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OBJECTIVE—Insufficient development of a new intra-islet cap-
illary network after transplantation may be one contributing
factor to the failure of islet grafts in clinical transplantation. The
present study tested the hypothesis that the angiostatic factor
thrombospondin-1 (TSP-1), which is normally present in islets,
restricts intra-islet vascular expansion posttransplantation.

RESEARCH DESIGN AND METHODS—Pancreatic islets of
TSP-1–deficient (TSP-1�/�) mice or wild-type islets transfected
with siRNA for TSP-1 were transplanted beneath the renal
capsule of syngeneic or immunocompromised recipient mice.

RESULTS—Both genetically TSP-1�/� islets and TSP-1 siRNA-
transfected islet cells demonstrated an increased vascular den-
sity when compared with control islets 1 month after
transplantation. This was also reflected in a markedly increased
blood perfusion and oxygenation of the grafts. The functional
importance of the improved vascular engraftment was analyzed
by comparing glucose-stimulated insulin release from islet cells
transfected with either TSP-1 siRNA or scramble siRNA before
implantation. These experiments showed that the increased
revascularization of grafts composed of TSP-1 siRNA-transfected
islet cells correlated to increments in both their first and second
phase of glucose-stimulated insulin secretion.

CONCLUSIONS—Our findings demonstrate that inhibition of
TSP-1 in islets intended for transplantation may be a feasible
strategy to improve islet graft revascularization and function.
Diabetes 57:1870–1877, 2008

D
espite improvements in immunosuppression
protocols over the last years, pancreatic islets
from at least two donor pancreata are still
needed to reverse type 1 diabetes in clinical

islet transplantation (1,2). This is far more than the alleged
10–20% of the total islet volume suggested to be enough to
maintain normoglycemia in humans. Moreover, in contrast
to the results for whole-organ transplantation, there seems
to be a continuous decline in islet graft function, and very
few patients remain insulin-independent at 5 years post-
transplantation (2,3). Because the histocompatibility
barrier, the underlying autoimmune disease, and the

immunosuppressive agents used are the same for both
transplantation procedures, it is likely that issues re-
lated to the adaptation of the implanted islets to their
new microenvironment play a role for the differences in
results.

Pancreatic islets become disconnected from their vas-
cular supply during collagenase digestion before trans-
plantation. Revascularization of transplanted islets has
been shown to be concluded within 7–14 days (4). How-
ever, the resulting vascular density remains lower than in
endogenous islets (5–7) and is associated with an impaired
oxygenation (6,8) and endocrine function (7,9,10).

We have recently observed that freshly isolated ro-
dent islets become better revascularized and function
better than islets cultured for several days before trans-
plantation (11), although the islet vascular system, also
when using freshly isolated islets for transplantation, is
far from fully restored. One possible explanation for the
improved vascular engraftment in such islets is that not
only host blood vessels but also remnant donor islet
endothelial cells may participate in the formation of a
new islet vascular network (12–14). However, despite
the presence of several mitogens for endothelial cells
within the islets, such as vascular endothelial growth
factor (VEGF), fibroblast growth factor, and matrix
metalloproteinases (15–17), intra-islet endothelial cells
normally have a very low proliferation rate (18,19). This
endothelial quiescence is presumably due to the fact
that pro-angiogenic factors normally are counteracted
by anti-angiogenic factors present in the islets (20),
including the islet endothelial cells themselves (21,22).
A possible key factor in this context is throm-
bospondin-1 (TSP-1), because it is not downregulated by
hypoxia (20), which occurs posttransplantation. More-
over, animals deficient of this glycoprotein are charac-
terized by hypervascular islets (23). The present study
tested the hypothesis that use of genetically TSP-1�/�

islets or transfection of islets in vitro with siRNA for
TSP-1 would create a microenvironment permissive for
blood vessel growth within islets and improve vascular
engraftment and function after transplantation.

RESEARCH DESIGN AND METHODS

Pancreatic islets from wild-type (TSP-1�/�), heterozygous TSP-1�/�, and
TSP-1�/� C57BL/6 mice of the F2-F3 generations were used for transplanta-
tion. The TSP-1�/� mice were generated by homologous recombination in
129/Sv-derived ES cells implanted in C57BL/6 blastocysts (24). A breeding
program of such mice was established at Uppsala University, and male mice
10–12 weeks of age were allocated to the studies. Age-matched wild-type male
C57BL/6 mice were used as controls. Recipient C57BL/6 (nu/nu) mice weigh-
ing �30 g were purchased from M&B Research and Breeding Center (Ry,
Denmark). For experiments with siRNA, adult, inbred C57BL/6 mice (M&B)
were used both as islet donors and recipients. All animals had free access to
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water and food throughout the course of the study. The experiments were
approved by the animal ethics committee for Uppsala University.
Islet isolation and culture. Islets from wild-type, TSP-1�/�, and TSP-1�/�

C57BL/6 mice were prepared by collagenase digestion (25) and cultured at
37°C free-floating in 5 ml culture medium composed of RPMI 1640 (Sigma-
Aldrich, Irvine, U.K.), to which we added 11 mmol/l glucose, 10% (vol/vol) FCS
(Sigma-Aldrich), 0.17 mmol/l sodium benzylpenicillate, and 0.17 mmol/l strep-
tomycin.
TSP-1 siRNA transfection of islet cells. siRNA transfection was per-
formed as previously described (26). Freshly isolated islets were dispersed
at 37°C into single cells by addition of 5 mg/ml trypsin (Sigma-Aldrich) for
�5 min. The trypsination was terminated with Ca2�-containing culture
medium (RPMI 1640), followed by DNase I treatment (33 mU/�l; Amer-
sham Life Sciences, Piscataway, NJ) for 1–2 min. The dispersed cells were
washed in RPMI 1640 (Sigma-Aldrich) and divided into two equal fractions.
Nonadhesive culture dishes were pretreated with FCS for 30 min at room
temperature and then washed with RPMI 1640. Each fraction was placed
into a nonadhesive culture dish followed by transfection with 100 nmol/l
scramble or an equal mixture of four different TSP-1 siRNA sequences
(Table 1) using 10 �g/600 �l Lipofectamine (Invitrogen, Lidingö, Sweden)
in 600 �l RPMI 1640. Using this Lipofectamine protocol, we have previ-
ously observed uptake of siRNA in �90% of all islet cells (26). After 3 h, the
transfection medium was replaced with culture medium. The dispersed
islets were re-aggregated with a shaker overnight at standard culture
conditions before transplantation.
TSP-1 mRNA expression analysis. Dispersed islet cells transfected with
scramble or TSP-1 siRNA, or freshly isolated islets, were washed with PBS
followed by total RNA isolation using Ultraspec (Biotecx Laboratories,
Houston, TX). cDNA synthesis was performed with random nonamers
(Sigma-Aldrich) and reverse transcriptase M-MuLV (Moloney murine leu-
kemia virus) H� (Finnzymes, Espoo, Finland). Amplification was obtained
with a Lightcycler system (Roche-Diagnostic, Lewes, U.K.) using DyNAmo
Capillary SYBR Green qPCR kit (Finnzymes). �-Actin was used as house-
keeping gene. For primer sequences used, see Table 1.
TSP-1 protein expression analysis. Whole islets, kidney and spleen homog-
enates, and dispersed islet cells transfected with scramble, or TSP-1 siRNA
and incubated 1–7 days were washed in cold PBS after lyses in SDS sample
buffer (2% SDS, 0.15 mol/l Tris, pH 8.8, 10% glycerol, 5% �-mercaptoethanol,
bromphenol blue, and 2 mmol/l phenylmethylsulfonyl fluoride), boiled for 2
min, and separated on a 6% SDS-PAGE gel. Proteins were transferred to
Hybond-P membrane (GE Healthcare, Uppsala, Sweden). The membranes
were blocked in 2.5% BSA at 4°C overnight followed by incubation with TSP-1
(Ab-2; Ab-4 Labvision, Fremont, CA) (TX-17.10; Santa Cruz Biotechnology,
Santa Cruz, CA) and HSP60 antibodies (Stressgen, Ann Arbor, MI) and probed
with horseradish peroxidase antibody. The bound antibodies were visualized
with Kodak image station 4000MM (Kodak, New Haven, CT) using ECL� (GE
Healthcare). The band intensities were calculated using Kodak Molecular
imaging software 4.5.1 SE.
Glucose-stimulated insulin release. Dispersed islet cells transfected with
scramble or TSP-1 siRNA were re-aggregated overnight, cultured for 72 h,
and investigated for glucose-stimulated insulin release and insulin content.
Groups of islet cells from 10 islets were transferred in triplicate to glass
vials containing 250 �l Krebs-Ringer bicarbonate HEPES (KRBH) buffer
supplemented with 10 mmol/l HEPES (Sigma-Aldrich) and 2 mg/ml BSA

(ICN Biomedicals, Aurora, OH); the buffer is hereafter referred to as KRBH
buffer. The KRBH buffer contained 1.67 mmol/l D-glucose during the 1st h
of incubation at 37°C (O2:CO2 � 95:5). The medium was removed and
replaced by 250 �l KRBH buffer supplemented with 16.7 mmol/l glucose
and incubated for a 2nd h. The medium was again removed, and the islet
cells were harvested and homogenized in 200 �l redistilled water. The
aqueous homogenate was then used for DNA measurements by fluoropho-
tometry (PicoGreen dsDNA Quantitation kit; Molecular Probes, Eugene,
OR). A fraction of the homogenate was mixed with acid-ethanol (0.18 mol/l
HCl in 95% [vol/vol] ethanol), from which insulin was extracted overnight
at 4°C. Insulin contents in incubation medium and homogenates were
determined by ELISA (Mercodia, Uppsala, Sweden).
Islet transplantation. Groups of 250 wild-type, TSP-1�/�, or TSP-1�/�

C57BL/6 islets cultured for 3–4 days or re-aggregated scramble or TSP-1
siRNA transfected C57BL/6 islet cells were packed in a braking pipette and
syngeneically implanted beneath the capsule of the left kidney in nondiabetic
C57BL/6 nu/nu mice anesthetized with avertin (2.5% [vol/vol] solution of 10 g
97% [vol/vol] 2,2,2-tribromoethanol [Sigma-Aldrich] in 10 ml 2-methyl-2-buta-
nol) (Kemila, Stockholm, Sweden). For the transfected material, all re-
aggregated islet cells, irrespective of the size of the organoids, were
transplanted.
Measurements of blood flow and oxygen tension in transplanted

islets. One month posttransplantation, the animals were anesthetized with
avertin (compare with above), placed on a heated operating table (38°C), and
tracheotomized. Polyethylene catheters were inserted into the right carotid
artery and left jugular vein. The former catheter was connected to a Statham
P23dB pressure transducer (Statham Laboratories, Los Angeles, CA) to
monitor arterial blood pressure, whereas the latter catheter was used for
continuous infusion of Ringer solution (5 ml � kg�1 � h�1) to substitute for loss
of body fluid.

After a left subcostal flank incision, the graft-bearing left kidney was
immobilized in a plastic cup. The kidney was embedded in cotton wool soaked
in Ringer solution and covered with mineral oil (Apoteket, Gothenburg,
Sweden) to prevent evaporation and keep the tissue moist at body tempera-
ture. The blood perfusion of the islet graft and the adjacent renal cortex was
measured by laser-Doppler flowmetry (PF 4001-2; Perimed, Stockholm, Swe-
den). The laser-Doppler probe (outer tip diameter 0.45 mm) was positioned
perpendicular to the immobilized tissue surface by the use of a micromanip-
ulator, and care was taken not to cause any compression of the tissue. At least
three blood flow measurements were performed in the transplanted islets and
renal cortex in each animal. The mean of these measurements from each
animal was calculated and considered to be one experiment. Because it is
difficult to calibrate the instrument in physical units of blood flow, all blood
flow values are given as arbitrary tissue perfusion units (TPU).

Oxygen tension was measured in the islet graft and the adjacent renal
parenchyma with Clark microelectrodes (Unisense, Arhus, Denmark), as
described in detail previously (27,28). The electrodes (outer tip diameter 2–6
�m) were inserted into the tissues by the use of a micromanipulator under a
stereomicroscope. At least 10 measurements were performed in both the islet
graft and the renal cortex. The mean of all measurements, in each tissue and
animal, was calculated and considered to be one experiment. During the blood
flow and oxygen tension measurements, blood pressure, body temperature,
and tissue temperature were continuously monitored with a MacLab Instru-
ment (AD Instruments, Hastings, U.K.). A mean arterial blood pressure �75
mmHg was used as a preset exclusion criteria from the study.
Measurements of blood parameters. Blood glucose concentrations were
determined with test reagent strips (Medisense; Baxter Travenol, Deerfield,
IL) from samples obtained from the cut tip of the tail. At the end of blood flow
and oxygen tension measurements, a blood sample was collected for analysis
of hematocrit and blood gases. Animals with pH �7.30, pO2 �10 kPa, pCO2

�6.8 kPa, or hematocrit �40 were excluded from the study.
Light microscopic evaluation. The graft-bearing kidneys were removed
after the oxygen tension and blood flow measurements, fixed in 10% (vol/vol)
formaldehyde, and embedded in paraffin. Consecutive sections (5 �m thick) of
the islet grafts were prepared and stained with the lectin Bandeiraea

simplicifolia (BS-1) or a monoclonal guinea pig anti-insulin antibody (ICN
Biomedicals), as previously described (5), and counterstained with hematox-
ylin. In each case, �10 tissue sections stained with BS-1 or for insulin from all
parts of the islet transplants were randomly chosen and evaluated. The blood
vessel density and �-cell percentage in pancreatic islets was determined by a
direct point-counting method (29). For this purpose, a grid with 121 intersec-
tions was placed onto each tissue section under a light microscope (BS-1,
	400; insulin, 	1,000) (19). The number of intersections overlapping endo-
thelial cells (stained with BS-1) or insulin-positive cells was then counted by
an examiner unaware of the origin of the samples.
Evaluation of islet graft function. Grafts from some of the animals
transplanted with scramble or TSP-1 siRNA-transfected wild-type islet

TABLE 1
PCR primers and siRNA sequences

Gene/siRNA

GenBank
accession
number Primer/siRNA sequence (5
–3
)

�-Actin* NM_007393 F GCTCTGGCTCCTAGCACC
R GAGGAAGCAGTGGCGATACA

TSP-1* NM_011580 F GGAACGGAAAGACAACACTG
R AGTTGAGCCCGGTCCTCTTG

Scramble siRNA† CAGUCGCGUUUGCGACUGG
TSP-1 siRNA 1‡ GAUGACUACGCUGGCUUUGUU
TSP-1 siRNA 2‡ GCCUGCAAGAAAGACGCCUdTT
TSP-1 siRNA 3‡ CAAAGGCUGCUCCAGCUCUdTT
TSP-1 siRNA 4‡ CAAUCUGGACAACUGUCCCdTT

*Primers ordered from MWG Biotech (Ebersberg, Germany).
†Scramble siRNA sequence ordered from Dharmacon Research
(Chicago). ‡TSP-1 siRNA sequences ordered from Qiagen (Hilden,
Germany). F, forward; R, reverse.
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cells were investigated 1 month posttransplantation for glucose-stimulated
insulin secretion as previously described (30). Briefly, the graft-bearing left
kidney was removed together with a part of the aorta and inferior vena
cava. The ureter and the renal vein were cut, while the aorta was
cannulated and infused with a continuously gassed (O2:CO2 � 95:5)
Krebs-Ringer bicarbonate buffer supplemented with 2.0% (wt/vol) each of
BSA (fraction V; Miles Laboratories, Slough, U.K.) and dextran T70
(Pharmacia, Uppsala, Sweden). At different times during the perfusion, the
medium contained either 2.8 or 16.7 mmol/l D-glucose. The medium was
administered at a rate of 1 ml/min without recycling for 60 min with a
perfusion pressure of �40 mmHg. The perfusion experiments started with
a 15-min period using medium containing 2.8 mmol/l glucose, which was
followed by 30 min using 16.7 mmol/l glucose. The perfusions were
concluded by a 15-min perfusion with medium containing 2.8 mmol/l
glucose. A 1.0-ml sample was collected at 14, 15, 16, 17, 18, 19, 20, 22, 25,
30, 35, 40, 45, 50, 55, and 60 min. The insulin concentrations of the effluent
samples were measured by ELISA (Mercodia). The rate of insulin secretion
was calculated by multiplying the insulin concentration in the sample by
the flow rate, giving values of insulin expressed as nanograms per minute.
The area under the curve (AUC) was then determined from these values.
Statistical analysis. Values are expressed as the means � SE. For compar-
isons of nonparametric data, Wilcoxon’s signed rank test was used for
comparisons between two groups, and Kruskal-Wallis was used for multiple
comparisons. When two groups of parametric data were compared, Student’s
paired or unpaired two-tailed t test was used. For all comparisons, P values
�0.05 were considered statistically significant.

RESULTS

Animal characteristics. All recipient mice allocated to
the study weighed �30 g at transplantation and had
increased 5–10% in body weight when investigated 1
month later. Both donors of islets, including the TSP-1�/�

mice, and recipients were normoglycemic with nonfasting
blood glucose concentrations of �7 mmol/l. All animals
allocated to blood flow and oxygen tension measurements
had a mean arterial blood pressure of 90–100 mmHg. No
animals had to be excluded based on the preset exclusion
criteria for blood gases and hematocrit. However, two
animals were excluded from studies of islet graft blood
flow and oxygen tension because of hypotension (mean
arterial blood pressure �75 mmHg) following periopera-
tive bleeding.
Expression of TSP-1 in different organs. TSP-1 immu-
noreactivity was observed as a double band. When com-
pared with spleen, pancreatic islets and kidneys contained
low amounts of the protein TSP-1 (Fig. 1A).
Expression of TSP-1 mRNA and protein in islet cells
after siRNA transfection. Dispersed islet cells trans-
fected with TSP-1 siRNA showed an �40% reduction in
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protein loading. The figure is representative for four separate experiments. B: TSP-1 mRNA expression 24 h posttransfection. Values are means �
SE for 6–11 experiments in each group. Each experiment represents a paired comparison of scramble siRNA and TSP-1 siRNA transfection with
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as reference. *P � 0.03 for TSP-1 siRNA when compared with scramble siRNA transfection. C: Islet cells were lysed and separated by SDS-PAGE
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TSP-1 mRNA expression compared with dispersed islet
cells transfected with scramble siRNA when evaluated
24 h posttransfection (Fig. 1B). At the protein expression
level, the effects of TSP-1 siRNA transfection caused a
delayed effect, with a �40% decrease first after 1 week
(Fig. 1C and D).
Effects of TSP-1 siRNA transfection on islet function.
There were no differences in insulin release at low glucose
concentrations (50.2 � 5.5 vs. 47.2 � 6.7 ng � �g DNA�1 �
h�1), in insulin release at high glucose concentrations
(203.0 � 18.8 vs. 187.2 � 19.3 ng � �g DNA�1 � h�1), or in
islet insulin content (8.2 � 0.1 vs. 7.5 � 0.3 ng/ng DNA)
between islet cells transfected with scramble siRNA or
TSP-1 siRNA 72 h before measurements.
Blood flow. One month posttransplantation, the blood
perfusion of grafts composed of wild-type control islets or
scramble siRNA-transfected islet cells were similar and
40–50% of that in the adjacent renal cortex (Fig. 2A and B,
respectively). In comparison, grafts composed of islet
tissue either genetically decreased or deficient in TSP-1
(Fig. 2A) or transfected with siRNA for TSP-1 (Fig. 2B) had

a markedly higher blood perfusion when compared with
their corresponding control.
Oxygen tension. The pO2 levels in islet grafts composed
of wild-type control islets (Fig. 3A) or in islet cells
transfected with scramble siRNA before transplantation
(Fig. 3B) were 7–8 mmHg 1 month posttransplantation.
Improved oxygenization compared with this was observed
in islet grafts composed of TSP-1�/� islets, TSP-1�/� islets,
or islet cells transfected with TSP-1 siRNA before trans-
plantation (Fig. 3A and B, respectively).
Vascular density. Both wild-type control islets (Fig. 4A

and B) and scramble siRNA-transfected islets tissue (Fig.
4D and E) had a blood vessel density of �7% 1 month
posttransplantation. By contrast, both TSP-1�/� islets (Fig.
4A and C) and islet tissue transfected with siRNA for
TSP-1 (Fig. 4D and F) had an �40% increase in vascular
density. Islet grafts composed of TSP-1�/� islets had a
vascular density in-between wild-type islet grafts and
TSP-1�/� islet grafts (Fig. 4A). The increase in blood
vessels numbers seemed to occur both in the center and
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peripheral regions of the TSP-1�/� islets and TSP-1 siRNA-
transfected islet tissue.
Islet transplant cell composition. There were similar
percentages of �-cells in grafts composed of wild-type
islets or TSP-1�/� islets (84.7 � 1.3% [n � 4] vs. 86.2 �
0.9% [n � 5], respectively). Likewise, there was no differ-
ence in �-cell percentage in the islet tissue composed of
scramble siRNA-transfected and TSP-1 siRNA-transfected
islet cells at 1 month follow-up (85.1 � 0.5 vs. 86.9 � 1.3%,
respectively).
Islet graft function. Perfusions of islet graft–bearing
kidneys 1 month posttransplantation showed that islet
tissue transfected with siRNA for TSP-1 had an improved
first and second peak of insulin release when compared
with scramble siRNA-transfected islet cells (Fig. 5A–C).
Total AUC for glucose-stimulated insulin release in the
TSP-1 siRNA-transfected islet tissue was thus increased by
�40% (Fig. 5D).

DISCUSSION

Adult pancreatic islets have a dense glomerular-like angio-
architecture that requires VEGF-signaling from the �-cells
for its formation and maintenance (31–34). However,
despite chronic exposure to VEGF, vascular expansion
does not normally occur in islets after the 1st postnatal
week (35). Likewise, although increased amounts of not
only VEGF but also other pro-angiogenic factors such as
hepatocyte growth factor are secreted from newly trans-
planted islets (16,36), new blood vessel formation within
the islets also during these conditions is sparse (5–7).
Instead, a rich vascular network is formed in the stroma
around each single transplanted islet (5). This suggests the
presence of matrix- or tissue-bound angiostatic factors
within the implanted islets that prevent intra-islet vascular

formation. Marked overexpression of VEGF in the donor
tissue has previously been shown in experimental studies
to overcome this and to improve islet graft revasculariza-
tion and function (9,10). However, silencing some of the
angiostatic factors may be an even simpler strategy.

In this study, we tested the hypothesis that unopposing
the action of already-present pro-angiogenic factors
through silencing TSP-1 in islets would improve islet graft
revascularization and function. The glycoprotein TSP-1
binds to the extracellular matrix (37,38) and exerts its
main effects through inducing apoptosis selectively in
activated endothelial cells, i.e., those that are forming new
blood vessels, but not quiescent endothelium (39). It also
inhibits angiogenesis by blocking the mobilization of pro-
angiogenic factors, such as matrix metalloproteinase-9
and VEGF, and by inhibiting their access to co-receptors
on the endothelial cell surface (40).

We investigated the influence of TSP-1 on islet graft
revascularization using two different models: by trans-
planting genetically TSP-1 deficient islets and by trans-
planting islet cells transfected with siRNA for TSP-1 in
vitro before transplantation. The first model thereby pro-
vides a persistent partial (TSP-1�/�) or complete loss
(TSP-1�/�) of TSP-1 expression in the islets, whereas the
latter causes only a transient decrease in TSP-1 levels.
Using both approaches, we observed a markedly improved
vascular engraftment of the transplanted islets with im-
proved intra-islet vascular density at 1 month follow-up. In
both models, the newly formed blood vessels also seemed
to be functional, because the improved vascular density
was reflected in an increased blood perfusion and pO2 in
the islet grafts. Notably, the pO2 increase was especially
prominent in the TSP-1�/� mice, where TSP-1 expression
is chronically deficient and of a greater magnitude than the

TSP-1
siRNA

Scramble
siRNA

B
lo

o
d

 v
es

se
l d

en
si

ty
 (

%
)

*

Wild-type TSP +/- TSP -/-

B
lo

o
d

 v
es

se
l d

en
si

ty
 (

%
)A *

D

12

10

8

6

4

2

0

14

12

10

8

6

4

2

0

FIG. 4. Vascular density in renal subcapsular islet grafts 1 month posttransplantation. A: Percentage of islet area constituted by blood vessels
in islet grafts composed of wild-type (f), TSP-1�/� (

�
�), or TSP-1�/� (e) islets. *P � 0.046 when compared with wild-type islets. B and C:

Micrographs of islet grafts composed of wild-type (B) or TSP-1�/� (C) islets stained with the endothelial marker BS-1 (red). D: Percentage of islet
area constituted by blood vessels in islet grafts composed of scramble (f) or TSP-1 siRNA-transfected (e) islets. *P � 0.016 when compared with
scramble siRNA-transfected islets. E and F: Micrographs of islet grafts composed of scramble (E) or TSP-1 (F) siRNA-transfected islets. Values
in A and D are means � SE for five to eight (A) and four experiments in each group, respectively. Scale bars in micrographs are 50 �m.

ISLET GRAFT REVASCULARIZATION AND FUNCTION

1874 DIABETES, VOL. 57, JULY 2008



increase in blood vessel numbers. It is possible that this
reflects higher blood perfusion in individual blood vessels
and thereby better oxygen transport capacities of islet
blood vessels in the absence of TSP-1, e.g., due to loss of
the previously described counteracting effect of TSP-1 on
nitric oxide–mediated vasodilation (41). Nitric oxide is the
main mediator of high blood perfusion in endogenous and
transplanted islets (42,43). It should be noted that an
intra-islet vasodilation is not necessarily reflected in in-
creased total graft blood flow, which is measured by
laser-Doppler flowmetry, because total graft blood flow
represents not only the nutritive blood flow to the endo-
crine cells but also blood flow in the vast number of
stroma capillaries. In contrast, it could be expected that
the blood flow in capillaries in the endocrine parts mainly
contributes to the delivery of oxygen to the endocrine cells
due to limitations of oxygen diffusion (44).

In our characterization of TSP-1�/� mice, we observed
that these mice had fasting and nonfasting blood glucose
levels that were normal and did not differ from those of
wild-type animals. However, despite that TSP-1�/� mice
have been described to have an increased islet mass (23),
closer investigations revealed that these animals were

slightly glucose intolerant and had a decreased islet func-
tion (45), which probably reflects the role of TSP-1 in
transforming growth factor-�1 activation (23). Neverthe-
less, we hypothesized that a transient decrease in islet
TSP-1 levels during the acute revascularization phase of
transplanted islets may still be beneficial for long-term
islet function, considering that such a decrease also can be
seen physiologically during the islet vascular expansion of
pregnant rats. In our protocol for TSP-1 siRNA transfec-
tion of islet cells using Lipofectamine as vector, there was
a transient decrease in islet TSP-1 levels at the mRNA and
protein levels of a similar magnitude as seen in islets
during pregnancy, i.e., �40%. In rapidly dividing cells, the
silencing effect of siRNA usually lasts for �1 week, but
it lasts for up to 3– 4 weeks in nondividing cells both in
vitro and in vivo (46). Probably because of the low
proliferation rate of adult endocrine cells, including
�-cells, and turnover rate of the extracellular matrix
binding of the TSP-1 protein, silencing of TSP-1 in these
cells was not manifested until after 1 week at the
protein level. A partial effect of TSP-1 siRNA may also
be on the remnant donor islet endothelial cells, because
these cells also contain TSP-1 (22). However, in this
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case, the effect is probably much shorter because of cell
division as part of angiogenesis.

When graft function was evaluated by perfusion of
graft-bearing kidneys 1 month posttransplantation, islet
cells exposed to siRNA for TSP-1 before transplantation
performed better than control islet cells exposed to scram-
ble siRNA. The chosen model to evaluate graft function
also enabled us to separately evaluate the effects of
improved vascular engraftment on the insulin release
kinetics from transplanted islets. It is noteworthy that the
peak of the first phase of glucose-stimulated insulin secre-
tion was substantially higher in the better revascularized
islet grafts, which is similar to what we have previously
observed when improving blood perfusion, but not revas-
cularization, by angiotensin II receptor inhibition (47).
However, in contrast to when only the blood perfusion
was improved, we observed in the present study also an
augmented second phase of glucose-stimulated insulin
secretion. This suggests that the present findings do not
merely reflect a “wash-out” effect of insulin retained in the
islet grafts due to low blood perfusion. The general
improvement of glucose-stimulated insulin release may
instead reflect an improved survival, a better oxygenation,
and/or a better endothelial paracrine support of the islet
�-cells. The normally low oxygenation of transplanted
islets may affect islet survival and function, because it
means that their metabolism tends to be much more
anaerobic than that of endogenous islets and results in
lactate formation and tissue acidosis (48). Several recent
reports also indicate that endothelial cell signaling may be
important for �-cell function and growth (19,49,50).

We conclude that transient inhibition of TSP-1 early
posttransplantation may be used to improve islet graft
revascularization and function. Such a strategy, e.g., by
development of pharmacological inhibitors, may be more
feasible in the clinical setting than trying to increase the
expression of pro-angiogenic factors in the transplanted
tissue even further.
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