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ABSTRACT: Visible-light-promoted cascade radical cyclization for the
synthesis of sulfonylated benzimidazo/indolo[2,1-a]iso-quinolin-6(SH)-
ones has been reported. The reaction provides transition-metal-free and
expeditious access to sulfonylated polyaromatics. The use of sodium
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metabisulfite as a SO, surrogate and the rapid generation of molecular

complexity using a three-component photochemical protocol are the

salient features of this reaction manifold.

B INTRODUCTION

Sulfonylated molecules are ubiquitous in a large selection of
pharmaceuticals, agrochemicals, and synthetic intermedi-
ates.'~* Traditional routes for sulfonylation rely on sulfinic
acids and their salts,’~'" sulfonylhydrazides,"'~"* tosyl
chloride,"*™"” or the oxidation of sulfides and sulfoxides.'®
Typically, sulfonylation processes require harsh oxidizing
conditions, high temperatures, and/or equivalent amounts of
additives, leading to issues of scalability and hmrted substrate
scope. DABSO is an interesting SO2 surrogate " but is
expensive and tedious to synthesize.”” In this context, sodium
metabisulfite offers an alternative method to incorporate SO,,
as it is readily available and inexpensive.”> We envisioned that
sulfonyl radical formation from the incorporation of SO, into
photochemically generated aryl radicals would 4pr0v1de an
alternate method toward sulfonylated derivatives.” Due to
their lower redox potential (0 V vs SCE), diazonium salts are
very useful aryl surrogates.”””’

Multicomponent cascade reactions involving radical inter-
mediates have emerged as efficient and ecofriendly’” ™
pathways for the synthesis of substituted benzimidazo/
indolo[2,1-a]iso-quinolin-6(SH)-ones. Yu and coworkers
have reported a silver-catalyzed decarboxylatlve radical
cyclization®® and perfluoroalkylation.”” Subba Reddy et al.
have reported an interesting acylation/cyclization method-
ology.”® Sun et al. have developed the synthesis of THF-
incorgorated benzimidazo/indolo[2,1-a]iso-quinolin-6(SH)-
ones.”” Recently, a visible-light-promoted tri- and difluor-
oalkylation/cyclization cascade was reported by Guo and
coworkers.’® The Adiyala group has demonstrated a
deaminative alkylation/cyclization continuous flow.”" Xu and
coworkers have reported a ketone-catalyzed photochemical
synthesis of imidazoisoquinolinone derivatives.*> An electro-
chemical radical cyclization was developed by the Lei group
employing Mn catalysis.”’ In the context of sulfonylatlve
cyclizations, Wang et al,** Xia et al,*® and Yang et al. *® have
employed sulfonylhydrazides as a SO, surrogate (Scheme 1a),
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Scheme 1. (a—c) Synthetic Strategies for Benzimidazo/
indolo[2,1-a)iso-quinolin-6(SH)-ones

a) Sulfonylative annulations using aryl sulfonyl hydrazines
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ArSO,NHNHj, 1,05, THF, 80 °C (Wang et. al.)
ArSO,NHNH,, TBAI, TBHP, 80 °C (Yang et. al.)

b) [Ir]-catalyzed photochemical sulfonylative annulation using
aryl sulfonyl chlorides (Gao et.al.)
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c) This work: Eosin Y catalyzed photochemical sulfonylative annulation
using Na,S,05 and aryldiazonium salts
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and Li and coworkers demonstrated sulfonylation as well as
carbamoylation under transition-metal-free conditions.”” Gao
and coworkers demonstrated visible-light-mediated sulfonyla-
tion using sulfonyl chlorides (Scheme 1b).'* Sodium
metabisulfite has also been explored as a SO, surrogate.** ™"
Xie and coworkers recently incorporated SO, (using K,S,05)
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into N- propar%ylmdoles toward the assembly of 9H-pyrrolo-
[1,2-alindoles.” He and coworkers reported a four-compo-
nent tandem reaction using Na,S,0; as a SO, precursor for the
synthesis of sulfonylated quinoxalin-2(1H)-ones.” We envi-
sioned a visible-light-promoted three-component sulfonylative
annulation toward sulfonylated benzimidazo/indolo[2,1-a]iso-
quinolin-6(SH)-ones involving acrylamides, aryl diazonium
salts, and Na,S,0; (Scheme 1c).

B RESULTS AND DISCUSSION

For the initial studies, we chose the benzimidazole derivative
la as the model substrate, and the results are outlined in Table
1. In the preliminary reaction in a dichloroethane (DCE)

Table 1. Optimization Studies”

N2BF, NaZSZO (3 equiv) N
©/ T eosnY @N 0,
blue LED, Np, 4 h 0I 2a S@

entry photocatalyst (mol %) solvent yield
1 Eosin Y (2) DCE 67
2b Eosin Y (2) DCE 48
3¢ Eosin Y (2) DCE 42
4 Eosin Y (2) DMF 41
S Eosin Y (2) MeCN 46
6 Eosin Y (2) MeOH 35
7 Eosin Y (2) THF 21
8 Eosin Y (2) acetone trace
9 Eosin Y (2) DCM 64
10 rose bengal (2) DCE 54
11 4CzIPN (2) DCE trace
12 Eosin Y (5) DCE 81
13 DCE 28
147 Eosin Y DCE trace
15°¢ DCE NR

“The reaction was performed with 0.18 mmol of 1a, phenyldiazonium
salt 2a in the presence of the photocatalyst (mol %), and Na,S,0;
(equiv) dissolved in 2 mL of a solvent and irradiated with blue LED
strips. gulv of Na,S,05 was employed. “4 equiv of Na,S,05 was
employed. “Reaction vial wrapped by Al foil (in the dark). “Reaction
performed in the absence of light and a photocatalyst.

solvent, 67% yield of the product 3a was obtained when 1.5
equiv of the phenyl diazonium salt was used (Table 1, entry 1).
On increasing and decreasing the amount of Na,$,0; (to 2
and 4 equiv, respectively), diminished yields were observed
(Table 1, entries 2 and 3). No improvement in the yield was
observed when we evaluated solvents such as DMF, MeCN,
and MeOH, which provided the product in 41, 46, and 35%
yields, respectively (Table 1, entries 4—6). Employing acetone
as the solvent did not lead to any measurable product
formation. When the reaction was performed in dichloro-
methane (DCM), 64% yield of 3a was obtained (Table 1, entry
9). We selected DCE as the solvent for further optimization.
Evaluation of other photocatalysts (rose bengal, 4CzIPN,
rhodamine B, and rhodamine 6G) also failed to enhance the
yield. On increasing the amount of Eosin Y from 2 to S mol %,
we obtained 81% yield of 3a (Table 1, entry 12). We
discovered that very slow product formation occurred in the
absence of the photocatalyst (28% yield in 24 h; Table 1, entry
13). The reaction did not yield any product when performed in

the dark in the presence of the photocatalyst. Further, no
product was obtained when the reaction was performed in the
absence of both the photocatalyst and light (Table 1, entry
15).

After establishing the optimized reaction conditions, we
evaluated the generality of this reaction. As depicted in Figure
1, a variety of phenyldiazonium salts underwent the trans-

@[ >_©_ O,NZBF4 _Naz$,05 (3 equiv)

eosin Y (5 mol%)
DCE, Ny, 4 h
blue LED

N Me N Me

Me

(70%) @ 3g (eo% 3h (56%

COCH3

@i@ @*é? @%9

i (37%) j (37%) 3k (48%)

Figure 1. Reaction scope: evaluation of diazonium salts.

formation smoothly. Diazonium precursors featuring electron-
donating substituents p-methyl (3b) and p-methoxy (3c)
provided the products in 69 and 68% yields, respectively. In
the case of m-methyl (3d), we have obtained a 76% yield of the
product. Meta- and para-bromo diazonium salts furnished the
corresponding products 3e and 3f in good yields (71 and 70%
yields, respectively). Certain electron-withdrawing substituents
performed well such as the para-acylated diazonium salt, which
afforded the product 3g in a 60% vyield. Ortho-substituted
diazonium precursors generally afforded diminished yields, and
this effect appears to be independent of the electronic
disposition of the substituent. Ortho-CF;- and o-F-substituted
products 3h and 3i were obtained in 56 and 37% yields,
respectively. The naphthyl derivative- and the 2-Ph-substituted
products 3j and 3 k were obtained in 37 and 48% yields,
respectively.

In the next stage, we explored various substituted
benzimidazoles as outlined in Figure 2. Among the 2-aryl-
substituted benzimidazoles, a variety of electronically distinct
substitutions were tolerated well on the phenyl ring. The
parent derivative 31 was obtained in a 75% yield. Electron-
withdrawing substituents were tolerated well in the para
position as exemplified by the fluoro- and cyano-substituted
products 3m (68% yield) and 3n (90% yield). The m-OMe
derivative afforded a regioisomeric mixture of products in a
76% vyield (30). In line with the expected effect of such

https://doi.org/10.1021/acsomega.2c02302
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&t NS Scheme 2. (a,b) Mechanistic Investigation
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Figure 2. Reaction scope: evaluation of 2-aryl-benzimidazoles and
indoles.

substituents on the regioselectivity, the m-Br derivative
resulted in a single regioisomer in a 71% yield (3p).

The ortho-chloro-substituted product (3q) was furnished in
an 80% vyield, while the naphthyl-substituted derivative (3r)
was obtained in a 70% yield. The 2-thiophene-substituted
benzimidazole precursor resulted in the product 3s in a good
yield (67%). The dichloro benzimidazole precursor afforded a
55% yield of the corresponding product 3y. We also evaluated
indolyl methacrylate precursors, which furnished products 3t—
v in up to an 88% yield (Figure 2). The nitro-substituted
indolyl precursor afforded a 67% yield of 3z. We discovered
that precursors with a free phenolic —OH group, internal
olefins, and acrylate derivatives did not afford the desired
product. We also performed the synthesis of 3t starting with 1
mmol of the precursor and obtained the product in an 86%
yield.

We performed some preliminary experiments to obtain
insights about the reaction mechanism. In an attempt to trap
radical intermediates, we performed an experiment in the
presence of TEMPO and discovered that the reaction was
completely suppressed (Scheme 2). Although we were unable
to isolate the TEMPO adduct, we detected the presence of
species 4 upon GC—MS analysis of the reaction mixture. When

N Me
©: >—©— NBF,  NayS;05 (3 equiv) N
_ems VP N Ve
P eosin Y (5 mol%)
o N\F CE, Ar 0
0,8
Me 1a 2w blue LED 3w (63%) 2 o

BHT was employed with the intent to trap radicals, the original
product was obtained in only a 20% yield, although no BHT
adduct could be isolated. We also performed a potential
competition experiment by adding 1,1-diphenylethylene to the
reaction under otherwise identical reaction conditions. We
observed that only a trace amount of the product formed, and
the species 5 and 6 could be detected upon the GC—MS
analysis of the reaction mixture, indicating that the phenyl and
phenylsulfonyl radicals were trapped by the olefin (Scheme 2).
We designed a radical clock experiment wherein the O-
allylated phenyldiazonium salt (2w) was employed under
standard conditions. The product 3w was obtained in a 63%
yield, implying that the intramolecular trapping of the phenyl
radical by the allyl double bond preceded the alkylsulfonate
formation and subsequent steps. The results obtained from the
above reactions provide evidence to indicate that the reaction
likely follows a radical pathway. We also determined that the
Eosin Y fluorescence was being quenched by the diazonium
salt 2a.

Based on abovementioned experimental observations and
literature information,”"**** we proposed a plausible mecha-
nism of the reaction as depicted in Scheme 3. Initially, the

Scheme 3. Proposed Mechanism

o\\é,,o
N,BF, NayS,05 1a )\f
I :I O
o:“
Na;SQO3 3
Q Me ‘ )
‘/k p O O=s!~

N2BF,
Me
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phenyl radical is generated from the diazonium (E,,, = —0.2
V)**7%° by the oxidative quenching of the photoexcited
catalyst (E;, = —1.11 V), which is trapped by either
Na,$,05 or SO, (thermally generated from Na,$S,0:)°" to
form the phenylsufonyl radical B. This radical intermediate
further reacts with the precursor la to generate the alkyl
radical C, which is trapped by the aryl ring to generate the
intermediate D. Finally, the photocatalytic cycle is being
terminated by the oxidation of D to afford E. Alternatively, E
could be generated by the single electron oxidation with the
diazonium salt via chain propagation,59 which then results in
the final product 3a.

In conclusion, we have developed a photochemical cascade
cyclization that results in the formation of two C—S bonds and
one C—C bond in a single operation. A collection of
sulfonylated benzimidazo/indolo[2,1-a]iso-quinolin-6(5H)-
ones were accessed in an expeditious manner utilizing this
transformation that does not require transition metals,
oxidants, or additives and employs a readily available SO,
surrogate. The preliminary potential of this reaction manifold
to access even more complex moieties was demonstrated
through a functionalized diazonium precursor, and further
studies in this area are ongoing in our labs.
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