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Endothelial cells (ECs) form a critical immune interface regulating both the

activation and trafficking of alloreactive T cells. In the setting of solid organ

transplantation, donor-derived ECs represent sites where alloreactive T

cells encounter major and minor tissue-derived alloantigens. During this

initial encounter, ECs may formatively modulate effector responses of

these T cells through expression of inflammatory mediators. Direct

allorecognition is a process whereby recipient T cells recognize

alloantigen in the context of donor EC-derived HLA molecules. Direct

alloresponses are strongly modulated by human ECs and are galvanized

by EC-derived inflammatory mediators.

Complement are immune proteins that mark damaged or foreign surfaces for

immune cell activation. Following labeling by natural IgM during ischemia

reperfusion injury (IRI) or IgG during antibody-mediated rejection (ABMR), the

complement cascade is terminally activated in the vicinity of donor-derived

ECs to locally generate the solid-phase inflammatory mediator, the membrane

attack complex (MAC). Via upregulation of leukocyte adhesion molecules,

costimulatory molecules, and cytokine trans-presentation, MAC strengthen

EC:T cell direct alloresponses and qualitatively shape the alloimmune T cell

response. These processes together promote T cell-mediated inflammation

during solid organ transplant rejection.

In this review we describe molecular pathways downstream of IgM- and IgG-

mediated MAC assembly on ECs in the setting of IRI and ABMR of tissue

allografts, respectively. We describe work demonstrating that MAC deposition

on ECs generates ‘signaling endosomes’ that sequester and post-translationally

enhance the stability of inflammatory signaling molecules to promote EC

activation, a process potentiating EC-mediated direct allorecognition.

Additionally, with consideration to first-in-human xenotransplantation

procedures, we describe clinical therapeutics based on inhibition of the

complement pathway. The complement cascade critically mediates EC
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activation and improved understanding of relevant effector pathways will

uncover druggable targets to obviate dysregulated alloimmune T cell

infiltration into tissue allografts.
KEYWORDS

complement , endothe l ia l ce l l , a l lorecogni t ion , ant ibody-mediated
rejection, transplant
Introduction

Human ECs comprise a barrier interface regulating

activation and recruitment of lymphocytes. In the setting of

solid organ transplantation, donor ECs represent sites for initial

alloantigen encounter by recipient alloreactive T cells. Donor

ECs in humans express both MHC class I and II molecules as

well as sufficient costimulatory molecules to enable direct

allorecognition. In direct allorecognition, alloimmune T cells

recognize antigen in the context of EC-derived HLA molecules.

Major alloantigens including class I and II HLA molecules

mediate strong type 1 responses, and the strength and quality

of these responses are modulated by inflammatory mediators

expressed by cognate ECs.

Complement-derived mediators are well known to modulate

the direct alloresponse. Complement are evolutionarily ancient

immune proteins that allow host recognition of foreign surfaces

like donor ECs. In solid organ transplantation, complement

proteins become targeted for activation on donor ECs during

perioperative ischemia reperfusion injury (IRI) and antibody-

mediated rejection (ABMR). When activated on ECs,

complement proteins undergo a series of proteolytic cleavages,

resulting in the formation of heterodimeric protein complexes

with novel enzymatic activities enabling formation of

inflammatory mediators. Anaphylatoxins, C3a and C5a, as

well as membrane attack complexes (MAC) are inflammatory

mediators generated following complement activation.

Complement-derived inflammatory mediators promote EC

activation and enhance EC-mediated TCR : MHC interactions,

costimulatory processes, and T cell recruitment. Improved

understanding of the immune mechanisms surrounding

complement-mediated EC activation in the setting of direct

allorecognition will inform therapies to block EC:lymphocyte

interactions and will improve outcomes for transplant recipients.

This review will principally focus on MAC and its attendant

molecular mechanisms inducing EC activation to modulate

direct allorecognition. We first review complement activation

pathways forming MAC, modes of allorecognition, and

mechanisms for resisting MAC-induced cell death. We then

describe experimental methodologies for studying the biological

effects of MAC and MAC-induced signaling pathways. We focus
02
on recent work elucidating MAC-induced ‘signaling endosomes’

that sequester and enhance the stability of pro-inflammatory

mediators to promote EC activation. In light of recent first-in-

human xenotransplant procedures, we close with a description

of therapies focused on complement inhibition and their clinical

applications in solid organ transplantation.
The complement cascade

The complement system is an evolutionarily conserved

system of effectors, split products, and regulatory proteins

enabling host recognition of endogenously altered, damaged,

or foreign surfaces (1). Following activation by donor ECs, the

complement system generates inflammatory mediators,

anaphylatoxins, and membrane attack complexes (MAC) that

modulate direct allorecognition. We review the 3 established

pathways for complement activation below (Figure 1).

The complement system is comprised of ~30 soluble- and

surface-bound proteins, 9 of which are complement effector

proteins. Complement effector proteins, termed C1-C9, are

principally produced by the liver and circulate as inactive

zymogens. Initially identified as a heat-labile component of

normal plasma, complement effectors were renamed C1 to C9

by the World Health Organization in 1968 to reflect the order by

which these proteins become activated rather than the order

whereby these proteins were discovered (2). Complement

effectors, C1-C9, circulate as inactive zymogens and become

activated on donor ECs during ischemia reperfusion injury (IRI)

and antibody-mediated rejection (ABMR). During these

conditions, surface-bound Abs including IgM or IgG bind to

post-ischemic neo-antigens (3–5), MHC molecules (6, 7), or

non-HLA alloantigens (8, 9) expressed on donor ECs. EC-bound

Abs subsequently trigger activation of circulating complement

effectors via the classical complement pathway.

The classical pathway involves successive formation of 4

heterodimeric complexes to generate complement-derived

inflammatory mediators. The first complex, the C1 complex,

contains the pattern recognition receptor, C1q, whose globular

head binds to the Fc region of pentameric IgM and monomeric

IgG (10, 11) during IRI and ABMR. In addition to Abs, C1q also
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binds a plethora of EC-derived molecules including various

damage-associated molecular patterns (DAMPs, 12, 13),

apoptotic cells (14, 15), and altered self-proteins (16–20).

Upon ligand binding, C1q becomes complexed with the C1r

and C1s proteases to form a C1q-binding tetramer, C1r2C1s2

(21–23). The activated C1 recognition complex subsequently

promotes proteolytic cleavage of C4 and C2 whose split products

form a second protein complex comprised of C4bC2a

heterodimers. C4bC2a heterodimers are a C3 convertase that

acquires the ability to proteolytically cleave C3. Cleavage of C3

by the C3 convertase generates the soluble inflammatory

mediator, C3a, and a split product, C3b. C3b binds to the C3

convertase to form a third protein complex, C4bC2aC3b, which

becomes a C5 convertase with the ability to cleave C5. The C5

convertase mediates cleavage of C5 to generate the potent

anaphylatoxin, C5a, as well as the split product, C5b. C5b

heterodimerizes with terminal complement proteins C6, C7, to

form a ring-like substrate that interacts with the surface lipid

bilayer of target cells like donor ECs (24). C5b-7 is a MAC

initiator complex that subsequently recruits C8. C8 in turn binds

to and accelerates the polymerization of C9 monomers (24).

Following binding to C8, C9 monomers recruited from soluble

pools in sera undergo unidirectional, clockwise polymerization

to form a pore-like structure of 90-110Å in diameter and

permeable to molecules of 10-17 kD (25–28). Successful

insertion of the C5b-9 complex into donor EC membranes

results in formation of MAC, the fourth complement protein

complex. MAC are composed of 13-18 C9 molecules (27);

trimeric C8 composed of a, b, and g subunits (29); and the

initiator C5b-7 ring which becomes a stoichiometrically minor

component of the completed transmembrane structure (27, 28).

Following MAC insertion into EC surfaces, MAC cause non-

cytolytic EC activation as described in the subsequent section.

Complement activation may be triggered by 2 additional

pathways, the lectin pathway and the alternative pathway, both

of which have been implicated in vascular rejection of tissue

allografts and will be described briefly here. In the lectin

pathway, a recognition complex containing mannose-binding

lectins (MBLs) or ficolins act as pattern recognition receptors

canonically sensing carbohydrate and molecules containing an

acetyl determinant like N-acetylglucosamine (GlcNAc) and N-

acetylgalactosamine (GalNAc, 30–32). MBLs/ficolins become

complexed with mannose-associated serine proteases (MASP1/

2/3, 33, 34) that, analogous to C1r/s, sequentially cleave C4 and

C2 to generate the second protein complex, C4b2a, that

functions as a C3 convertase. Following activation by the

MASP recognition complex, the lectin pathway proceeds to

generate the same downstream complexes as the classical

pathway above including the C5 convertase (C4bC2aC3b) and

MAC (C5b-9). Activation of the lectin pathway has been linked

to IRI (35, 36), and polymorphisms in the MBL2 pattern

recognition receptor, is significantly associated with

development of ABMR (37).
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The third complement activation pathway, the alternative

pathway, has been widely implicated in IRI (38–41). C3 is the

most abundant complement protein in plasma, circulating at a

concentration of ~1.2mg/mL, and various C3 cleavage products

centrally mediate inflammation. C3 molecules undergo tick-

over, or constitutive spontaneous hydrolysis, to form

biologically active C3(H2O) molecules at a basally low rate of

~1-2 molecules per hour (42). Foreign surfaces like donor ECs

dramatically accelerate tick-over, allowing formation of

threshold quantities of C3(H2O) that bind to and cleave factor

B, forming a C3(H2O)Bb complex that functions as a C3

convertase (43–46). The C3 convertase activity of C3(H2O)Bb

cleaves C3 to generate C3a and the split product, C3b. C3b

subsequently binds to Bb to form new a protein complex,

C3bBbC3b, containing 2 molecules of C3b complexed with Bb.

The stability of these complexes is enhanced by properdin/factor

D. The C3bBbC3b complex acquires C5 convertase activity and

cleaves C5 to form C5a and C5b, the latter of which becomes

part of the MAC initiator complex, C5b-7. Similar to the classical

or lectin pathways above, C3a, C5a, and MAC are generated as

inflammatory mediators through successive proteolytic

amplification. Similar to the classical and lectin pathways

where gene polymorphisms have been linked to patient

outcomes polymorphic variation in C3 has shown associations

with ABMR in numerous studies (47–50).
Complement split products as
inflammatory mediators

Complement effectors are highly conserved among

metazoans of both invertebrate and vertebrate species. Among

the most ancient complement proteins are the early complement

effectors, C1-C5, whose evolutionary ages range between 500-

1000 million years and whose split products show biological

activity. Split products derived from early complement effectors

include soluble-phase anaphylatoxins, C3a and C5a, and solid-

phase opsonins, iC3b, C3b, and C3d, which covalently bind to

donor ECs during IRI and ABMR. A large body of evidence

ascribes an inflammatory role for soluble complement mediators

in immune cell activation which includes EC:T cell interactions.

In addition to opsonizing foreign material, C3a and C5a bind to

cognate GPCRs, C3aR and C5aR, respectively, to transmit

inflammatory signals to target cells like donor ECs. C3a binds

to C3aR, and C5a binds to 2 C5a receptor isoforms, C5aR1 and

C5aR2, showing distinct cellular localization and having

opposing signaling effects. Knockout mouse models involving

C3 and C5 have demonstrated a strong role for anaphylatoxins

in mediating myeloid cell recruitment to transplanted tissues as

well as roles in recruitment of CD4+ T cells. It is worth noting

that there is substantial evidence that C3 and C5, may be also

produced by parenchymal and immune cells and that these
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proteins may become cleaved intracellularly to mediate immune

signaling. The roles of intracellularly-derived C3a and C5a and

their roles in T cell activation have been comprehensively

reviewed elsewhere (51).

Humans express 4 complement receptors, termed CR1-CR4

which variably bind to C3 cleavage products including C3b,

iC3b, C3d, C3dg. In particular, iC3b/C3b/C3d form covalent

attachments to host proteins, damaged erythrocytes, and Fc

receptors of Abs and importantly show binding to CR2. CR2

is heavily expressed on follicular dendritic cells and B cells and

mediates pathological B cell activation in various disease settings

including viral infection and ABMR (52).
Autologous endothelial cells resist
MAC-induced cell death

As opposed to early complement components, the terminal

complement effectors forming MAC, C6-C9, emerged later in

evolution (1). Genetic deficiencies of terminal complement

components are widely recognized as conferring increased risk

for infection by encapsulated bacterial, in particular Neisseriae,

and has strongly influenced clinical guidelines regarding

vaccination strategies involving multiple pathogens (53).

Genetic loss of C9 confers a 700-fold increased risk for

Neisserial meningitis (54), suggesting evolutionary

development of MAC as a defense mechanism against

infection by such pathogens.

While seminally studied for their roles in mediating cytolysis

(2), MAC formed from autologous complement proteins from

the same species elicit EC activation without substantial EC

death in vivo (reviewed in 55, 56). In contrast to in vitro models

showing that MAC may induce cell death of up to ≥50% of

treated cells, complement activation in patients, even during

severe or terminal instances of ABMR, show disproportionately

low frequencies of donor EC cell death in relation to the degree

of complement activation. This process also holds true for SARS-

CoV-2 infection where ECs show non-cytopathic infection (57)

despite strong MAC deposition on target tissues (58, 59); and

systemic lupus erythematosus (SLE) where complement-

mediated endothelitis occurs without widespread vessel

rarefaction (60).

Seminal studies characterizing the physiologic function of

MAC employed anucleated red blood cells or xenogeneic

substrates like bacteria, as target cells (2). In these studies, the

pore-forming capability of MAC which since have been well

characterized ultrastructurally and on an atomic scale (24–29)

were definitively demonstrated, an effect causing target cell lysis.

However, resistance to MAC-induced cell death in nucleated,

autologous cells was initially recognized in the 1980s (61–64),

and since this time, at least 4 molecular mechanisms enabling

target cell survival have been described.
Frontiers in Immunology 04
In contrast to anucleated cells and foreign pathogens,

autologous cells may constrain MAC-induced cytolysis in a

species-specific manner. This phenomenon, known as

homologous restriction, is mediated by complement regulatory

proteins (65). Many proteins within the complement system

contain complement control protein (CCP) domains consisting

of conserved repeats that direct interactions among proteins in

the complement system. The GPI-anchored proteins, CD55 and

CD59, blocking generation of C5b and polymerization of C9,

respectively, contain recursive CCP domains that limit assembly

and facilitate removal of MAC from the cell surface (66). CCP

domains, also known as “Sushi” domains were recently exploited

in a bioinformatics approach to identify a new complement

regulator, CSMD1, which was found to block MAC assembly at

the level of C7 (67) and was implicated in complement activity

and infertility in vivo and in a patient cohort carrying a non-

synonymous CSDM1 mutation (68). MAC regulatory proteins

expressed in autologous, nucleated cells thus act as scavengers

for limiting the assembly and surface removal of MAC, enabling

autonomous cells to resist osmotic lysis. As described below,

transgenic knockins of CD46 and CD55, CCP-containing

proteins, were used in porcine renal and cardiac xenografts

implanted in humans (69, 70).

As a second MAC regulatory mechanism, C5b-9 insertion

into target EC membranes is blocked via binding to blood-based

chaperones, clusterin (71–73, aka, apolipoprotein J) and

vitronectin (74, aka S protein). The C5b-7 ring interacting

with target surfaces like donor ECs (24) promotes

oligomerization of at least three C9 molecules (75) to form the

terminal complement complex, C5b-9. Excess C5b-9 molecules

bind to C9-binding chaperones and become trapped in a

transition state that is non-permissive for their insertion into

target membranes, thereby resulting solubilization (55, 76).

Soluble terminal complement complexes, called, Sc5b-9,

spatially constrains the radius of MAC assembly to the vicinity

of Ab-bound donor ECs. Levels of Sc5b-9 are dramatically

elevated during immune responses, and Sc5b-9 has been

widely investigated as a biomarker reflecting tissue-bound

levels of MAC (77). The biophysical underpinnings for the cell

non-autonomous constraint of MAC activity by C9-binding

chaperones has been widely investigated, in part due to the

notion that the endogenous MAC inactivators, clusterin or

vitronectin, could be therapeutically exploited to subvert

excess complement activity (reviewed in 78–80).

Exovesiculation or shedding of surface-bound MAC

represents a third mechanism by which autologous, nucleated

cells survive MAC-induced lysis (81–83). Extracellular vesicles

(EVs) are a heterogeneous group of cell-derived vesicles

including exosomes and microvesicles. Exosomes and

microvesicles are vesicular structures released extracellularly

from living cells following MAC deposition on EC surfaces.

Exosomes are spherical vesicles of 30-120nm in size that are

produced via inward invagination of late endosomal membranes
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1020889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2022.1020889
to form multivesicular bodies (83). Multivesicular bodies

subsequently fuse with the plasma membrane to release their

intraluminal contents including exosomes extracellularly. In

contrast, microvesicles are ~100-1000nm in diameter, are

derived from cell membranes, and contain high levels of

surface-derived EC molecules including integrins, CD40L, and

complement regulatory proteins CD55 and CD59 (83, 84). EVs

including exosomes and microvesicles can be released by ECs

(85, 86) and PMNs (87) and efficiently activate complement in

vitro (85, 87) and thus it is postulated that EV membranes may

serve as decoy substrates to limit MAC deposition on

host tissues.

Finally, elimination of MAC from donor EC surfaces may

reduce MAC to sub-lytic levels, thereby enabling intracellular

coping pathways to restore homeostasis. As reviewed elsewhere

(88), various intracellular pathways promote resistance to MAC-

induced cytolysis, a process that has been explored in the setting

of tumor cell evasion from complement-dependent cytotoxicity.

Intracellular pathways conferring resistance to MAC-induced

cytolysis include pathways related to intracellular trafficking of

MAC (81, 82), calcium handling (89), MAPKs (82, 90), heat

shock proteins (91), and NF-kB (92, 93). Together, the 4

regulatory mechanisms above contribute to survival of

autologous, nucleated cells from MAC-induced lysis.
Frontiers in Immunology 05
Experimental models of MAC
assembly

Evolutionary development of mechanisms for resisting

MAC-induced cytolysis implies separable, non-cytolytic effects

of MAC on target cells and provides a basis for studying

inflammatory signaling in MAC-respondent cells like donor

ECs. To study effects of non-cytolytic MAC, at least 5

experimental models for inducing MAC assembly have been

developed. A widely used system for assembling MAC on

nucleated cells involves the use of xenogeneic antisera, e.g.,

rabbit sera overlay on mouse target cells. This widely-used

protocol has allowed discovery of various MAC-induced

inflammatory pathways operative in immune cells including

neutrophils, dendritic cells, and ECs (88) including NLRP3

inflammasome activation (94, 95). A second model for

eliciting MAC assembly on nucleated cells incorporates

stepwise addition of terminal complement proteins at defined

stoichiometric ratios to allow formation of MAC in cell culture

(96). This protocol, theoretically recapitulating homologous

restriction, has been adapted for use in vivo (97). A third

protocol for experimental MAC assembly involves the use of

zymosan-activated serum. Zymosan is primarily composed of

the highly cross-linked polysaccharides alpha-D-mannan, beta-
FIGURE 1

Three pathways of complement activation. The complement cascade may be activated by donor endothelial cells via 3 separable pathways, the
classical (left), alternative (middle), and lectin (right) pathways, to mediate rejection of tissue allografts.
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D-glucan, and other minor polysaccharide polymers derived

from yeast (S. cerevisiae). Yeast-derived zymosan potently

activates all 3 complement pathways and has been widely used

to study downstream effects of anaphylatoxins on immune cells

such as neutrophils and macrophages (28).

Recently, human sera have been exploited as a source for

complement proteins to enable formation of autologous MAC

on human ECs. In a model of ABMR, human ‘high’ panel

reactive antibody (PRA) sera taken from allo-sensitized

transplant candidates were used to elicit autologous MAC

deposition on human ECs (98). PRA sera induced non-

cytolytic MAC on human ECs in an IgG-dependent manner in

vitro and in vivo, facilitating identification of MAC signaling

pathways including non-canonical NF-kB (98–100), NLRP3

inflammasome (101, 102), and canonical NF-kB (101). These

pathways collectively contributed to EC activation and enhanced

EC-mediated direct allorecognition. In a model of IRI, human

sera used as a source for complement proteins deposited non-

cytolytic MAC on human ECs in an IgM-dependent manner

following in vitro anoxia of human ECs or coronary artery

segments (102). Using this model, EC-mediated direct

alloresponses promoted selective expansion of T peripheral

helper (TPH) cells but not T follicular helper (TFH) cells in an

IL-18-dependent manner to promote B cell activation and de

novo DSA within donor tissues. Various model systems have

been developed to assemble non-cytolytic MAC in vitro and in

vivo and have shown utility in defining MAC signaling effects

across numerous clinical settings.
Human ECs mediate direct
allorecognition

Alloantigen encounter may occur via 3 pathways including

direct allorecognition, indirect allorecognition, and semi-direct

allorecognition (Figure 2; 103). In direct allorecognition, the

antigen presenting cells (APCs) are the donor-derived cells that

present donor MHC: peptide complexes to the host T cells. In

indirect allorecognition, the donor-derived antigens are acquired

and processed by the recipient APCs. The recipient APCs then

present the donor antigens to host T cells. Semidirect

allorecognition occurs when MHC: peptide complexes shed

from donor-derived cells become captured by recipient APCs

(2). The recipient APCs then present MHC: peptide complexes

to host T cells. T cell activation is restricted by the donor MHC

molecules in direct allorecognition, whereas the T cell activation

is restricted by recipient MHC molecules in indirect

allorecognition. Because the intact donor-derived MHC

molecules are presented by the recipient APCs in semidirect

allorecognition, T cell activation is restricted by donor MHC

molecules in this context (104).

Human ECs are functionally different from mouse ECs in

allograft rejection as they are capable to provide costimulatory
Frontiers in Immunology 06
signaling to activate T cells via direct allorecognition. This is

because of the unique expression pattern in antigen-presenting

molecules and co-stimulators in human endothelial cells.

Human ECs not only express both MHC I and MHC II but

also constitutively express co-stimulators inducing LFA-3, ICOS

ligand, programmed cell death protein Ligand-1 (PDL1), 4-1BB

ligand, and OX40-ligand. Murine ECs unlike human ECs lack

the ability to strongly elicit direct alloresponses due to the lack of

expression of key costimulatory molecules, most saliently CD58/

LFA3 (105). These co-stimulators in human ECs allow direct

recognition and activation of central and effector memory T cells

(106–108). The primary vascular cell type responsible for direct

allorecognition in graft arteries is ECs as vascular smooth muscle

cell expresses rather a low level of HLA molecules (105).

Following direct allorecognition, humoral- and surface-derived

signals cause EC-mediated allostimulation. While MHC class I/

II strongly induce type 1, i.e., IFN-g, responses from T cells, EC:T

cell crosstalk results in EC elaboration of various cytokine factors

including TGF-b and IL-6 that may further influence

differentiat ion of T cel ls act ivated through direct

a l lo recogn i t ion . A l lo s t imula t ion fo l lowing d i rec t

allorecognition is further enhanced by processes affecting ECs

including local complement activity as described in the following

section. In ABMR, the major cell infiltrate in graft artery intima

are T cells, most of which demonstrate a type 1 effector profile

characterized by interferon-gamma (IFN-g) production. There is
a significant amount of IFN-g production in the recovered T cells

isolated from lesions in allograft vasculopathy, and IFN-g is

necessary and sufficient to drive cardiac allograft vasculopathy, a

condition characterized by pathologic vascular changes in

transplant patients with chronic ABMR (109).

Major or minor alloantigen mismatch in a heterotopic heart

transplantation model in mice elicits T cell-mediated rejection

principally via indirect allorecognition. To test EC-mediated

direct allorecognition, a response operative in human tissues,

our group has developed humanized mouse models. In a human

artery xenograft model, human coronary artery segments are

subjected to various treatments simulating IRI (99, 110, 111) or

ABMR (98–102, 112) prior to surgical implantation into

descending aortae of immunodeficient SCID/beige mice

engrafted with human T and B cells. Human artery xenografts

subjected to IRI potentiate the T cell-meditated allograft injury

in the human artery xenograft model. Because the vascular

smooth muscle cannot activate allogeneic T cells and the

absence of leukocytes in the donor grafts activated human ECs

appears to be the dominant APCs in this system (99, 110, 111).

Indeed, human artery xenografts subjected to IRI or ABMR

treatments show non-cytolytic MAC assembly on intimal ECs, a

process causing EC activation and resulting in potentiated

alloimmune T cell activation. As myeloid cells including

antigen presenting cells like dendritic cells do not engraft in

SCID/beige mice, the potentiated T cell activation in this model

is primarily driven by direct allorecognition and formation of de
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novo donor specific antibody in this model occurs within

allograft tissues and not the spleen (110). The grafted artery

shows intimal expansion characterized by an infiltration of

CD45RO+ T cells, the formation of a human EC-lined

microvessel, and the presence of VMSCs. These observations

highly mimic the clinical features of graft arteriosclerosis in

allograft vasculopathy (109). To further uncover the underlying

mechanisms, we found that formation of MAC (99) and MAC-

induced inflammatory mediators in human ECs including

ZFYVE21 (100), NLRP3 (101, 102), IL-15 (112), and IL-18

(110) potentiates frequencies of CD4+ T cells producing IFN-g.
In a second humanized model, human umbilical vein

endothelial cells (HUVECs) are suspended on collagen-

fibronectin gel matrices and implanted subcutaneously in

SCID/beige mice. Three to four weeks post-implantation,

HUVECs self-organize into perfused microvascular networks

anastomosing with murine vasculature (113). By transducing

HUVECs with various overexpression, dominant negative

constructs (101), or CRISPR/Cas9 gene edits (114) prior to

implantation, this model allows interrogation into how

immune molecules including MAC-induced signaling proteins

in ECs affect direct allorecognition. Murine and humanized

models enable the study of indirect and direct allorecognition

responses by ECs, respectively.
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MAC-induced EC activation and
direct allorecognition

Donor ECs are a principal cell type affected by MAC in

ABMR and IRI. via activation on donor ECs, MAC centrally

governs EC:T cell interactions, and MAC formation on ECs is

prognostic for, diagnostic for, and a therapeutic target for

lymphocyte-mediated injury of tissue allografts in these

settings. The use of antisera or human sera to assemble

MAC on nucleated cells as described above has enabled

elucidation of MAC signaling pathways and their effects on

direct allorecognition.

MHC-derived alloantigens strongly mediate type 1

responses, i.e., IFN-g production, and the strength and quality

of this response was found to be modulated by MAC. Non-

cytolytic MAC deposition on human ECs upregulated adhesion

molecules including VCAM-1 and E-selectin, and inflammatory

gene transcripts encoding chemokines like CCL5 and CCL20

and cytokines like IL-6 (98). In EC:T cell cocultures, MAC-

treated ECs increased frequencies of adherent CD4+CD45RO+

memory T cells (Tmem) under conditions of postcapillary

venular shear stress and non-specifically enhanced bulk

cytokine effector responses involving IFN-g, IL-4, and IL-17 in

EC:T cell cocultures. In vivo, human coronary artery segments
FIGURE 2

Three pathways of allorecognition. Donor-derived alloantigens may activate allogeneic T cells via three separable pathways. Human endothelial
cells may act as antigen presenting cells to participate in direct allorecognition responses (left), while murine hosts primarily participate in
semidirect and indirect allorecognition (middle, right) through interactions involving professional antigen presenting cells.
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exposed to PRA and implanted in immunodeficient mice

engrafted with human T and B cells showed increased

infiltration of intimal IFN-g+ T cells causing neointimal

expansion, i.e., cardiac allograft vasculopathy (98, 99). Thus,

MAC broadly enhances the recruitment and strength of effector

activity of Tmem following EC-mediated direct allorecognition.

In two separable processes, MAC may qualitatively shape

allostimulation, the immune response occurring following direct

allorecognition. First, MACmay induce differential expansion of

T cell subsets following direct allorecognition. A survey of

costimulatory molecules in MAC-treated ECs showed that

MAC upregulated PD-L2 and ICOS-L, cognate receptors for

PD-1 and ICOS, respectively (110). PD-1 and ICOS are heavily

expressed on 2 recently described subsets, T peripheral helper

(TPH) and T follicular helper (TFH) cells. These subsets express

PD-1 and ICOS and elaborate IL-21 to promote B cell

maturation and Ab responses. MAC-treated ECs were found

to selectively enhance expansion of TPH cells in an IL-18-

dependent manner, a process eliciting production of de novo

DSA within inflamed peripheral vessels. Mechanistically, MAC

induced NLRP3 inflammasome activity in ECs, resulting in IL-

18 release. IL-18 binds to its cognate receptor, IL-18R, which was

selectively expressed on TPH cells co-expressing CCR2 but not

TFH cells co-expressing CXCR5. This differential expression of

IL-18R caused selective expansion of TPH but not TFH cells.

CCR2+ TPH cells infiltrated into IRI tissues to mediate B cell

maturation and formation of de novo DSA in human artery

xenografts in vivo, and mass cytometry (CyTOF) analysis of

Tmem in renal transplant recipients with IRI showed selective

expansion of TPH but not TFH cells in peripheral circulation

(110). This study demonstrated that MAC could qualitatively

shape the T cell response by promoting differential expansion of

a defined T cell subset following direct allorecognition.

Secondly, MAC-induced IL-1b resulting from inflammasome

activity enhances allostimulation by expanding cytotoxic T

lymphocytes. In an autocrine fashion, MAC-induced IL-1b was

found to increase production of IL-15 which became associated

with the IL-15 receptor a chain (IL-15Ra) at the EC surface (112).

This complex trans-presented IL-15 to effector memory CD8+ T

cells to induce their proliferation and to allow these cells to

become cytotoxic T lymphocytes (CTLs), characterized by

production of granzyme B and perforin. Trans-presentation of

IL-15 by ECs to T cells additionally increased trans-endothelial

migration by activating CD11a/CD18 and motility. While there is

a propensity for activation and recruitment of CD8+ T cells

relative to CD4+ T cells by EC trans-presentation of IL-15, both

populations respond to some degree to surface IL-15/IL-15Ra
complexes (112). With IL-15 blockade by monoclonal antibody,

co-cultured CD4+ and CD8+ T cells lose polyfunctionality, an

effect which is only partially reproduced by IL-1 receptor

antagonism. A likely explanation for this is the evolution of

other cytokines by the co-cultured T cells themselves that signal

through canonical NF-kB, such as tissue necrosis factor a, and are
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sufficient to produce surface IL-15/IL-15Ra (115). This study

shows that MAC assembly on ECs could induce sequential

production of IL-1b and IL-15 to qualitatively modulate the

direct alloresponse. Accumulated data show that MAC may

modulate both the strength and quality of direct alloresponses

of alloimmune T cells.
MAC-induced signaling endosomes

Companion studies have elucidated inflammatory signaling

pathways induced by MAC that modulated the direct

alloresponses above. Using human PRA sera to assemble

autologous MAC on human ECs (Figure 3), it was found that

MAC and not IgG or anaphylatoxins, activated non-canonical

NF-kB, a pathway marked by NF-kB-inducing kinase (NIK).

Activation of non-canonical NF-kB by MAC occurred within

15-30 min (98, 100) in a TRAF3-independent manner (99),

features starkly contrasting with described pathways of non-

canonical NF-kB involving ligand:receptor interactions

occurring in 18-24 hr and requiring TRAF3 degradation. The

unusual pattern of non-canonical NF-kB activity induced by

MAC, coupled with the observation that MAC became

internalized to form a MAC+Rab5+ intracellular compartment

(100), led to the hypothesis of the ‘signaling endosome’ enabling

MAC-induced inflammatory signaling.

Drug, siRNA, and dominant negative treatments blocking

MAC+Rab5+ endosome formation reduced inflammatory gene

transcripts and attenuated EC-mediated generation of IFN-g+
Tmem in EC:T cell cocultures (100). This remarkable finding

indicated that MAC did not elicit NF-kB activity or EC

activation from the cell surface. Rather, MAC rapidly

underwent clathrin-mediated endocytosis and transfer to Rab5

+ vesicles, forming MAC+Rab5+ endosomes. This compartment

contained ‘signaling endosomes’ which were found to sequester

and post-translationally enhance the stability of signal-activating

molecules by protecting these same molecules from proteasome

degradation (100).

As an extension of the signaling endosome hypothesis, we

reasoned that these same structures were enriched in signal-

activating proteins. We devised a protocol for proteomic analysis

of FACS-sorted MAC+Rab5+ endosomes, and this protocol

facilitated unbiased identification of ZFYVE21 which we found

was a novel Rab5 effector (100). ZFYVE21 is a conserved

molecule localized to early endosomes initially implicated in

tumor cell migration (116) but whose functions remain poorly

understood. Our group found that ZFYVE21 regulated lipid and

protein remodeling of MAC+Rab5+ endosomes to cause

sequential pAkt recruitment and enhanced NIK stability. Post-

translationally stabilized levels of NIK promoted recruitment of

NLRP3 from the endoplasmic reticulum and caspase-1 from the

cytosol to appose these molecules on signaling endosomes. As a

result, inflammasome activity characterized by cleaved caspase-
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1, occurred, resulting IL-1b-dependent activation of canonical

NF-kB. In sum, MAC sequentially activated 3 inflammatory

pathways in an inter-dependent fashion. MAC caused early-

phase activation of non-canonical NF-kB (Figure 4). Non-

canonical NF-kB caused assembly of NLRP3 inflammasomes

on signaling endosomes within 30 min (101, 102). Endosome-

associated caspase-1 activity generated IL-1b, causing late-phase
activation of canonical NF-kB at the ≥4 hr timepoint (101).
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Inhibition of MAC via a monoclonal anti-C5 Ab (110),

pharmacologic blockade of ZFYVE21 induction (100), or

drug-induced attenuation of NLRP3 oligomerization (112)

reduced EC-mediated direct allorecognition and EC injury in a

humanized mouse model. These studies collectively advanced

the hypothesis that non-cytolytic MAC forms signaling

endosomes that sequester and enhance the stability of

inflammatory signaling proteins.
FIGURE 4

MAC-induced signaling endosomes cause EC activation. Non-cytolytic MAC assembled on EC surfaces rapidly undergoes clathrin-mediated
endocytosis to form MAC+Rab5+ signaling endosomes that sequester signal-activating elements. In a Rab5-dependent manner, signaling
endosomes post-translationally stabilize ZFYVE21, a Rab5 effector. (A) ZFYVE21 recruits SMURF2, an E3 ubiquitin ligase, to mediate degradative
removal of PTEN from signaling endosomes, causing enrichment for PI(3,4,5)P3 and recruitment of phosphorylated Akt (pAkt, B). This process
sequentially activates non-canonical NF-kB [marked by NIK (NF-kB Inducing Kinase)], NLRP3 inflammasomes, and IL-1b- mediated canonical NF-kB
(C).
FIGURE 3

A model for autologous alloantibody-induced MAC assembly. 'High' panel reactive antibody (PRA) sera is obtained from transplant candidates and
contain high titers of alloantibodies binding to many HLA specificities. PRA mediates binding of donor specific alloantibody to surface MHC I/II
molecules on human ECs. This activates complement components within PRA sera, causing terminal activation of the classical complement
pathway and formation of non-cytolytic MAC on target ECs. Human-derived MAC on human ECs causes EC activation without inducing cell lysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1020889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2022.1020889
Complement-based therapeutics

Recent studies have shown remarkable clinical utility of

complement-based therapeutics. Drug development efforts

have focused on attenuating salient steps in the complement

pathway including protease activation of the C1 recognition

complex, early pathway amplification at the level of C3, and

terminal pathway activation at the level of C5. We highlight

FDA-approved drug inhibitors acting at each of the steps in the

complement pathway above. Sutimlimab is a humanized

monoclonal antibody targeting C1s, the protease component

of the classical complement pathway mediating cleavage of C2

and C4. Sutimlimab recently received FDA approval in Feb 2022

for the indication of cold agglutinin disease, a form of

autoimmunehemolytic anemia involving MAC-induced

hemolysis (117). Compstatins are cyclic peptides originally

derived from a peptide isolated via phage display library (118)

and iteratively modified to selectively bind C3 and to inhibit its

cleavage by C3 convertases (119). A derivative of this original

peptide, pegcetacoplan, received fast-track and orphan drug

approval in July 2022 for the indication of paroxysmal

nocturnal hemoglobinuria (PNH), a rare genetic disorder

caused by aberrant glycosylphosphatidylinositol (GPI)

conformation causing deficient expression of CD55 and CD59

and unconstrained MAC-induced hemolysis. Eculizumab is a

humanized murine monoclonal antibody against C5, which

prevents C5 cleavage and the formation of MAC by any of the

three complement pathways. Like pegcetacoplan, eculizumab

was granted orphan drug approval for PNH along with atypical

hemolytic uremic syndrome, a condition also characterized by

MAC-induced hemolytic anemia. Since its approval, eculizumab

has gained an additional indication for blocking B cell activation

in myasthenia gravis and off-label usage for blocking direct

alloresponses in ABMR (120). Recently, a second and

presumably more cost-effective long-acting monoclonal C5 Ab,

ravulizumab, has also received FDA approval for the indications

above. The risk:benefit profiles for the drugs above appear

reasonable, and the complement pathway has been shown to

be a viable drug target for multiple clinical conditions.

Highlighting its fundamental importance in solid organ

transplantation, the complement pathway was identified as a

key genetic target in first-in-human porcine xenotransplants.

We briefly describe this exciting and rapidly evolving clinical

application. Galactose-a-1,3-galactose (a-gal) is a terminal

carbohydrate modification present in porcine but not human

tissues, and human subjects frequently show high titers of

circulating xeno-Abs against this epitope. Xeno-Abs against a-
gal cause vascular rejection via hyperacute ABMR, a process

mediated by MAC, and this catastrophic condition has limited

the utility of xenografts in patients. Formation of a-gal is
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mediated by the porcine enzyme, a-1,3-galactosyltransferase.
In December 2020, the FDA granted a first-of-its-kind approval

for intentional genomic alterations (IGA) targeting porcine 1,3-

galactosyltransferase. In porcine xenografts, CRISPR-based

methods knocking out porcine 1,3-galactosyltransferase was

combined with subcapsular autologous thymic tissue implants

in a proof-of-principle study to prevent hyperacute ABMR. Two

porcine-to-human xenotransplant procedures were performed

in two brain-dead patients with end-stage renal failure, and

following surgical implantation, over a period of ~2 days the

implanted xenografts carrying the a-gal IGA demonstrated

improvements in renal function including decreasing

creatinine, increasing estimated glomerular filtration rate, and

increasing urine production. These improved parameters

occurred in the absence of hyperacute ABMR (69). This initial

study demonstrated proper functioning of porcine tissue within

a human environment in the absence of complement-

mediated ABMR.

In a follow-up study involving an orthotopic heart xenograft

(70), further IGAs were made to the porcine xenograft to promote

xenograft acceptance. CRISPR-mediated gene edits were made to

knock out 3 highly immunogenic xenoantigens (galactose-a-1,3-

galactose, Sda blood group antigen, and N-glycolylneuraminic

acid) and growth hormone receptor to prevent intrinsic xenograft

growth. To block complement-mediated injury, knockins were

performed for the complement regulatory proteins, CD46 and

CD55, as well as EC-derived proteins facilitating direct

allorecognition, CD47 and heme oxygenase-1. Complement

proteases intersect and show activity against proteins related to

coagulation (121), and coagulation factors including

thrombomodulin and protein C were knocked in to prevent

hypercoagulability linked to inefficient thromboregulation via

porcine proteins. Excitingly, the porcine xenograft containing

the gene edits above survived 60 days following organ

implantation and showed various signs of proper functioning

including normal sinus rhythm, cardiac output, longitudinal

strain, and left ventricular ejection fraction. The patient’s post-

operative course was complicated by oligoanuric renal failure

requiring renal replacement therapy, bacterial and fungal

peritonitis, and increased titers of the porcine CMV/suid

herpesvirus 2, indicating a possible zoonotic infection.

Endomyocardial biopsies, though showing signs of injury

following the patient’s demise at day post-op day 60, did not

show evidence of acute ABMR. These preliminary findings

appeared to validate the efficacy of the immunomodulatory

IGAs made to the porcine xenograft which included

complement regulatory proteins. Genetic supplementation for

endogenous complement inhibition through IGA is a newly

emerging therapeutic, and the clinical application for this

technology in patients appears very promising at the moment.
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Conclusions

In solid organ transplantation, autologous MAC are non-

cytolytic and modulate adaptive immunity by enhancing the

strength and quality of direct allorecognition by ECs.

Highlighting its clinical relevance, MAC formation on ECs is

prognostic for, diagnostic for, and a therapeutic target for

vascular rejection. Blockade of MAC via pharmaceutical and

genetic approaches are emerging as new treatment modalities.

Future work elucidating the immune roles of MAC may

uncover gene targets enabling blockade of its formation on

donor tissues and/or attenuation of its downstream

inflammatory pathways.
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37. Marrón-Liñares GM, Núñez L, Crespo-Leiro MG, Barge-Caballero E,
Pombo J, Paniagua-Martin MJ, et al. Polymorphisms in genes related to the
Frontiers in Immunology 12
complement system and antibody-mediated cardiac allograft rejection. J Heart
Lung Transplant (2018) 37(4):477–85. doi: 10.1016/j.healun.2017.07.006

38. Huang Y, Qiao F, Atkinson C, Holers VM, Tomlinson S. A novel targeted
inhibitor of the alternative pathway of complement and its therapeutic application
in ischemia/reperfusion injury. J Immunol (2008) 181(11):8068–76. doi: 10.4049/
jimmunol.181.11.8068

39. He S, Atkinson C, Qiao F, Cianflone K, Chen X, Tomlinson S. A
complement-dependent balance between hepatic ischemia/reperfusion injury and
liver regeneration in mice. J Clin Invest (2009) 119(8):2304–16. doi: 10.1172/
JCI38289

40. Park P, Haas M, Cunningham PN, Bao L, Alexander JJ, Quigg RJ. Injury in
renal ischemia-reperfusion is independent from immunoglobulins and T
lymphocytes. Am J Physiol Renal Physiol (2002) 282(2):F352–7. doi: 10.1152/
ajprenal.00160.2001

41. Lin T, Zhou W, Farrar CA, Hargreaves RE, Sheerin NS, Sacks SH.
Deficiency of C4 from donor or recipient mouse fails to prevent renal allograft
rejection. Am J Pathol (2006) 168(4):1241–8. doi: 10.2353/ajpath.2006.050360

42. Pangburn MK, Schreiber RD, Müller-Eberhard HJ. Formation of the initial
C3 convertase of the alternative complement pathway. acquisition of C3b-like
activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp
Med (1981) 154:856–67. doi: 10.1084/jem.154.3.856

43. Isenman DE, Kells DI, Cooper NR, Müller-Eberhard HJ, Pangburn MK.
Nucleophilic modification of human complement protein C3: correlation of
conformational changes with acquisition of C3b-like functional properties.
Biochemistry (1981) 20:4458–67. doi: 10.1021/bi00518a034

44. Li K, Gor J, Perkins SJ. Self-association and domain rearrangements between
complement C3 and C3u provide insight into the activation mechanism of C3.
Biochem J (2010) 431:63–72. doi: 10.1042/BJ20100759

45. Nishida N, Walz T, Springer TA. Structural transitions of complement
component C3 and its activation products. Proc Natl Acad Sci USA (2006)
103:19737–42. doi: 10.1073/pnas.0609791104

46. Rodriguez E, Nan R, Li K, Gor J, Perkins SJ. A revised mechanism for the
activation of complement C3 to C3b: a molecular explanation of a disease-
associated polymorphism. J Biol Chem (2014) 290(4):2334–50. doi: 10.1074/
jbc.M114.605691

47. Damman J, Daha MR, Leuvenink HG, van Goor H, Hillebrands JL, Dijk
MC, et al. Association of complement C3 gene variants with renal transplant
outcome of deceased cardiac dead donor kidneys. Am J Transplant (2012) 12
(3):660–8. doi: 10.1111/j.1600-6143.2011.03880.x

48. Varagunam M, Yaqoob MM, Döhler B, Opelz G. C3 polymorphisms and
allograft outcome in renal transplantation. N Engl J Med (2009) 360(9):874–80.
doi: 10.1056/NEJMoa0801861

49. Andrews PA, Finn JE, Mathieson PW, Sacks SH. Molecular analysis of C3
allotypes related to transplant outcome in human renal allografts. Transplantation
(1995) 60(11):1342–6. doi: 10.1097/00007890-199512000-00025

50. Brown KM, Kondeatis E, Vaughan RW, Kon SP, Farmer CK, Taylor JD,
et al. Influence of donor C3 allotype on late renal-transplantation outcome. N Engl J
Med (2006) 354(19):2014–23. doi: 10.1056/NEJMoa052825

51. West EE, Kolev M, Kemper C. Complement and the regulation of T cell
responses. Annu Rev Immunol (2018) 36:309–38. doi: 10.1146/annurev-immunol-
042617-053245

52. Nauser CL, Farrar CA, Sacks SH. Complement recognition pathways in
renal transplantation. J Am Soc Nephrol (2017) 28(9):2571–8. doi: 10.1681/
ASN.2017010079

53. Sobh A, Bonilla FA. Vaccination in primary immunodeficiency disorders. J
Allergy Clin Immunol Pract (2016) 4(6):1066–75. doi: 10.1016/j.jaip.2016.09.012

54. Nagata M, Hara T, Aoki T, Mizuno Y, Akeda H, Inaba S, et al. Inherited
deficiency of ninth component of complement: an increased risk of
meningococcal meningitis. J Pediatr (1989) 114(2):260–4. doi: 10.1016/s0022-
3476(89)80793-0

55. Cross AR, Glotz D, Mooney N. The role of the endothelium during
antibody-mediated rejection: From victim to accomplice. Front Immunol (2018)
9:106. doi: 10.3389/fimmu.2018.00106

56. Piotti G, Palmisano A, Maggiore U, Buzio C. Vascular endothelium as a
target of immune response in renal transplant rejection. Front Immunol (2014)
5:505. doi: 10.3389/fimmu.2014.00505

57. Liu F, Han K, Blair R, Kenst K, Qin Z, Upcin B, et al. SARS-CoV-2 infects
endothelial cells In vivo and In vitro. Front Cell Infect Microbiol (2021) 11:701278.
doi: 10.3389/fcimb.2021.701278

58. Elsoukkary SS, Mostyka M, Dillard A, Berman DR, Ma LX, Chadburn A,
et al. Autopsy findings in 32 patients with COVID-19: A single-institution
experience. Pathobiology (2021) 88(1):56–68. doi: 10.1159/000511325

59. Borczuk AC, Salvatore SP, Seshan SV, Patel SS, Bussel JB, Mostyka M, et al.
COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy
frontiersin.org

https://doi.org/10.1074/jbc.M109.071860
https://doi.org/10.1074/jbc.M109.071860
https://doi.org/10.1038/86567
https://doi.org/10.4049/jimmunol.167.11.6374
https://doi.org/10.1186/s12974-021-02225-9
https://doi.org/10.1016/j.molimm.2006.06.013
https://doi.org/10.1016/j.molimm.2006.06.013
https://doi.org/10.1016/S0161-5890(02)00143-8
https://doi.org/10.1093/emboj/21.3.231
https://doi.org/10.3389/fimmu.2011.00092
https://doi.org/10.1038/s41467-019-10058-7
https://doi.org/10.1038/ncomms10587
https://doi.org/10.1038/ncomms10587
https://doi.org/10.1038/ncomms10588
https://doi.org/10.1016/j.celrep.2016.03.002
https://doi.org/10.1016/j.celrep.2012.02.003
https://doi.org/10.1074/jbc.M111.219766
https://doi.org/10.1074/jbc.M400701200
https://doi.org/10.1084/jem.176.6.1497
https://doi.org/10.4049/jimmunol.174.5.2870
https://doi.org/10.4049/jimmunol.174.5.2870
https://doi.org/10.1038/386506a0
https://doi.org/10.4049/jimmunol.164.5.2281
https://doi.org/10.1016/S0002-9440(10)63424-4
https://doi.org/10.2353/ajpath.2010.090276
https://doi.org/10.1016/j.healun.2017.07.006
https://doi.org/10.4049/jimmunol.181.11.8068
https://doi.org/10.4049/jimmunol.181.11.8068
https://doi.org/10.1172/JCI38289
https://doi.org/10.1172/JCI38289
https://doi.org/10.1152/ajprenal.00160.2001
https://doi.org/10.1152/ajprenal.00160.2001
https://doi.org/10.2353/ajpath.2006.050360
https://doi.org/10.1084/jem.154.3.856
https://doi.org/10.1021/bi00518a034
https://doi.org/10.1042/BJ20100759
https://doi.org/10.1073/pnas.0609791104
https://doi.org/10.1074/jbc.M114.605691
https://doi.org/10.1074/jbc.M114.605691
https://doi.org/10.1111/j.1600-6143.2011.03880.x
https://doi.org/10.1056/NEJMoa0801861
https://doi.org/10.1097/00007890-199512000-00025
https://doi.org/10.1056/NEJMoa052825
https://doi.org/10.1146/annurev-immunol-042617-053245
https://doi.org/10.1146/annurev-immunol-042617-053245
https://doi.org/10.1681/ASN.2017010079
https://doi.org/10.1681/ASN.2017010079
https://doi.org/10.1016/j.jaip.2016.09.012
https://doi.org/10.1016/s0022-3476(89)80793-0
https://doi.org/10.1016/s0022-3476(89)80793-0
https://doi.org/10.3389/fimmu.2018.00106
https://doi.org/10.3389/fimmu.2014.00505
https://doi.org/10.3389/fcimb.2021.701278
https://doi.org/10.1159/000511325
https://doi.org/10.3389/fimmu.2022.1020889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2022.1020889
and new York city. Mod Pathol (2020) 33(11):2156–68. doi: 10.1038/s41379-020-
00661-1

60. Guillevin L, Dörner T. Vasculitis: mechanisms involved and clinical
manifestations. Arthritis Res Ther (2007) 9(Suppl 2):S9. doi: 10.1186/ar2193

61. Carney DF, Hammer CH, Shin ML. Elimination of terminal complement
complexes in the plasma membrane of nucleated cells: influence of extracellular
Ca2+ and association with cellular Ca2+. J Immunol (1986) 137:263–70.

62. Morgan BP, Dankert JR, Esser AF. Recovery of human neutrophils from
complement attack: removal of the membrane attack complex by endocytosis and
exocytosis. J Immunol (1987) 138:246–53.

63. Kerjaschki D, Schulze M, Binder S, Kain R, Ojha PP, Susani M, et al.
Transcellular transport and membrane insertion of the C5b-9 membrane attack
complex of complement by glomerular epithelial cells in experimental
membranous nephropathy. J Immunol (1989) 143:546–52. doi: 10.1111/j.1399-
3089.2005.00237.x

64. Scolding NJ, Houston WA, Morgan BP, Campbell AK, Compston DA.
Reversible injury of cultured rat oligodendrocytes by complement. Immunology
(1989) 67:441–6. doi: 10.1038/s42003-019-0529-9

65. Morgan BP, Berg CW, Harris CL. ''Homologous restriction'' in complement
lysis: roles of membrane complement regulators. Xenotransplantation (2005) 12
(4):258–65. doi: 10.1111/j.1399-3089.2005.00237.x

66. Ojha H, Ghosh P, Singh Panwar H, Shende R, Gondane A, Mande SC, et al.
Spatially conserved motifs in complement control protein domains determine
functionality in regulators of complement activation-family proteins. Commun Biol
(2019) 2:290. doi: 10.1038/s42003-019-0529-9

67. Escudero-Esparza A, Kalchishkova N, Kurbasic E, JiangWG, Blom AM. The
novel complement inhibitor human CUB and sushi multiple domains 1 (CSMD1)
protein promotes factor I-mediated degradation of C4b and C3b and inhibits the
membrane attack complex assembly. FASEB J (2013) 27:5083–93. doi: 10.1096/
fj.13-230706

68. Lee AS, Rusch J, Lima AC, Usmani A, Huang N, Lepamets M, et al. Rare
mutations in the complement regulatory gene CSMD1 are associated with male
and female infertility. Nat Commun (2019) 10(1):4626. doi: 10.1038/s41467-019-
12522-w

69. Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M,
et al. Results of two cases of pig-to-Human kidney xenotransplantation. N Engl J
Med (2022) 386(20):1889–98. doi: 10.1056/NEJMoa2120238

70. Griffith BP, Goerlich CE, Singh AK, Rothblatt M, Lau CL, Shah A, et al.
Genetically modified porcine-to-Human cardiac xenotransplantation. N Engl J
Med (2022) 387(1):35–44. doi: 10.1056/NEJMoa2201422

71. Choi NH, Mazda T, Tomita M. A serum protein SP40,40 modulates the
formation of membrane attack complex of complement on erythrocytes. Mol
Immunol (1989) 26(9):835–40. doi: 10.1016/0161-5890(89)90139-9

72. McDonald JF, Nelsestuen GL. Potent inhibition of terminal complement
assembly by clusterin: characterization of its impact on C9 polymerization.
Biochemistry (1997) 36:7464–73. doi: 10.1021/bi962895r

73. Wilson MR, Zoubeidi A. Clusterin as a therapeutic target. Expert Opin Ther
Targets (2017) 21(2):201–13. doi: 10.1080/14728222.2017.1267142

74. Dahlbäck B, Podack ER. Characterization of human s protein, an inhibitor
of the membrane attack complex of complement. Demonstration Free reactive thiol
Group Biochem (1985) 24(9):2368–74. doi: 10.1021/bi00330a036

75. Tschopp J, Podack ER, Muller-Eberhard HJ. The membrane attack complex
of complement: C5b-8 complex as accelerator of C9 polymerization. J Immunol
(1985) 134:495–9.

76. Podack ER, Muller-Eberhard HJ. Binding of desoxycholate,
phosphatidylcholine vesicles, lipoprotein and of the s-protein to complexes of
terminal complement components. J Immunol (1978) 121:1025–30.

77. Barnum SR, Bubeck D, Schein TN. Soluble membrane attack complex:
Biochemistry and immunobiology. Front Immunol (2020) 11:585108. doi: 10.3389/
fimmu.2020.585108
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