, the nucleosome occupancy of the region was 
defined as 1.0 and when it was not, the value was defined as 
0. The nucleosome occupancy data based on the chemical 
cleavage were obtained from Chereji et al. (2018).

The IRs were collected independently (IR by IR) and 
aligned with their center positioned at 0. Subsequently, the 
per-position nucleosome occupancy values were calculated 
and averaged from the upstream position to the downstream 
position. The averaged values were normalized to the aver-
age nucleosome occupancy of each chromosome that was 
defined as 1.0. The resulting values were abbreviated as 
average nNuOcs.

Results

The current analyses excluded the IRs that seemed to have 
no potential for transition into cruciforms. To our knowl-
edge, the shortest stem in a cruciform heretofore reported 
is 5 bp (Sheflin and Kowalski 1985; Iacono-Connors and 
Kowalski 1986; Müller and Wilson 1987; McMurray et al. 
1991; Dai et al. 1997; Dai and Rothman-Denes 1998; Jagel-
ská et al. 2010; Nuñez et al. 2015), and the typical number of 
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nucleotides in a loop has been suggested to be 3–6 (Hilbers 
et al. 1985; Furlong and Lilley 1986; Gough et al. 1986; 
Nag and Petes 1991; Sinden 1994; Potaman and Sinden 
2005). However, larger loops can also be formed in some 
cases, and even motifs with no spacer can form loops in 
the resulting cruciform (Furlong and Lilley 1986; Gough 
et al. 1986; Scholten and Nordheim 1986; Müller and Wil-
son 1987; Damas et al. 2012). Thus, we focused on the IRs 
with repeat unit lengths greater than or equal to 5 bp, spacer 
lengths between 0 and 8 bp and an entire IR length longer 
than or equal to 13 bp. The IRs are named and grouped in 
the following manner; e.g., R8S4 (the IR with repeat unit 
length of 8 bp and spacer length of 4 bp), for convenience. 
Imperfect IRs were excluded from the screening. The rea-
sons were as follows: they occur less frequently than perfect 
IRs, undergo spontaneous mutations to form more perfect 
IRs and require higher energies for cruciform formation 
(Benham et al. 2002; Van Noort et al. 2003).

Distribution of IR sequences with cruciform‑forming 
potential

At first, we constructed a comprehensive map for the 
R ≥ 5S ≤ 8 (2R + S ≥ 13) IRs with the following informa-
tion: their positions and structures, genes with annotations, 
and positions of TSSs and poly(A) sites (Fig. 1, http://www.
wased a.jp/sem-ohyam a/CFIRs -Sc). Although the loci of 
pseudogenes and rRNA and tRNA genes are shown in the 
map, these were not subjected to further analyses. This is 
because pseudogenes generally have incomplete information 
for the TSS and poly(A) site, and most of the IRs detected in 
rRNA and tRNA gene loci are used to form the secondary 
structures of the corresponding RNA molecules. Thus, the 
analyses described below focus on protein-coding genes and 
their flanking regions.

The distribution profile of the IRs in the yeast genome 
shows that the IRs with a repeat unit of ≥ 10 are rare in 
the genome (Fig. 1, http://www.wased a.jp/sem-ohyam a/
CFIRs -Sc). In contrast, the IRs belonging to the R5S ≤ 8 
(2R + S ≥ 13) seem to be abundant. Subsequently, we 
examined whether any regional characteristics are associ-
ated with the IR occurrence. For this analysis, the yeast 
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genome was partitioned into six genic and three intergenic 
regions, as shown in Fig. 2. Furthermore, 100 randomized 
sequences were generated for each of the genic and inter-
genic regions (“Materials and methods”) to determine 
whether the apparent enrichment or deficiency of the IRs 
in a given region is statistically significant. The analysis 
showed that the IRs with cruciform-forming potential are 
enriched in 3′-UTRs and ~ 30 to ~ 60 bp downstream of 
start codons and the enrichments are statistically signifi-
cant (Fig. 2). In 3′-UTRs, the regions of enrichment were 
~ 20 to ~ 90 bp upstream of poly(A) sites and ~ 100 to 
~ 130 bp downstream of stop codons. The data suggested 
that the IRs are located closer to poly(A) sites than stop 
codons. To confirm this, 3′-UTRs were sorted by width 
and the same analysis was performed, which clearly 
showed that the IRs are located closer to poly(A) sites 
(Fig. 3). Finally, we note that the distribution analysis 
shown in Fig. 2 also revealed that fewer IRs were present 
in the adjacent regions downstream of start codons and 
around ~ 15 bp downstream of TSSs.

Sequence characteristics of the IRs

The sequence characteristics of the IRs located in 3′-UTRs 
and ~ 30 to ~ 60 bp downstream of start codons were sub-
sequently examined. In this analysis, the sequences of 
the R ≥ 5S ≤ 8 (2R + S ≥ 13) IRs were sorted into seven 
types, according to AT content, A- or T-tract occupancy 
and (ApT)n or (TpA)n occupancy in a repeat unit (Fig. 4). 
Regarding the AT content, the value of 0.6 comes from that 
of the S. cerevisiae genome of 0.62. The sequence type III 
occurred in 3′-UTRs most frequently, and was especially 
eminent in the ~ − 30 to ~ − 60 region relative to poly(A) 
sites. The sequence type II was the second most frequent 
in 3′-UTRs and ~ − 10 to ~ − 20 relative to poly(A) sites 
were more eminent for this phenomenon. Thus, the type III 
IRs are generally located slightly upstream of the type II 
IRs. The sequence types III and II are both AT-rich (AT 
content ≥ 0.6), but they differ in that the former is (ApT)n or 
(TpA)n-rich (≥ 0.5) in a repeat unit while the latter is A- or 
T-tract-rich (≥ 0.5). The sequence type I, which is somewhat 
similar to both types III and II, is also enriched in restricted 
small regions that are located within the type III and/or type 
II-enriched regions, although it occurs much less frequently 
than these types.

In the region ~ 30 to ~ 60 bp downstream of start codons, 
the sequence type VII, which is neither AT-rich, A- or 
T-tract-rich, nor (ApT)n or (TpA)n-rich, was enriched. The 
sequence type V [neither AT-rich, (ApT)n-rich nor (TpA)n-
rich] is also enriched in a restricted small region within 
the type VII-enriched regions, although its occurrence fre-
quency is much lower than that of type VII.

Localizations of the IRs in chromatin

Cruciform structures are incompatible with nucleosome 
structures (Nickol and Martin 1983; Nobile et al. 1986; Bat-
tistoni et al. 1988; Van Holde and Zlatanova 1994; Pearson 
et al. 1996). Accordingly, we can roughly speculate on the 
potential of a given IR to transition into a cruciform in vivo, 
by examining where it is located in the chromatin. Several 
groups have reported genome-wide nucleosome maps for 
budding yeast (Kaplan et al. 2009; Brogaard et al. 2012; 
Henikoff et al. 2014; Hu et al. 2014; Ramachandran et al. 
2015; Ocampo et al. 2016; Chereji et al. 2018). At first, we 
used the MNase-seq-based map of Ocampo et al. (2016) for 
this purpose. This map is based on the paired-end sequenc-
ing, which provides more accurate nucleosome positions 
than single-read data (Cole et al. 2012; Ocampo et al. 2016). 
For the chromatin of 3′-UTRs, the positions of the types 
III and II IRs were examined and for those formed ~ 30 to 
~ 60 bp downstream of start codons, the type VII IRs were 
examined. As shown in Fig. 5, a clear difference was found 
between the two results. In the chromatin of 3′-UTRs, the 
types III and II IRs are generally located at the bottom or 
very close to it in each profile, indicating that these types 
are more preferentially located in the linker DNA regions 
than the other DNA sequences in 3′-UTRs. Furthermore, 
the profile in each panel is asymmetric and the peak appear-
ing on the upstream side is generally higher than that on the 
downstream side, indicating that the nucleosome occupan-
cies generally differ between upstream and downstream of 
the IRs. In contrast, for the chromatin formed on the ~ 30 to 
~ 60 bp downstream region of start codons, the majority of 
the type VII IRs is located within nucleosomes, which are 
most certainly the + 1 nucleosomes (Tirosh et al. 2010; Tsui 
et al. 2011).

As an alternative to drawing nucleosome maps, chemical 
cleavage-based methods are known, and they can reportedly 
avoid the cleavage bias caused by the preference of MNase 
for A/T-rich regions and be thought to provide more accu-
rate data on nucleosome positions (Brogaard et al. 2012; 
Henikoff et al. 2014; Chereji et al. 2018). Thus, using the 
chemical cleavage-based nucleosome map of Chereji et al. 
(2018), which was based on the H3Q85C cleavage method, 
we also performed the same analysis. The profiles were 
generally similar to those obtained based on the MNase-
seq-based map. In this analysis, however, the asymmetry in 
the 3′-UTR profiles was more pronounced, confirming that 
the nucleosome occupancies change between upstream and 
downstream regions of the IRs in 3′-UTRs, from high to low. 
For the focused region in ORFs, the majority of the type VII 
IRs was also found within nucleosomes.

Finally, we examined the relationship between the IR 
structure and the nucleosome occupancy for the IRs found 
in 3′-UTRs (Fig. 6). This analysis revealed several interesting 
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Fig. 2  Regional occurrence 
frequencies of the IRs. The 
regional occurrence frequencies 
of the R ≥ 5S ≤ 8 (2R + S ≥ 13) 
IRs were analyzed. Genic and 
intergenic regions were subdi-
vided, as schematically shown 
in the insets. The positions of 
the IRs are represented by their 
center positions. A TSS, the first 
nucleotide of a start codon, the 
third nucleotide of a stop codon, 
and a poly(A) site were each 
defined as position 0. In each 
panel, the span of the x-axis 
indicates the average length of 
a given region, except for the 
ORF, TAN, DIV and CON pan-
els (Supplementary Table S1). 
The samples with lengths larger 
than the average length were 
subjected to the analysis, to 
obtain the information about the 
region that all samples have in 
common (‘n’ indicates the num-
ber of samples). The average 
lengths of ORFs, TANs, DIVs 
and CONs are 1536 bp, 305 bp, 
420 bp and 209 bp, respectively, 
and thus only 200 bp regions 
from the relevant two positions 
were analyzed. The control data 
were obtained using 100 control 
genomes (“Materials and meth-
ods”) and the statistical sig-
nificance levels were calculated 
based on the Grubbs test. The 
bin size is 10 bp. **P < 0.01, 
***P < 0.001 (red, enrichment; 
blue, deficiency)
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points. Firstly, as the unit lengths of the type III IRs increased, 
the average values of the normalized nucleosome occupan-
cies (nNuOcs; “Materials and methods”) decreased. Second, 
in most cases, when the length of the type III IRs becomes 
≥ 9, the average nNuOc value becomes ~ 0 on the IRs or very 
close to them. In the latter cases, another IR or IRs or A/T-rich 
tracts were often found to be the sites of the ~ 0 value (Sup-
plementary Fig. S1). Third, the type II IRs that showed values 
~ 0 are rare (this may be caused by the lengths of their repeat 
units: those with R ≥ 10 were not found and 92% of them had 
a repeat unit length of 5–6 bp).

Discussion

We performed genome-wide analyses for the distribution, 
occurrence frequency, sequence characteristics and rele-
vance to chromatin structure of the IRs that reportedly have 

a cruciform-forming potential. The IRs are widely distrib-
uted in the yeast genome. The ApT- or TpA-rich type III 
IRs and A-tract- or T-tract-rich type II IRs are enriched in 
3′-UTRs, especially in the close vicinity of poly(A) sites. 
The majority of these types is located in linker DNA regions. 
In the region ~ 30 to ~ 60 bp downstream of start codons, the 
type VII IRs, which are neither AT-rich, A- or T-tract-rich, 
nor (ApT)n or (TpA)n-rich, are enriched and located within 
the + 1 nucleosome. In contrast, fewer IRs are present in 
the adjacent region downstream of start codons and around 
~ 15 bp downstream of TSSs. Here, we discuss what these 
phenomena suggest with regard to the genetic events.

What the positions and the types of IRs suggest

The types III and II IRs are enriched in 3′-UTRs. They 
seem to correspond to the important elements in RNA 
that are used as the poly(A) signal, PAS. Furthermore, the 

Fig. 3  Position of the IRs in 
3′-UTRs. According to the 
length, 3′-UTRs were sorted 
into five groups, and the four 
groups named Q1–Q4 were 
subjected to the analysis: Q1, 
31 bp ≤ 3′-UTR ≤ 81 bp; Q2, 
82 bp ≤ 3′-UTR ≤ 115 bp; Q3, 
116 bp ≤ 3′-UTR ≤ 164 bp; 
Q4, 165 bp ≤ 3′-UTR ≤ 385 bp. 
In each group, the position 
histogram of the R ≥ 5S ≤ 8 
(2R + S ≥ 13) IRs is shown. The 
span of the x-axis corresponds 
to the region range common 
among a given group. ‘n’ 
indicates the number of 3′-UTR 
samples. The bin size is 10 bp. 
**P < 0.01, ***P < 0.001 (red, 
enrichment)
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nucleosome occupancy changes within the 3′-UTR from 
high (upstream) to low (downstream), and these IRs are 
located at the border (Fig. 5). Although the PAS of S. cerevi-
siae is reportedly very degenerate and thus recognizing the 
PAS in a given gene is sometimes difficult, the current study 
provides a new perspective on this issue. Generally, from 
upstream to downstream, a PAS consists of an AU-rich effi-
ciency element ‘EE’ (UAY RUA : Y = U or C, R = A or G), 
an A-rich positioning element ‘PE’ (AAW AAA : W = A or 
U) that is typically located ~ 10 to ~ 30 nucleotides upstream 
of the cleavage position, and a U-rich element spanning the 
cleavage position and the site of poly(A) addition (Guo and 
Sherman 1996; Zhao et al. 1999; Proudfoot 2011; Mischo 
and Proudfoot 2013). The EE and PE sequences seem to 
correspond to the types III and II IR sequences of the DNA, 
respectively. Furthermore, the mutual positional relation-
ships among the EE, the PE and the site of poly(A) addition 
are very similar to those among the type III IR, the type II IR 
and the poly(A) site. The type II IRs occur slightly closer to 
the poly(A) sites than the type III IRs, in general. Thus, these 
analyses indicated that in a certain population of genes, the 
EE-coding DNA region and/or the PE-coding DNA region 
presumably constitute(s) the repeat units of the type III IRs 
and/or that of the type II IRs, respectively. Viewed in this 
light, the types III and II IRs seem to function at the RNA 
level, rather than the DNA level.

The type VII IRs are enriched in the regions ~ 30 to 
~ 60 bp downstream of start codons. They are not AT-rich 
(the average AT content in the repeat units of the type VII 
IRs located in this region is ~ 40%) and lack the sequence 
advantage for cruciform formation, and are actually located 
within nucleosomes (Fig. 5). Thus, if they have some bio-
logical function, it would presumably be at the RNA level. 
The function may be some “riboregulator”-like one found in 
bacteria (Merino and Yanofsky 2005; Wachter 2014; Mill-
man et al. 2017). The riboregulators can assume two mutu-
ally exclusive RNA structures in the primary transcripts: one 
forms a terminator and results in premature transcription ter-
mination, and the other forms an antiterminator that allows 
the production of a full-length mRNA by read-through 
into the coding sequence (Millman et al. 2017). Although 
riboregulator-related IRs usually occur in the 5′-UTR in E. 
coli, we suggested that such IRs may also occur in the region 
~ 25 to ~ 60 bp downstream of the start codons in this organ-
ism (Miura et al. 2018). Furthermore, it must be noted that 
conditional transcriptional terminator-like structures, which 

have an IR followed by a U-rich tract, are sometimes found 
in the focused regions (data not shown). Thus, in S. cerevi-
siae, the IRs in the regions ~ 30 to ~ 60 bp downstream of 
start codons may play some riboregulator-like role.

We also found an IR-deficient region adjacent down-
stream of start codons (Fig. 2). Since a stem-loop RNA 
structure formed near a start codon would negatively influ-
ence translation initiation, this situation may be diminished 
in yeast. The region around ~ 15 bp downstream of TSSs was 
another site of low IR occurrence. For this phenomenon, we 
presently cannot give any plausible explanation.

Possible causes of low nucleosome occupancy 
on the types III and II IRs

The region around ~ 100 bp downstream of a stop codon 
is known to have relatively low nucleosome occupancy in 
yeast (Kaplan et al. 2009; Pan et al. 2011). To explain this 
phenomenon, a hypothesis was raised that PASs disfavor 
nucleosome formation (Kaplan et al. 2009). This putative 
propensity of PASs may be caused by the types III and II 
IRs in a certain population of genes. For the type III IRs, the 
cruciform formation is the first issue to discuss as a possible 
cause. Dayn et al. (1991, 1992) reported that all detected 
in vivo cruciforms are formed by AT-rich inverted repeats, 
particularly (ApT)n sequences. Other groups also arrived at 
similar conclusions (McClellan et al. 1986, 1990; Panay-
otatos and Fontaine 1987; Wells and Harvey 1987; Horwitz 
and Loeb 1988; Calladine et al. 2004). Mechanistically, the 
very small contribution of the stacking forces of the (ApT)n 
sequences to stabilize the B-form is likely to be the cause 
of the transition into cruciforms (Panayotatos and Fontaine 
1987). However, the hypothesis of “B to cruciform transi-
tion” for the type III IRs has a “size-problem”.

The size of a cruciform is a debated issue. Vologodskii 
et al. suggested that cruciform extrusion in short palin-
dromes with low supercoiling is highly improbable (Volo-
godskaia and Vologodskii 1999; Vologodskii 2015), and a 
theoretical study by Zhabinskaya and Benham (2013) was 
in accordance with this suggestion. In the latter study, the 
cruciforms with stem lengths of < ~ 15 bp seemed improb-
able (however, DNA melting seemed possible even for the 
IRs with ~ 3 bp repeats). In the current study, short IRs with 
repeat units of < ~ 15 bp were found to be the majority, 
including the type III IRs, in the yeast genome (Figs. 1, 6, 
http://www.wased a.jp/sem-ohyam a/CFIRs -Sc). Thus, based 
on the studies by Vologodskii et al. and Zhabinskaya and 
Benham, the in vivo transition of the type III IRs into cru-
ciforms may be “highly improbable” (but melting or defor-
mation seems possible). However, we must also note that 
numerous reports have shown or proposed the presence of 
cruciforms with short stems of 5–7 bp (Sheflin and Kowal-
ski 1985; Iacono-Connors and Kowalski 1986; Müller and 

Fig. 4  Sequence characteristics of the IRs in 3′-UTRs and ORFs. The 
R ≥ 5S ≤ 8 (2R + S ≥ 13) IRs were classified into seven types accord-
ing to AT content, A- or T-tract occupancy and (ApT)n or (TpA)n 
occupancy in a repeat unit. The occurrence profiles of these types in 
3′-UTRs and ORFs are shown. For the Q1–Q4 groups, see Fig. 3. The 
bin size is 10  bp. **P < 0.01, ***P < 0.001 (red, enrichment; blue, 
deficiency)

◂

http://www.waseda.jp/sem-ohyama/CFIRs-Sc
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Fig. 5  Nucleosome occupancy on and around the IRs. The IRs (types 
III and II for 3′-UTRs and type VII for ORFs) that showed statisti-
cally significant scores for the occurrence (Fig. 4) were subjected to 
the analysis.  IRQ1–IRQ4 mean the IRs located in the 3′-UTR length 
groups Q1–Q4 (Fig.  3), respectively. The average nNuOc value 
(“Materials and methods”) for each base pair located from − 200 to 
+ 200 relative to the IR center, indicated as 0, was calculated and 

plotted. In the case of tandem genes, the low nucleosome occupancy 
on the promoter of the downstream gene may affect the total profile. 
Thus, only convergent genes were used in this analysis. The data of 
nucleosome positions were obtained from Ocampo et  al. (2016) 
(based on MNase digestion) and Chereji et  al. (2018) (based on 
chemical cleavage)
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Fig. 6  Relationship between the IR structure and the nucleosome 
occupancy. The IRs located in 3′-UTRs were sorted according to the 
repeat unit length, and the same analysis as in Fig. 5 was performed. 

For the data on nucleosome positions, only the chemical cleavage-
based data (Chereji et  al. 2018) were used in this analysis. ‘R5’–
‘R17’, repeat unit lengths of 5–17 bp
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Wilson 1987; McMurray et al. 1991; Dai et al. 1997; Dai 
and Rothman-Denes 1998; Jagelská et al. 2010; Nuñez et al. 
2015). Based mainly on the latter reports, the current study 
regarded the R ≥ 5S ≤ 8 (2R + S ≥ 13) IRs as those that have 
a “potential” for transition into cruciforms. Importantly, this 
does not mean that they are actually forming cruciforms 
in vivo or have “high” potential for cruciform formation. The 
level of the potential was not the point in the current study.

The focus here is what causes the low nucleosome occu-
pancy on the type III IRs. We found that the average nNuOc 
values decrease, even to 0, according to the increase of the 
repeat unit length of the type III IRs (Fig. 6). This phe-
nomenon seems to be explained in terms of the increase 
of deformed B-form structures or cruciform occurrence. 
Although the occurrence of these non-B structures may be 
transient, even for the larger type III IRs, it may be suf-
ficient to exclude nucleosomes. The presence of multiple 
IRs or A/T-rich tracts in a small region may increase these 
probabilities overall (Supplementary Fig. S1). However, 
at present, we cannot still deny the formation of “stable” 
cruciforms in some cases. Some unknown effect only seen 
in vivo, including dynamic genetic processes that can locally 
generate a high density of negative supercoiling temporarily 
or even a simple loss of nucleosomes may be able to gener-
ate the cruciforms with short stems. Finally, we must also 
discuss the possibility for the formation of alternative struc-
tures. The (ApT)n tracts can also form Z-DNA structures. 
However, this seems to be less probable. The propensity 
for forming Z-DNA is in the following order: (GpC)n >   (
CpA)n > (CGGG)n > (ApT)n (Wang et al. 1984; Shin et al. 
2016). Furthermore, it is known that the (ApT)n tracts more 
prefer cruciform formation than Z-DNA formation (Wang 
et al. 1984, 2013; Sinden 1994). In summary, (transient) 
deformation or cruciform formation is raised as a possible 
mechanism underlying the low nucleosome occupancy on 
or around the type III IRs.

For the A-tract- or T-tract-rich type II IRs, the low nucle-
osome occupancy may be caused by different mechanisms. 
The A/T-tracts and oligo(A/T) sequences are reportedly 
rigid (Nelson et al. 1987; Packer et al. 2000; Suter et al. 
2000), and seem to resist bending around the histone core 
(Iyer and Struhl 1995; Segal and Widom 2009; Struhl and 
Segal 2013). Indeed, a genome-scale analysis for nucleo-
some positions showed that these sequences are usually not 
incorporated into nucleosomes (Yuan et al. 2005). Further-
more, intrinsically bent DNA structures, which can either 
inhibit or facilitate nucleosome formation due to the 3D 
structure (Ohyama 2001), may also be partly relevant. These 
structures are formed under the following conditions: an A- 
or T-tract is present within the spacer region in a given IR 
in phase with the tracts within the two repeat regions, or 
A- or T-tracts accidentally occur in the flanking regions of 
a given IR in phase with the tracts inside the IR. In the case 

where the periodicity of the tract is ≥ 11 bp, an unfavora-
ble 3D structure for nucleosome formation is generated. 
Indeed, such cases are sometimes found in the type II IRs 
focused upon here (data not shown). However, we should 
also note the report by Kornberg’s group. They found that 
the nucleosome-free regions are formed and maintained by 
an active mechanism involving chromatin remodeling, with 
RSC (the most abundant member of the SWI/SNF family) 
recognition of T-tract-rich sequences, rather than the DNA 
rigidity- or conformation-based mechanism described above 
(Lorch et al. 2014). Considering these possibilities, several 
A-tract- or T-tract-originated mechanisms other than cru-
ciform formation are likely to cause the low nucleosome 
occupancy on the type II IRs. Thus, the mechanistic cause 
for the low nucleosome occupancy seems to be essentially 
different between the types III and II IR sequences.

In addition to the types III and II sequences and the puta-
tive action of RSC, the dynamic migration of RNA poly-
merase II (pol II) may also contribute to the low nucleosome 
occupancy. The rapid removal of pol II reportedly causes 
increased nucleosome occupancy around poly(A) sites (Fan 
et al. 2010). Thus, the dynamic changes in the superhelical 
state caused by transcription, pol II migration itself, some 
action by the RSC, and the intrinsic properties and/or con-
formations of the type III and II IRs may collaborate with 
one another and induce the nucleosome depletion.

Similarity in the IR occurrence between E. coli and S. 
cerevisiae

The genomes of E. coli and S. cerevisiae have two com-
mon regions with statistically significant enrichment of IRs: 
one is in the close vicinity of the positions corresponding to 
mRNA ends (E. coli; Miura et al. 2018) or poly(A) sites (S. 
cerevisiae) and the other is ~ 25 to ~ 60 bp (E. coli; Miura 
et al. 2018) or ~ 30 to ~ 60 bp (S. cerevisiae) downstream of 
the start codons (Fig. 7). For the former, most of the IRs in 
E. coli seem to be used as parts of intrinsic terminators and 
they are GC-rich (Miura et al. 2018). In contrast, the IRs in 
S. cerevisiae seem to function as parts of the PAS signal and 
they are AT-rich, as described above. Thus, the E. coli and 
S. cerevisiae IRs both seem to function at the RNA level in 
each transcription termination system, although their nucleo-
tide compositions are quite different. The differences in the 
DNA sequences may originate from the absence or presence 
of chromatin structure. In the case of S. cerevisiae, the IRs 
are also used to decrease nucleosome occupancy at the DNA 
level and for this purpose, A- or T-tract-rich, or (ApT)n or 
(TpA)n-rich IRs are favorable, as described above.

For the regions in ORFs, the similarity between the 
two organisms also alludes to the presence of some com-
mon role of the IRs, which is presumably played at the 
RNA level. Furthermore, it is notable that the IRs with 
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cruciform-forming potential are actively excluded in the 
translation initiation regions, not only in S. cerevisiae but 
also in E. coli (Miura et al. 2018). From this viewpoint, we 
can safely conclude that the IRs presumably play similar 
roles in the prokaryote E. coli and the lower eukaryote S. 
cerevisiae to regulate or complete transcription at the RNA 
level.
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