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A B S T R A C T   

In the past 20 years, there have been several infectious disease outbreaks in humans for which the causative 
agent has been a zoonotic coronavirus. Novel infectious disease outbreaks, as illustrated by the current coro-
navirus disease 2019 (COVID-19) pandemic, demand a rapid response in terms of identifying effective treatments 
for seriously ill patients. The repurposing of approved drugs from other therapeutic areas is one of the most 
practical routes through which to approach this. Here, we present a systematic network-based drug repurposing 
methodology, which interrogates virus–human, human protein–protein and drug–protein interactome data. We 
identified 196 approved drugs that are appropriate for repurposing against COVID-19 and 102 approved drugs 
against a related coronavirus, severe acute respiratory syndrome (SARS-CoV). We constructed a protein–protein 
interaction (PPI) network based on disease signatures from COVID-19 and SARS multi-omics datasets. Analysis of 
this PPI network uncovered key pathways. Of the 196 drugs predicted to target COVID-19 related pathways, 44 
(hypergeometric p-value: 1.98e− 04) are already in COVID-19 clinical trials, demonstrating the validity of our 
approach. Using an artificial neural network, we provide information on the mechanism of action and thera-
peutic value for each of the identified drugs, to facilitate their rapid repurposing into clinical trials.   

1. Introduction 

Coronaviruses are pathogenic RNA viruses that cause respiratory 
tract infections in humans and animals. To date, seven coronaviruses 
have been found to cause infectious diseases in humans. Among them, 
severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, and 
COVID-19 (SARS-CoV-2) in 2019, can produce severe symptoms in 
infected individuals and to date have killed an estimated 750 people[1] 
and 4.0 million people[2], respectively. The global pandemic caused by 
SARS-CoV-2 is ongoing, with the number of infections and deaths 
steadily increasing. The initial cases of both SARS and COVID-19 are 
thought to have been caused by the crossing over of coronaviruses be-
tween animals and humans (zoonotic transmission) and some have 
predicted that as human populations continue to grow and expand into 
new habitats, zoonotic transmission resulting in the emergence of novel 
infectious diseases could become common [3]. 

As a result of the SARS-CoV-2 pandemic and the need for treatments 
to alleviate severe disease and reduce deaths, studies have been carried 
out at an unprecedented pace to understand this virus. As a result, 
virus–host interactome data that identifies directly interacting proteins 

(DIPs) [4] and proteomics data that maps differentially expressed pro-
teins (DEPs) [4] after infection have been generated and shared. Such 
datasets, along with and other omics data from virus studies, can form 
the basis of drug repurposing studies, one of the more rapid approaches 
for identifying potential new treatments [5,6]. 

Previously, we have applied a drug repurposing strategy to identify 
potential new treatments for COVID-19 [7]. In this study, we use a 
similar computational approach, but include datasets from cells infected 
with either SARS-CoV-2 or SARS-CoV. Our integrative drug repurposing 
methodology combines computational biology and machine learning 
approaches to analyse datasets from coronavirus studies. Our method-
ology uses virus–host interactions and proteins that are differentially 
expressed 24 h after virus infection, identified from previous experi-
mental studies. We construct a virus-induced network to identify po-
tential antiviral therapies and analyse mechanisms of actions of these 
potential therapies (Fig. 1). The application of this methodology to both 
COVID-19 and SARS indicates that these approaches could be used to 
identify potential therapies for future novel viral infectious disease 
outbreaks. 
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2. Materials and methods 

2.1. Data collection 

DIP and DEP data for SARS-CoV and SARS-CoV-2 were obtained from 
Stukalov et al. [4]. In brief, this study [4] used A549 human lung car-
cinoma cells infected with SARS-CoV or SARS-CoV-2 and 6, 12 and 24 h 
after infection mass spectrometry analyses were used to investigate 
virus–host interactions and changes in protein expression. We used the 
high-confidence virus–host interactions identified after infection as DIP 
for SARS-CoV (521 proteins) and SARS-CoV-2 (781 proteins). As alter-
ations in protein expression levels were most evident at 24 h after 
infection (hpi; Bayesian linear model-based unadjusted two-sided P- 
value ≤10–3, |log2 fold change| ≥0.5), we used the published data from 
this time point as DEPs for SARS-CoV (188 proteins) and SARS-CoV-2 
(197 proteins). 

2.2. CIP network construction 

The coronavirus induced protein (CIP) network was constructed 
using all shortest paths between DIP and DEP in a human protein–pro-
tein interaction network generated using the STRING database (v11.0) 
[8]. The main purpose of constructing the CIP network in our study was 
to identify COVID-19 disease associated proteins. The STRING database 
was selected as the PPI database because of previous evidence that it 
contains more comprehensive information on diverse collections of 

disease-associated protein sets compared with other databases [9]. Only 
interactions with a confidence score of more than medium (0.7) were 
used. The 0.7 cut-off is high confidence level for protein–protein inter-
action searches in the STRING database [10,11], but also enables all 
potential interactions to be considered, thereby enabling as many key 
proteins as possible to be identified and analysed. 

All shortest paths between all pair proteins of DIP and DEP on the 
human PPI network were found using Dijkstra algorithm. For the 
shortest path finding, we used the python package NetworkX (v2.2) 
[12]. All paths between DIPs and DEPs compose a “hidden layer” in the 
CIP network. 

2.3. Network analysis on CIP network 

Eigenvector centrality, degree centrality, betweenness centrality and 
random walk with restart (RWR) were utilized to identify key proteins in 
CIP networks. The CIP network was represented by an adjacency matrix 
A, where Aij = 1 there is an edge between nodes i and j or Aij = 0 
otherwise. The eigenvector centrality xi was defined as 

λx = xA (1)  

where x is an eigenvector of the adjacency matrix A with eigenvalue λ. If 
λ is the largest eigenvalue of the adjacency matrix A, there is a unique 
solution x, all centrality values are positive [13]. Degree centrality of 
node i was defined as 

Fig. 1. Workflow of computational drug repurposing platform using network. The coronavirus induced protein (CIP) network was constructed by connecting through 
the shortest paths the directly interacting proteins (DIPs), identified using a virus–host interactome dataset, with the differentially expressed proteins (DEPs), 
identified using proteins that are differentially expressed 24 h after infection [2]. Network analyses are used to identify key proteins involved in coronavirus infection 
and then potential drug candidates are identified using a network proximity model between key proteins and drug targets. An artificial neural network is used to map 
the mechanism of action of the potential drugs. 
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CD(i) =
∑N

j=1
Aij (2)  

where N is the number of nodes in the CIP network. Betweenness cen-
trality of a node i was defined as 

CB(i) =
∑

s,t∈V

σ(s, t|i)
σ(s, t) (3)  

where V is the set of nodes, σ(s, t) is the total number of shortest paths 
between s and t, and σ(s, t|i) is the number of shortest paths between s 
and t paths passing through node i. If s = t, σ(s, t) = 1, and if i ∈ s, t,
σ(s, t|i) = 0. 

Fig. 2 shows how each of the centrality algorithms impact the 
network. Eigenvector centrality was used to identify the most influential 
proteins in the network (Fig. 2B). If a protein interacts with many other 
proteins as a hub protein, and those proteins also interact with many 
other proteins, the protein will have high eigenvector centrality. Degree 
centrality was used to identify the hub proteins in the network (Fig. 2C). 
Betweenness centrality measure is based on communication flow and 
measures how often a node occurs on all shortest paths between two 
nodes (Fig. 2D). Betweenness centrality was used to identify the 
bottleneck proteins in the network. Bottlenecks, that have many shortest 
paths passing through them, are connector proteins for inter-pathways 
with a functional property [14]. A RWR algorithm was used to see 
which human proteins are most affected upon SARS-CoV-2 infection. To 
do this, we used all DIP as the starting points of RWR. The RWR pa-
rameters were (1) a restart probability of 0.15, (2) a maximum iteration 
number of 100, and (3) an error tolerance of 1e− 06. We assigned edge 
betweenness centrality as an edge score on the CIP network. The RWR 

calculated a score per protein in the CIP network which indicates how 
much a given protein was influenced by SARS-CoV-2 via DIP. The al-
gorithms were implemented in the python package NetworkX (v 2.2) 
[12]. 

Permutation tests were performed 1000 times to identify significant 
proteins for each of the network centrality algorithms. In 1000 permu-
tation tests, each test generated a random network with a preserved 
degree distribution of the original network, the CIP network. To 
generate a random network, we reconnected the edge in the CIP network 
and swiped the node. So, the random network in each permutation test 
has at least 66% of the rewired edges. Then, in the permutation test, we 
applied the network algorithm and obtained the cumulative results of 
the network algorithm. These cumulative results were used to calculate 
the empirical p-value of the network algorithm. We combined the four 
permutation test results to determine the final set of key proteins that 
have an empirical p-value ≤0.01 in either result (Fig. S1,2). 

2.4. Over-representation analysis of key proteins 

To characterise key proteins of CIP networks, we performed over- 
representation analysis (ORA) on GO biological process associated 
with key proteins, gprofiler2 [15] (hypergeometric test, false discovery 
rate (FDR)-BH < 0.01). We also calculate the GO-ORA similarity be-
tween SARS and COVID-19 using overlap similarity: 

O(A,B) =
|A ∩ B|

min(|A|, |B|)
(4)  

2.5. Network-based drug simulation 

Approved drugs were collected from ChEMBL [16] and DrugBank 

Fig. 2. Proteins in the hidden layer show significant centrality score in eigenvector, degree and betweenness centrality. Nodes in the network are key proteins of 
COVID-19 network. A significant node has a higher centrality score. Edges are the interactions between key proteins. Edge colours represent average centrality score 
of two interacting proteins. (A) Shows a subnetwork of the COVID-19 network composed of key proteins. (B) Illustrates the result of applying eigenvector centrality to 
this subnetwork. (C) Shows the result of applying degree centrality to this subnetwork. (D) Illustrates the result of applying betweenness centrality to 
this subnetwork. 

W. Hwang and N. Han                                                                                                                                                                                                                        



Methods 203 (2022) 214–225

217

[17]. Drug-target interaction information was collected from DrugBank 
(v 5.1) [17], STITCH (v 5.0, confidence score >0.9) [18] and Cheng, 
et al. [19]. 

In-silico network-based proximity analysis was conducted for key 
proteins from the CIP network for SARS and COVID-19. Given K, the set 
of key proteins from CIP networks, and T, the set of drug targets, the 
network proximity (Eq. (5)) of K with the target set of T of each 
approved drug where d(k, t) the shortest path length between nodes k ∈
K and t ∈ T in the human PPIs [19] was executed. Closest distance 
measure was used to calculate the distance between a given drug’s 
targets and key proteins in the CIP network, because it previously 
showed best performance in drug-disease pair prediction in the study of 
Guney et al. [20]. 

dc(K, T) =
1

‖T‖

∑

t∈T
mink∈K d(k, t) (5) 

To assess the significance of the distance between a key protein in the 
CIP network and a drug dc(K,T), the distance was converted to Z-score 
based on permutation tests by using 

z(K, T) =
d(K,T) − μd(K,T)

σd(K,T)
(6) 

The permutation tests were repeated 1000 times, each time with two 
randomly selected gene sets. There are few high degree nodes due to the 
scale-free network of the human protein–protein interaction network. 
To avoid repetitive selection of the same high degree nodes during 
random selection, we used a binning approach with at least 100 nodes in 
a bin. In the binning approach, nodes in same bin have a similar node 
degree to maintain node degree distribution for random selection. When 
we randomly select a set of genes, we perform a random selection among 
proteins from all bins to verify that the minimum node degree was less 
than the minimum node degree of the selected gene set and the 
maximum node degree was greater than the maximum node degree of 
the selected gene set. The corresponding p-value was calculated based 
on the permutation test results. The Z-score captures the statistical sig-
nificance of the drug target—disease protein distance compared with the 
respective random expectation. Drug to disease associations with a Z- 
score of less than − 2 were considered significantly proximal [20]. We 
selected drugs with a Z-score of less than − 2 as potential drugs for SARS 
or COVID-19. 

2.6. Drug-pathway association matrix 

To understand mechanisms of action (MoA) for our identified drugs, 
we conducted the Reactome pathway over-representation analysis 
(ORA) of target proteins of drugs using R (v 3.5.2) package, gprofiler2 
[15] (hypergeometric test, FDR-BH < 0.01). Reactome pathways (the 
version on 15/05/2020) was used for pathway ORA because it is most 
actively updated public database of human pathways [21]. Pathway 
ORA was conducted by extending not only the target protein of a drug 
but also adjacent proteins to identify a drug-related pathway — through 
utilizing the advantages of network analysis that considers not only a 
single protein but also associated neighbour proteins. 

Significantly enriched biological pathways of drug targets for each of 
the identified drugs were integrated, resulting in 865 pathways (FDR- 
BH < 1.0e− 13) for SARS-CoV and 1008 pathways (FDR-BH < 1.0e− 12) 
for SARS-CoV-2. To include all drug-associated pathways, we integrated 
pathways while reducing the FDR. The Reactome pathway has a hier-
archical structure among pathways, whereby the lower hierarchy 
pathway is more specific than the higher hierarchy pathway. The parent 
pathway semantically includes the child pathways. In the process of 
integrating the enriched pathways per drug, we filtered the topmost 
pathway (e.g. Metabolism, Apoptosis, Cell cycle) in pathway hierarchy 
of Reactome. The lowest pathways are merged to its parent pathways. 
For example, “Regulation of PTEN stability and activity” and 

“Regulation of PTEN gene transcription” are merged to “PIP3 activates 
AKT signalling”. We identified 219 key pathways associated with 
identified drugs of SARS-CoV and 249 key pathways associated with 
identified drugs of SARS-CoV-2. 

Based on these identifications, a matrix containing F1 scores of the 
identified drugs and the key pathways was generated for drug–pathway 
association. The Reactome pathway ORA for identified drugs using 
gprofiler2 provides enrichment p-values, precision and recall informa-
tion that were used to produce the F1 scores. 

F1 = 2 ×
precision × recall
precision + recall

(7) 

The meaning of precision here is the proportion of drug targets that 
are annotated to the pathway. The meaning of recall here is the pro-
portion of the pathway gene set that the drug targets recover. The 
pathway to which the largest number of drug target proteins belong has 
the highest precision value. The pathway with the greatest intersection 
of pathway proteins and target proteins has the highest recall value. In 
other words, the pathway with the highest F1 score in the drug–pathway 
associations is the pathway to which the drug’s target protein associates 
most strongly and the pathway with the largest intersection between the 
target proteins. For example, the number of target proteins for dexa-
methasone is 12. The number of ’Interleukin-4 and Interleukin-13 
signaling’ pathway proteins is 112. The number of intersections be-
tween the target protein of dexamethasone and the ‘Interleukin-4 and 
Interleukin-13 signaling’ pathway protein is 4. So, the precision is 4/12 
= 0.33 and the recall value is 4/112 = 0.0357. Thus, the F1 score is 
0.064. The number of ‘Cytokine Signaling in Immune system’ pathway 
proteins is 849, and the number of intersections between the target 
protein of dexamethasone and the ‘Cytokine Signaling in Immune sys-
tem’ pathway protein is 4. The precision is the same as 0.33 for ‘Inter-
leukin-4 and Interleukin-13 signaling’, but the recall value is 4/849 =
0.0047. Thus, the F1 score is 0.0092, which is lower than the ‘Inter-
leukin-4 and Interleukin-13 signaling’. As such, the F1 score comple-
ments the imbalance between the pathway protein and the target 
protein. 

2.7. SOM analysis 

Self-Organizing Map (SOM) [22] was used to analyse the MoA of the 
candidate drugs from our analysis. SOM has descriptive ability and 
hence advantages in visual concept detection. Thus, it was useful to 
directly compare the SOM component heatmaps of the 249 pathways for 
COVID-19 and 219 pathways for SARS. SOM also has the advantage of 
dimensional reduction to allow a more appropriate clustering result. 
SOM was used to calculate the low-dimensional abstractions, which are 
then clustered using k-means. This two-phase approach increases the 
efficiency of k-means clustering with a relatively small number of 
samples, a known limitation in hierarchical clustering algorithms 
including k-means. Another advantage of SOM is noise reduction 
because the SOM abstractions are less sensitive to random variations 
than the input data. In addition, SOM offers a systematic arrangement of 
the candidate drugs to each neuron (or node) and hence to pathway 
clusters. 

The data used in training was the F1 score matrix for Drug-Pathway 
associations. After the SOM training, the Unified distance matrix (U- 
matrix) of the trained unsupervised SOM contains the vector norms 
between the neighbouring SOM nodes and shows data density in input 
space. Each sub-unit is coloured according to distance between corre-
sponding data vectors of neighbour units. Low distances areas (dark 
blue) have high data density (clusters) (Fig. S3,4). Davies-Bouldin index 
(DBI) [23] was calculated based on the U-matrix to determine the 
optimal number of clusters for the k-means algorithm. The k-means al-
gorithm was then used to cluster pathways for COVID-19 and SARS. The 
lowest DB index value occurred at 8 clusters for COVID-19 and 7 clusters 
for SARS, and thus we decided to map the 249 key pathways into 8 
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clusters and 219 key pathways into 7 clusters based on the SOM 
component maps of the key pathways (Fig. S3,4). The 8 clusters for 
COVID19 and the 7 clusters for SARS mapped to three MoA categories 
based on the biological function of pathways belonging to each cluster. 
The mapping result of key pathways to clusters and three MoA groups is 
available in Supplementary Table 1. The detailed information of the 
labelled SOM neurons and the candidate drugs is available in Supple-
mentary Table 1. The SOM Toolbox package [24] for MatLab was used 
for this analysis with default settings and parameters. 

3. Results 

3.1. Construction of coronavirus-induced protein interactome network 

To understand mechanisms underlying SARS and COVID-19, we 
conducted a comprehensive analysis of the protein sets implicated in 
each virus infection using our workflow for data integration and 
network construction. To this end, we hypothesized the DIPs are the 
“cause” of coronavirus infection and that DEPs are the “consequence”, 
and there is a “hidden layer” between DIPs and DEPs where key path-
ways allow DIPs to control DEPs. To construct the hidden layer, we 
connected all pairs of DIPs and DEPs by using human protein–protein 
physical interaction information. We then identified all possible shortest 
paths between 521 DIPs and 188 DEPs in the CIP network for SARS and 
between 775 DIPs and 197 DEPs in the CIP network for COVID-19. As a 
result, we created a CIP for SARS and COVID-19. There are 10,256 
proteins and 222,423 interactions in the SARS network and 11,006 
proteins and 247,788 interactions in the COVID-19 network. In both 
SARS and COVID-19, the overlap between DIPs and DEPs is only 3% and 
4%, respectively (Fig. 3A). More than 99% of pairs of DIPs and DEPs are 
connected through at least one protein in the hidden layer (Fig. 3B). This 
suggests that the hidden layers are important to understand key proteins 
and pathways implicated in coronavirus infection. 

3.2. Network analysis for identifying key proteins and pathways 

In a PPI network, proteins are key components of pathways and can 
significantly influence pathways as potential drug targets. We applied 
multiple network algorithms, including eigenvector centrality, degree 
centrality, betweenness centrality, and random walk with restart 
(RWR), to identify coronavirus related key proteins and key pathways in 

the CIP network. We performed 1000 permutation tests for each 
network algorithm then selected proteins with empirical p values <0.01 
as key proteins. We then performed ORA on Gene Ontology (GO) Bio-
logical Process (BP) to assess whether the key proteins functionally 
relate to the biology of coronavirus infection. 

Eigenvector centrality identifies the most influential proteins in the 
network. It considers ‘how many proteins interact with’ and ‘what 
proteins interact with’ simultaneously. Although the key proteins 
identified by eigenvector centrality are about 55% identical between 
SARS and COVID-19, the enriched GO BP is 84.6% identical among them 
(Fig. 4A, B). The top enriched GO BPs of key proteins identified by 
eigenvector centrality are viral replication related terms such as mRNA 
metabolic processes, viral transcription, and viral gene expression 
[25,26] (Fig. 4C). ORA adjective p-value of GO BPs in which the key 
proteins of COVID-19 are overrepresented are higher than those of 
SARS. This suggests that the key proteins of COVID-19 are more strongly 
associated with viral replication-related functions than key proteins in 
SARS. Degree centrality identifies the hub proteins in the network. It 
considers only ‘how many proteins interact with’ in a distal sub- 
network. The ORA of the key proteins identified by degree centrality 
revealed mRNA metabolic processes and cell surface receptor signalling 
pathways which are related to viral replication, viral processes, and 
virus-host cell interactions (Fig. S5A) [27]. Betweenness centrality 
identifies the proteins that play a bridge role in a network. It considers 
how much a given protein is in-between others. The key proteins iden-
tified by betweenness centrality are enriched in regulatory processes, 
such as regulation of metabolic processes, regulation of protein meta-
bolic processes; and communication-related biological processes, such 
as immune system processes. It is also associated with subcellular 
localization-related processes such as vesicle-mediated transport 
(Fig. 4D). RWR measures the importance of each protein in a network, 
based on the number of incoming interactions and the importance of the 
corresponding starting proteins, which are DIPs. RWR identifies proteins 
affected the most upon coronavirus infection. Key proteins identified by 
RWR were overrepresented in immune responses and cell-to-cell 
communication such as exocytosis, export from the cell and secretion 
(Fig. S5B). Taken together, the key proteins of CIP networks were 
overrepresented in virus replication-related biological processes, such as 
the viral process, viral transcription, and protein localization to the 
endoplasmic reticulum (ER). This is particularly relevant as the ER is the 
favourite intracellular niche for viral replication and assembly (Fig. 4E) 

Fig. 3. Characteristics of the CIP network. (A) Ven diagram of directly interacting proteins (DIPs) and differentially expressed proteins (DEPs) for SARS. DIPs and 
DEPs were identified from cells infected with SARS-CoV or SARS-CoV-2 [2]. The overlap between DIPs and DEPs is only 3%. (B) Ven diagram of DIPs and DEPs for 
COVID-19. The overlap between DIPs and DEPs is 4%. (C) The stacked bar chart shows percentage of the length of shortest paths between DIPs and DEPs at SARS and 
COVID-19. xsThere are 10,256 proteins and 222,423 interactions in the SARS network and 11,006 proteins and 247,788 interactions in the COVID-19 network. 
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Fig. 4. Key proteins of SARS and COVID-19 show similar enriched biological functions. (A) Venn diagram of key proteins for both viruses, identified using an 
eigenvector centrality approach (B) A bar chart of the ORA similarity between SARS and COVID-19, calculated using different network centrality measures (C) A bar 
chart showing enriched biological functions of the key proteins by eigenvector centrality for SARS (blue) and COVID-19 (orange) (D) A bar chart showing enriched 
biological functions of the key proteins by betweenness centrality for SARS (blue) and COVID-19 (orange). (E) A bar chart showing enriched biological functions of 
combined key proteins by all network centrality measures for SARS (blue) and COVID-19 (orange). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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[28]. 

3.3. Comparative analysis of disease mechanisms of SARS and COVID-19 

SARS and COVID-19 share 360 key proteins but also have 369 and 

192 disease-specific key proteins respectively (Fig. 5A). To compare the 
disease mechanisms of SARS and COVID-19, we sought the most rele-
vant biological pathways that have previously been described for SARS- 
CoV-2: viral replication (VR) and immune response (IR) [29]. At the 
highest hierarchical level in the Reactome pathway database, ‘Immune 

Fig. 5. Comparative analysis of disease mechanisms of SARS and COVID-19. (A) A Venn diagram of key proteins in SARS and COVID-19 networks. (B) Circos plot 
depicting interactions between key proteins from the DIPs, DEPs and hidden layer proteins in SARS. DIPs were subdivided into the coronavirus proteins. Hidden layer 
proteins were subdivided into five groups: four Reactome pathways related to viral replication and immune response and one ‘Others’ that do not belong to four 
pathways. All key proteins are identified by eigenvector, betweenness, degree and random walk restart (RWR) network algorithms. (C) Circos plot depicting in-
teractions between key proteins from the DIPs, DEPs and hidden layer proteins in COVID-19. (D) Venn diagram of DIPs, DEPs and key proteins in SARS. (E) Venn 
diagram of DIPs, DEPs and key proteins in COVID-19. 
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System’ (SARS FDR-BH: 2.05e− 23; COVID-19 FDR-BH: 4.96e− 19) [25] 
was identified for the immune response related biological pathway. The 
‘Metabolism of RNA’ (SARS FDR-BH: 3.11e− 37; COVID-19 FDR-BH: 
3.53e− 58) [25,26] ‘Metabolism of Protein’ (SARS FDR-BH: 3.45e− 15; 
COVID-19 FDR-BH: 4.56e− 42) [30] and ‘Cell Cycle’ (SARS FDR-BH: 
6.66e− 20; COVID-19, FDR-BH: 1.59e− 15) [31] were identified for 
viral replication related biological pathways. The key proteins belonging 
to these four pathways were assigned to the four band groups under the 
‘Hidden Layer’ in Fig. 5B and C. The key proteins that did not belong to 
any of the four pathways were assigned to ‘Other’. Among 335 key 
proteins (Fig. 5D) in the hidden layer of the SARS CIP network, 165 key 
proteins (eigen: 113, degree: 22, betweenness: 13, RWR: 17) are related 
to virus replication, and 88 key proteins (eigen: 22, degree: 16, 
betweenness: 33, RWR: 17) are related to immune response. In addition, 
82 key proteins in ‘Other’ are overrepresented in “Fatty acid metabolism 
process” (FDR-BH: 4.77e− 2) that are related to virus replication [32]. 
Among 320 key proteins (Fig. 5E) in the hidden layer of the COVID-19 
CIP network, 178 key proteins (eigen: 120, degree: 26, betweenness: 
15, RWR: 17) are related to virus replication, and 86 key proteins (eigen: 
4, degree: 18, betweenness: 37, RWR: 27) are related to immune 
response. In addition, 56 key proteins in ‘Other’ are also over-
represented in “Fatty acid metabolism process” (FDR-BH: 1.40e− 2). 
This might therefore potentially indicate differences in the regulation of 
viral replication between COVID-19 and SARS. 

Comparing the four network algorithms in both diseases, we found 
that each algorithm identified key proteins in both diseases that have 
highly similar biological functions. For example, eigen centrality iden-
tified key proteins that are enriched in virus replication-related path-
ways. By contrast, betweenness centrality identified key proteins that 
are enriched in immune response related pathways. Our betweenness 
centrality analysis of the COVID-19 CIP network identified key viral 
proteins that are located in M, ORF3 and ORF7b (Fig. 5C). Interestingly, 
Stukalow et al. [4] reported that the M, ORF3 and ORF7b proteins of 
SARS-CoV-2 modulate the innate immune system. These data indicate 
that SARS-CoV-2 might manipulate the innate immune system to pro-
mote virus replication [4] 

3.4. Network-based drug repurposing for SARS and COVID-19 

We next sought to identify approved drugs that are able to target the 
identified key proteins in the CIP pathway. We conducted an in silico 
network-based proximity measure analysis [20] on the key proteins for 
both diseases. We collected 1917 approved drugs from publicly avail-
able databases (ChEMBL [16] and DrugBank [17]). This network-based 
drug repurposing analysis identified 102 drugs and 196 drugs (Supple-
mentary Table 2) that are predicted to target the key proteins of SARS 
and COVID-19 CIP network, respectively. We then checked the 
Anatomical Therapeutic Chemical (ATC) code (84 drugs for SARS and 
155 drugs for COVID-19 only were available) to determine the thera-
peutic areas for which the predicted drugs are normally used. The top 
clinical applications are cancer, sex hormone modulation, lipid signal-
ling modulation, inflammatory/rheumatic disease, bacterial disease and 
immune modulation (Fig. S6). 

Among the 196 identified drugs for COVID-19, 44 (22%) are 
currently in COVID-19 clinical trials [33] (Supplementary Table 2). To 
determine the significance of this finding, we asked what the likelihood 
would be of this number of drugs being identified as hits by chance. 
Given that only 13% of approved drugs (253 of 1917) are in COVID-19 
clinical trials [33], the likelihood that our approach identified 44 drugs 
by chance is low. A hypergeometric test for the probability of 22% of our 
196 drugs being in clinical trials returned a p-value of 1.98e− 04, 
demonstrating the reliability and validity of our computational ap-
proaches. The full list of 196 approved drugs along with their detailed 
information is shown in Supplementary Table 2. 

3.5. Artificial neural network for categorizing mechanisms of actions 

We next wanted to discover the MoA underlying the identified drugs. 
In particular, we wanted to cluster the pathways and mechanisms in 
order to better evaluate their potential effect and utility. For SARS, an 
initial pathway ORA performed on proteins targeted by 102 drugs 
identified a set of 219 key pathways. For COVID-19, 249 key pathways 
have been identified as drug associated pathways (see Methods). We 
then calculated the precision and recall of the over representation 
analysis to produce an F1 score that is the measure of the ORA accuracy 
(see Methods). By calculating F1 scores per drug-pathway association, 
we generated a F1 score matrix. To investigate the MoA for identified 
drugs, we used SOM, a type of artificial neural network, to analyse the 
relationship between drugs and key pathways (termed drug–pathway 
association) for SARS and COVID-19. SOM, an unsupervised learning 
model, clusters drugs and pathways with similar patterns on the F1 
matrix without prior knowledge of drugs and pathways. Then, the 
pathway cluster was mapped to the two therapeutically important MoAs 
related to coronavirus infection (viral replication and immune 
response). We used the pathway clusters to map the identified drugs to 
these two categories of MoA. The detailed information of the pathway 
clusters and MoAs per drug is provided in Supplementary Table 2. 

3.5.1. MOAs of identified drugs for COVID-19 
For COVID-19, we generated a F1 score matrix (for 196 drugs and 

249 pathways that drug target proteins are overrepresented) then we 
investigated the MoA of identified drugs using SOM. 

After training SOM with a F1 score matrix (Supplementary Table 3), 
we used SOM to generate 249 component plane heatmaps in order to 
characterise each of the 249 key pathways. Each heatmap represents the 
intensity patterns of a pathway. To summarise the correlation of 249 
heatmaps, a U-matrix between the neighbour neurons (hexagons) was 
also calculated [34] (Fig. 6A). Each hexagon, which clustered drugs are 
located in, is a unique neuron or ‘node’ of the SOM. To allow direct 
comparison between heatmaps (pathways), the hexagons (neurons) 
have the same position across all heatmaps. 

Next, the 249 key pathways were separated into eight clusters by a k- 
mean clustering algorithm with Davies-Bouldin (DB) index, which pro-
vides the optimal number of clusters (Fig. 5B). The eight clusters were 
“Signaling by Interleukins or regulation of cell cycle”, “FLT3 signaling or 
transcription”, “Translation”, “RNA polymerase transcription”, “RTK 
signaling or Interferon signaling”, “Metabolism of lipids or TGF 
signaling”, “GPCR ligand binding”, ”Metabolism of lipids or Cytokine 
Signaling“ (Fig. 6C). The eight pathway clusters were mapped to ther-
apeutic MoA related to COVID-19 through pathway analysis. We first 
sought those that are potentially major therapeutic strategies to over-
come SARS-CoV-2. Novel ORFs encoded in SARS-CoV-2 are associated 
with viral replication or host immune response modulation [35] and 
treatment strategies for COVID-19 are largely divided into blocking the 
replication of SARS-CoV-2 and modulating the immune response [36]. 
Therefore, we mapped the eight pathway clusters into two categories: 
viral replication and immune response, using literature-driven biolog-
ical supporting evidence based on the Reactome pathway hierarchy 
information (Table 1, Fig. 6D). For example, Cluster 3, which contains 
52 pathways, is related to RNA polymerase transcription which plays an 
essential role in RNA viral replication [37]. Cluster 4 with 48 pathways 
is involved in RTK signalling or interferon signalling that are related to 
the host immune response during virus infection [38]. 

Finally, the SOM assigned 196 drugs into each hexagon to provide an 
indication of MoA per drug (the number of drugs per hexagon is shown 
in Fig. 6E). Notably, nine out of the 44 drugs that are currently in 
COVID-19 clinical trials [33] mapped to the ‘viral replication’ MoA 
category, 30 drugs mapped to ‘viral replication or immune response’, 
and five drugs mapped to ‘immune response’ (Fig. 6E, Supplementary 
Table 2). We then considered the mechanistic roles and connections for 
the 196 drugs and their target proteins that had been mapped into the 
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eight pathway clusters. For example, Sirolimus and 16 other drugs 
belonging to Cluster 3 are associated with the translation function that is 
related to virus replication, and thus the MoA category as a COVID-19 
therapy is virus replication (Supplementary Table 2). 10 out of the 16 
drugs in Cluster 3 are in a COVID-19 clinical trial. Predicted drugs in 
Cluster 3 that are not used for cancer therapy and are not in clinical trials 
were then assessed for their association with viral replication through 
literature searches. We found literature documenting that Zinc defi-
ciency has been confirmed in COVID-19 patients, and SARS-CoV-2 
replication was reduced when zinc was administered [39]. Ademetio-
nine has also been identified as a repurposing candidate in several 
studies [7,40]. And Diethylstilbestrol and adenosine have been shown to 
be effective in regulating the replication of other viruses [41,42]. Thus, 
these previous studies lend further support for the potential relevance of 
these drugs in Cluster. 

3.5.2. MoA of identified drugs for SARS 
We applied the same approach as outlined for COVID-19 to identify 

Fig. 6. Predicted mechanism of actions of 196 candidate drugs for COVID-19. We used SOM, a type of artificial neural network, to analyse the relationship between 
drugs and key pathways (termed drug–pathway association). SOM is an unsupervised learning model, which clusters drugs and pathways with similar patterns 
without prior knowledge of drugs and pathways. (A) U-matrix is shown of the trained unsupervised SOM used to analyze the relationship between the 196 drugs and 
the 249 key pathways. (B) 249 key pathways were separated into eight clusters by a k-mean clustering algorithm with Davies-Bouldin (DB) index. (C) SOM 
component maps (Fig. S3) are used to map the 249 pathways to the eight clusters, which are listed below the map with their associated colour. (D) The eight clusters 
are mapped onto three main therapeutic mechanisms of action using pathway analysis based on the Reactome pathway hierarchy information. (E) The SOM then 
assigns the 196 drugs to each relevant hexagon (neuron) to indicate a relevant MoA per drug. 

Table 1 
MoA of identified drugs for COVID-19.  

Cluster Pathway MoA 
category 

Drugs Drugs in 
clinical trials 

C1 Signaling by Interleukins/ 
regulatin of cell cycle 

VR, IR 13 4 

C2 FLT3 Signaling/Transcription VR, IR 13 10 
C3 Translation VR 17 10 
C4 RNA polymerase transcription VR 8 0 
C5 RTK signaling, Interferon 

signaling 
IR 22 2 

C6 Metabolism of lipids/TGF 
signaling 

VR, IR 35 9 

C7 GPCR ligand binding/Platelet 
Aggregation 

IR 16 3 

C8 Metabolism of lipids/ 
Cytokine Signaling 

VR, IR 72 6  
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the MoA of drugs implicated for the treatment of SARS. We generated an 
F1 score matrix (for 102 drugs and 219 pathways in which drug target 
proteins are overrepresented, Supplementary Table 3) and then we 
investigated the MoA of identified drugs using SOM (Fig. 7). 

We initially generated a 219 pathways U matrix (Fig. 7A) followed 
by separation of the 219 key pathways into seven clusters by a k-mean 
clustering algorithm with Davies-Bouldin (DB) index (Fig. 7B). The 
seven clusters were “Cytokine signaling or cell cycle”, “GPCR ligand 
binding”, “RNA polymerase transcription or Inteferon signaling”, “RTK 
signaling or platelet homeostasis”, “Metabolism of lipids”, “plasma li-
poprotein assembly or Transport of small molecules”, “Metabolism of 
nucleotides or cell cycle” (Fig. 7C and Supplementary Table 1). Seven 
pathway clusters were mapped to 3 MoA categories: viral replication 
and immune responses, viral replication or immune responses, based on 
the Reactome pathway hierarchy and literature [36]. (Table 2, Fig. 7D). 
Finally, the SOM mapped the 102 drugs into each hexagon to specify the 
key pathways (the number of drugs per hexagon is shown in Fig. 7E). 15 
drugs mapped to either the viral replication or the immune response 

MoA pathways and notably, four out of the 21 drugs in the viral repli-
cation MoA category are in clinical trials for the treatment of COVID-19 
[33], as are two of the drugs that mapped to the immune responses 
pathway (Fig. 7E, Supplementary Table 2). 

Fig. 7. Predicted mechanism of actions of 102 candidate drugs for SARS. (A) U-matrix is shown of the trained unsupervised SOM used to analyze the relationship 
between the 102 drugs and the 219 key pathways. (B) 219 key pathways were separated into seven clusters by a k-mean clustering algorithm with Davies-Bouldin 
(DB) index. (C) SOM component maps (Fig. S4) are used to map the 219 pathways to the seven clusters, which are listed below the map along with their associated 
colour. (D) The seven clusters are mapped onto three main therapeutic mechanisms of action using pathway analysis based on the Reactome pathway hierarchy 
information. (E) The SOM then assigns the 102 drugs to each relevant hexagon (neuron) to indicate a relevant MoA per drug. 

Table 2 
MoA of identified drugs for SARS.  

Cluster Pathway MoA 
Category 

Drugs 

C1 cytokine signaling/regulatin of cell cycle VR, IR 8 
C2 GPCR ligand binding IR 4 
C3 RNA polymerase transcription/Inteferon 

signaling 
VR, IR 22 

C4 RTK signaling/platelet homeostasis IR 15 
C5 Metabolism of lipids VR 16 
C6 plasma lipoprotein assembly/Transport of 

small molecules 
VR, IR 17 

C7 Metabolism of nucleotides/cell cycle VR 20  
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4. Discussion 

In this study, we apply a network-based methodology for the sys-
tematic identification of approved drugs that can be potentially repur-
posed for the treatment of SARS and COVID-19. This builds on our 
previous study using the similar approach to identify drugs that might 
provide potential treatments for COVID-19 [7]. The integration of 
drug–target networks, coronavirus–host interactions, coronavirus- 
derived proteomics from human cell lines, and human protein–protein 
interaction networks has enabled us to establish essential disease- 
specific networks; and analysis of this network allowed us to identify 
key proteins associated with coronavirus infectious disease. Through the 
Artificial Neural Networks method, the MoA of the identified drugs was 
analysed to infer how the identified drug might impact SARS or COVID- 
19 biology. 

Our analysis identifies 196 approved drugs for COVID-19 and 102 
approved drugs for SARS, along with their MoA (Supplementary 
Table 2). To validate the predictive power of our approach, we identified 
the number of drugs predicted from our analysis that are currently in 
clinical trials for COVID-19. Of the 196 drugs identified for COVID-19, 
44 were identified as being in clinical trials for COVID-19 patients, 
indicating that our methodology is statically significant. An important 
feature of our analyses is that only approved drugs were used. This al-
lows for rapid advancement of the most promising of the 152 drugs 
which have not yet entered clinical trials for COVID-19. In the case of 
SARS, none of the identified drugs were found to be in clinical trials, so 
the statistical validation of the predicted drugs could not be carried out. 

The list of 196 drugs identified as potential treatments for COVID-19 
has a 40% overlap with the drugs identified in our previous COVID-19 
study [7]. Although the DIPs and DEPs have only a 7% and 9% over-
lap, respectively, between the two studies (possibly owing to the pro-
teomics datasets being from different cell types (kidney in the previous 
study [7] and lung in the current study)), the network-based method-
ology robustly identified drugs and biological pathways (more than 80% 
of similarity) in our two studies. 

By constructing and analysing the CIP network, which includes an 
added hidden layer of proteins between DIP and DEP, we were able to 
find key target proteins for COVID-19 treatment. For example, among 
the predicted drugs we identified for SARS and COVID-19, the most 
frequently targeted protein is prostaglandin-endoperoxidase synthase 2 
(PTGS2), a protein that is involved in inflammation and the generation 
of mitochondria [43]. PTGS2 is in the hidden layer of the CIP network 
and was selected as a key protein through centrality analysis and RWR. 
Of the 196 drugs identified for COVID-19, 49 drugs target PTGS2 and 13 
of them are in clinical trials; this includes dexamethasone, which in the 
RECOVERY trial [44] reduced deaths from COVID-19 by about a third. 
Two other proteins in the hidden layer, AKT1 and nitric oxide synthase 3 
(NOS3), which are necessary for viral synthesis [7,45,46] were also 
targeted by a number of the drugs identified for repurposing in this 
study. AKT1 is targeted by 19 drugs and NOS3 is targeted by 18 drugs. 
Therefore, through the construction and analysis of a CIP network 
consisting of DIPs, DEPs and a hidden layer of proteins, we were able to 
predict drugs that target key proteins associated with viral replication 
and immune responses during infection, some of which are already 
proven treatments for patients severely ill with COVID-19. 

One limitation of our analyses is the use of undirected protein–pro-
tein network analysis, meaning it is unknown whether the predicted 
drug inhibits or accelerates coronavirus infection. For example, flucy-
tosine was predicted to be associated with viral replication in this study 
and in our previously published study of viral replication, flucytosine 
accelerated rather than inhibited virus replication [7]. This limitation 
can be solved by using a disease-specific directional network, which 
could be generated using time-series transcription data, phosphorylation 
data and a human protein interaction network, such as a regulatory 
network and a protein–protein network. If the methodology we have 
described in this paper was used on a disease-specific directional 

network, it could be used to predict drugs associated only with the 
suppression of virus infection. 

5. Conclusion 

This study presents a robust and integrated network-based method-
ology to rapidly identify clinically approved drugs that can potentially 
be repurposed to treat SARS and COVID-19. The identified compounds 
have fully annotated biological mechanisms and therapeutically rele-
vant information, which should accelerate the entrance of these drugs 
into clinical trials for severely ill patients with COVID-19. Furthermore, 
our unbiased, systematic, data-driven computational approach should 
be useful in identifying drugs that can be repurposed to treat future 
novel viral outbreaks. 
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