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ABSTRACT: The orthogonal space random walk (OSRW) method has shown enhanced
sampling efficiency in free energy calculations from previous studies. In this study, the
implementation of OSRW in accordance with the polarizable AMOEBA force field in TINKER
molecular modeling software package is discussed and subsequently applied to the hydration free
energy calculation of 20 small organic molecules, among which 15 are positively charged and five
are neutral. The calculated hydration free energies of these molecules are compared with the
results obtained from the Bennett acceptance ratio method using the same force field, and
overall an excellent agreement is obtained. The convergence and the efficiency of the OSRW are
also discussed and compared with BAR. Combining enhanced sampling techniques such as OSRW with polarizable force fields is
very promising for achieving both accuracy and efficiency in general free energy calculations.

■ INTRODUCTION

Water is a substantial component of living organisms, forming
an environment where biological processes such as the
transportation of ions, the folding of proteins, and the
activation/deactivation of signaling pathways can take place.
The interactions between water and physiologically relevant
molecules, such as monatomic ions, small molecules, and
macromolecules, are crucial to the efforts of understanding such
biological processes and applications such as protein engineer-
ing and drug discovery. Therefore, accurately modeling the
hydration process is arguably the first step in modeling these
biological processes and developing accurate physical models
and robust computational approaches. For instance, not only is
the hydration free energy (HFE) a key property in predicting
the solubility of organic molecules and their binding to
proteins,1−4 but hydration free energy is also an important
measure in the development and evaluation of the accuracy of
force fields5−10 and sampling methods.11−16 The hydration free
energy of a molecule can be calculated by using explicit solvent
models, e.g., TIP3P water17 and AMOEBA water,18 in
combination with alchemical approaches, such as thermody-
namic integration (TI; see review by Kollman1), Bennett
acceptance ratio (BAR),19 or the orthogonal space random
walk (OSRW).4,20−23 Once the force field is well-defined, the
accuracy and precision of the alchemical results are somewhat
more predictable.
Although the importance of including explicit polarization in

molecular modeling have been demonstrated in previous
studies,24−26 the routine application of polarizable force fields,
such as AMOEBA,18,27−30 to obtain accurate thermodynamic
properties is still hindered by the high computational cost of
traditional alchemical approaches. Thus, enhanced sampling

methods such as the OSRW method are more appealing in
such simulations. Unlike BAR or TI, which requires a number
of arbitrary, fixed order parameter λ to connect the two end
states, the OSRW method4,20−23 described in later sections
utilizes dynamic order parameters, λ, and dU/dλ, coupled with
the metadynamics approach31 to sample the two dimensions. In
this way, the alchemical perturbation between the two end
states can be performed in a single molecular dynamics
simulation and with improved efficiency. Previously, we have
demonstrated that OSRW allows efficient sampling of
configurational spaces of molecular crystals.4

In this paper, the OSRW method is implemented with the
polarizable multipole based AMOEBA force field in TINKER
and applied to compute the hydration free energy of several
small organic molecules. The hydration free energy results from
OSRW are compared with those computed from the
conventional BAR method, which has been utilized to compute
free energy of hydration and binding in combination with
AMOEBA in previous studies.5,30,32−39 The results from the
two approaches are in excellent agreement (RMSD = 0.49 kcal/
mol), with the OSRW method showing a significant advantage
in computational efficiency.

■ METHODS

Theoretical Background of OSRW. Because free energy is
a path-independent property, a common approach to calculate
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the free energy difference is to define a mixed potential, so that
the potential functions of the two end states of interest can be
connected analytically. Such a mixed potential is usually defined
as

λ λ λ= − +U U Ur( , ) (1 ) 0 1 (1)

where U is the Hamiltonian of the mixed potential, r is the
coordinate, and the scaling parameter λ = 0 and 1 corresponds
to the two end states, U0 and U1, respectively. The free energy
change from one state to the other can thus be given as

∫ λ
λΔ = ∂

∂ λ
G

U
d

0

1

(2)

where G is the free energy of each state, ΔG is the change in
free energy, and ⟨ ⟩λ is the ensemble average of each λ state.
Such construction of the approach, however, relies on the

assumption that sufficient conformational sampling can be
done as the system adjusts to the new intermediate states. For
complex systems, such transition usually requires a significant
amount of simulation time, especially when there are larger
changes in structure. This is often known as the “Hamiltonian
lagging” problem, which exists for methods where λ is a
continuous and dynamic variable.40 For methods that perform
simulation at discrete λ “windows,” a large number of
intermediate steps are required, and long simulations at each
step are needed to ensure sufficient equilibration and sampling
at each step.
Alternatively, by combining the ideas of the dynamic λ

method40,41 and the metadynamics method,31 Yang and co-
workers proposed an efficient free energy sampling approach,
which they referred to as the orthogonal space random walk
(OSRW).4,20−23 In this approach, a random walk is performed
in two dimensions, λ and its orthogonal generalized force Fλ =
∂U/∂λ. The use of dynamic λ itself unnecessarily improves the
computational efficiency; however, directly biasing along the
∂U/∂λ dimension can potentially accelerate the free energy
calculation since the integral of ∂U/∂λ is exactly the free energy.
By repetitively adding a Gaussian-like repulsive potential to λ
and Fλ spaces, the low energy wells can be “flooded” to
overcome the energy barriers. The potential of the system in
the OSRW can be written as

λ λ λ= + −λU U g F Gr( , ) ( , ) ( )OSRW (3)

where g is the biasing potential that can be defined recursively
as
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where h and w are the height and width of the Gaussian, which
can be adjusted to balance the accuracy and efficiency of the
method, and ti is the index of states. The free energy along the
reaction coordinates can thus be estimated as −g(λ,Fλ). To
move from an initial state to a target state, λ, the free energy
change can thus be estimated as

∫

∫
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By adaptively adding a negative G(λ) to the system
Hamiltonian as shown in eq 3, the “flooding” of the free
energy surface can be accelerated along the λ space.

AMOEBA Based Alchemical Scheme in TINKER. A
hybrid Hamiltonian based on eq 1 is implemented to calculate
the alchemical free energy using the AMOEBA force field in
TINKER. A dual topology approach is used to keep the
intramolecular energies of the mutating systems (e.g., solute
molecules in solution) throughout the simulation, and the
mutating systems A (initial) and B (final) never interact with
each other. In case of absolute hydration free energy
calculations performed in this study, the two topologies are
solute-in-water and water without solute, respectively. In this
approach, the mixed potential can be written as

λ λ λ λ

λ

= + + +

+

U U U U U

U

( ) ( ) ( ) ( )

( )
dt bonded vdW els

real
els
recip

pol (6)

where the subscript dt indicates the Hamiltonian is for dual
topology, and the bonded term is independent of λ. A softcore
van der Waals (vdW) potential4,32 has been adapted to replace
the original buffered 14−7 potential42 in AMOEBA in this
implementation:

λ λε
α λ ρ

α λ ρ
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− + +
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where i and j are the indices of the atoms, ε is the well-depth of
the potential, α is an adjustable constant, ρ = r/r*, and r* is the
equilibrium distance between two atoms. This equation
prevents the numerical instability of the system when λ is
small, and it reduces to the original buffered 14−7 potential
when λ = 1. The real space electrostatic potential18 is written as

∑λ λ=
=

U G B fr( ) ( ) ( )ij
l

ij
l

lels,
real

0

4

(8)

where G is the permanent multipole moment, l is the order of
the multipole moment, B is the screening function, and f is the
modified distance defined as

α λ= + −f r( (1 ) )ij
2 2 1/2

(9)

This definition, similar to the softcore potential for the vdW
term, can prevent the numerical instability of the system when
λ is small and atoms are very close to each other. The final
mixed potential for the real space electrostatic potential is thus

λ λ λ λ λ

λ

= − + +

+ −

U U U U

U

( ) (1 ) ( )

(1 )

els
real

els,A
real,tot

els,B
real,tot

els,A
gas,mut

els,B
gas,mut

(10)

where the superscripts tot and mut respectively indicate the
energy of the whole system and the energy of the part
undergoing alchemical transformation. The reciprocal space
part of the permanent multipole interaction energy is mixed
linearly:

λ λ λ= − +U U U( ) (1 )els
recip

els,A
recip,tot

els,B
recip,tot

(11)

The polarization energy has a slightly different combination.
To eliminate the potential problem4 of the self-consistent field
calculation at unphysically small atomic distances, the polar-
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Table 1. Calculated Hydration Free Energy (kcal/mol) of 20 Compounds Using BAR and OSRW
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ization is switched off until λ is equal to or greater than 0.75,

which is to referred as λpol
start. An artificial scaling factor, given as

λpol,A = (1 − λpol
start − λ)/(1 − λpol

start) and λpol,B = (λ − λpol
start)/(1 −

λpol
start), is used to smoothly switch the potential across 1 − λpol

start

and λpol
start, respectively. The final mixed polarization potential

can be written as
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Various derivatives, ∂U/∂λ, ∂2U/∂λ2, and ∂
2U/∂r∂λ have

been derived in the same way as reported previously.4

■ COMPUTATIONAL DETAILS

In this study, the hydration free energy of 20 small molecule
solutes,43 among which 15 are positively charged compounds
and five are neutral compounds, were calculated in an explicit
solvent model18 using the polarizable AMOEBA force field.27

Parameters of the compounds were obtained using POL-
TYPE.38 Both orthogonal space random walk and Bennett
acceptance ratio methods were used to estimate the free energy
using the same simulation conditions, such as box size,
simulation ensemble, boundary conditions, vdW, and electro-
static cutoffs. Thus, the comparison between OSRW and BAR
methods would not be affected by potential artifacts in the
calculated hydration free energy due to different boundary
conditions or treatment of electrostatic interactions suggested
in previous studies.44,45 All molecular dynamics simulations
were conducted with a RESPA integrator,46 Bussi thermostat,47

and 2 fs time step using the TINKER software package if not
otherwise stated. A cutoff of 12 Å was applied to vdW’s
interaction with α = 0.07 (eq 7), while a cutoff of 7.0 Å was
applied in the real space softcore electrostatic calculations with
α = 2.0 (eqs 8 and 9). Self-consistent induced dipole moments
were converged to below 0.00001 D per atom.

Table 1. continued

a−14.06 ± 0.22 kcal/mol after simulations extended from 1 to 5 ns at each of the 25 steps. b−12.97 ± 0.39 kcal/mol after simulations extended from
4 to 8 ns, averaged over seven independent simulations. cData collected from 0.5 ns simulation in each step; otherwise 1 ns simulations were
performed.
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Before the alchemical simulations, all the solutes were first
soaked in a 30 Å cubic water box followed by a 600 ps
relaxation using NPT molecular dynamics simulation at 298 K
with a 2 fs time step. The resulting boxes were used in the
subsequent NVT simulations with the density fixed at the
average from the NPT simulations.
In OSRW, a 2D grid along the λ and Fλ axes was constructed

to store the history of the (λ, Fλ) states visited. Each point on
the grid represents a bin with finite dimensions. Our
implementation has a λ width of 0.005 and an Fλ width of
2.0. For the λ axis, λ ranges from 0 to 1, and for mathematical
convenience the first and last λ bins are half size (the total
number of the λ bins is 201) and centered at 0 and 1,
respectively. For the Fλ axis, Fλ has no clear range, so the range
must be dynamically updated if the calculated Fλ falls outside
the initial specified range. Also for mathematical convenience,
there is always an Fλ bin centered at zero. Throughout the MD
simulation, each bin centered at (λ, Fλ,) in the grid represents
the number of times a particular state with λ − Δλ/2 < λ < λ +
Δλ/2 and Fλ − ΔFλ/2 < Fλ < Fλ + ΔFλ/2 was visited, where Δλ
and ΔFλ represent the λ width and Fλ width, respectively. For
each count, a 2D biasing Gaussian centered at (λ, Fλ) is added
to the potential. Our implementation uses a Gaussian height of
0.005 with variances of w1

2 = (2Δλ)2 and w2
2 = (2ΔFλ)2. The

Gaussians are cut off after five bins from the central bin.
However, simply with the current implementation, the random
walk may end up being stuck at the λ end points since λ is
between 0 and 1. Thus, mirror conditions are enforced where if
a Gaussian has a contributing value outside the λ range, the
contribution is mirrored onto a bin with a valid range. For the
first and last λ bins, the contributions are automatically doubled
since they are centered at 0 and 1, respectively. The statistical
error was estimated from three repeat simulations of 4 ns for
each compound.
In BAR calculations, a three-step perturbation approach was

applied using the AMOEBA force field.5,30,32 To make the
solute disappear in the solvent, the electrostatic and polar-
ization interactions were perturbed in 11 windows, scaled by λ
= 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0. After the
electrostatic interactions were scaled to zero, then the vdW’s
contribution was perturbed using 14 windows with λ = 1.0, 0.9,
0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0. Then,
1000 ps NVT simulations at 298 K were performed at each
window. The recharging of each solute in the gas phase was
modeled using 11 windows (with an interval of 0.1 for λ) of
1000 ps molecular dynamics simulation at 298 K, a stochastic
integrator, and a 0.1 fs time step. Data collected from 50 to
1000 ps range was then processed using the BAR equations.
The errors for BAR results were computed as a sum of errors
from the individual alchemical perturbation steps.

■ RESULTS AND DISCUSSION
Hydration Free Energy. The hydration free energy was

calculated for the 20 compounds using both OSRW and BAR
methods. In general, a good agreement between the two
methods was obtained (Table 1). The energy values from the
two methods were plotted against each other (Figure 1), and
the r2 correlation coefficient was calculated to be 0.98 for the
charged set and 0.99 for the neutral set. The unsigned average
difference in the calculated hydration free energy between the
two methods is 0.39 kcal/mol, and the root-mean-square
difference is 0.49 kcal/mol (Table 1). For illustration, the
hydration free energy over time is plotted for the OSRW

(Figure 2) and BAR (Figure 3) methods for compounds 1, 11,
and 17.
Compound 17 shows the largest difference of 1.38 kcal/mol

between the two methods, which reduced to 1.09 kcal/mol
after we significantly extended simulations for both methods
(Table 1). Compound 17 has a “complex” structure with two
hydroxyl groups and one fluorine atom all connecting to
adjacent carbons in the benzene ring. The interactions among
these groups and with water can be rather complex. For
example, from both BAR and OSRW simulations, the two
hydroxyl groups were seen as very flexible with the hydrogen
atoms either facing away or forming hydrogen bonds with each
other, albeit with different frequencies. In addition, compound
17 is the only solute with a fluorine atom in this set. To verify
the fluorine parameters, hydration free energy of fluorobenzene
and 2-fluorophenol have also been calculated using OSRW and
compared with experiment values. For each of the two
compounds, three independent OSRW calculations were
performed. The average hydration free energy from the
simulations is −0.76 ± 0.33 and −5.71 ± 0.16 kcal/mol for
fluorobenzene and 2-fluorophenol, respectively. This is in a
good agreement with the experimental hydration free energy of
−0.80 and −5.29 kcal/mol for the two compounds.9

Figure 1. Comparison of the calculated hydration free energy from
BAR and OSRW methods. An excellent agreement between the values
from the two methods is obtained with an R2 coefficient of 0.98 ± 0.02
and 0.99 ± 0.01 for the 15 charged (upper panel) and the five neutral
molecules (lower panel), respectively.
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We first examined the effect of van der Waals perturbation
steps on the hydration free energy calculated from BAR for
compound 17. In our implementation of the BAR approach,
the electrostatic interaction between solute and environment
was first turned off, and then the vdW interactions were scaled.
During this latter stage, water and solute molecules can have
significant overlap, resulting in large uncertainty in the free
energy as evident by the difference between the forward and
backward free energy perturbation results. We added an
additional six windows in the middle of the vdW perturbation
(λ = 0.775, 0.725, 0.675, 0.625, 0.575, 0.525). With these
additional steps and longer simulations, the hydration free
energy of compound 17 is merely increased by 0.2 kcal/mol
(Supporting Information).
We have further investigated water structure near the solute

sampled during the BAR simulations by plotting radial
distribution functions (RDFs) between the compound 17 (O
atoms in the two hydroxyl groups and F atom) and water (O).
It would be best to compare the RDF at the same λ values.
However, this is impossible in this study due to the limitation of
our implementation. As explained in the Methods section, the
BAR method decouples the vdW and electrostatic interactions
separately while in the OSRW approach the two are scaled

Figure 2. Plots of hydration free energy (kcal/mol) for compounds 1
(top), 11 (middle), and 17 (bottom) calculated by OSRW as a
function of time.

Figure 3. Plots of hydration free energy of compounds 1 (top), 11
(middle), and 17 (bottom) calculated by BAR as a function of time.

Figure 4. Plots of the radial distribution function (bin size 0.2 Å) from
BAR simulations: (top) the oxygen of water and the fluorine of
compound 17, (middle) oxygen of water and oxygen of compound 17
in the hydroxide group closest to the fluorine, and (bottom) oxygen of
water and oxygen of compound 17 in the hydroxide group furthest
from fluorine. The RDF was evaluated using the simulated structures
from all perturbation windows.
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simultaneously. As a result, the same λ in the two methods
actually represents different states. Therefore, we plotted the
RDF for the three atom pairs using the trajectories of all the λ

windows (Figure 4). Similar plots for OSRW simulations are
shown in Figure 5, which naturally included all λ states visited
during the simulations. The first apparent difference between
the two methods is that the BAR RDFs have water peaks closer
to the solute at around 1 Å. Note that, in addition to the
difference in how the vdW and electrostatic solute−water
interactions are scaled (sequential in BAR and simultaneous in
OSRW), an equal number of coordinate structures were saved
for each λ window in BAR simulations while the OSRW had an
uneven distribution of λ values given its nature of importance
sampling. Both factors would affect the overall RDF. According
to these RDFs, there is much less structure in the water around
the polar groups of the solute during OSRW simulations, which
we attribute to the “flattened” energy surface by the biasing
potential introduced in OSRW. Another interesting feature is
that there is a consistent but faint “peak” at around 3 Å for the
OSRW RDFs.
As seen from the time evolution of hydration free energy for

compound 17 (Figure 2 bottom), the OSRW simulations
actually first approached −15 kcal/mol in the beginning of the
simulation but quickly increased to around −13 kcal/mol. This
behavior was also observed in some other repeated OSRW
simulations. The results suggest that BAR and OSRW may have
sampled different phase space within the limited simulation
time in this study. Thus, we have further extended the
simulations for both methods. For BAR, we increased the
simulation length at each window from 1 to 5 ns, while for
OSRW we extended the simulation from 4 ns and 8 ns and
added an additional four independent simulation runs for
compound 17. The difference between the hydration free
energy from the two methods dropped to 1.09 kcal/mol but
was still greater than the statistical uncertainty. This indicates
that, for molecules such as compound 17, substantially long
simulations may be necessary to fully converge the answer.

Convergence and Efficiency of the Free Energy in
OSRW and BAR. To examine the computational efficiency and
convergence of OSRW and BAR methods, we analyze the
simulations data for compounds 1, 11, and 17 as examples. The
cumulative hydration free energies of these compounds

Figure 5. Plots of the radial distribution function (bin size 0.2 Å) from
OSRW simulations: (top) oxygen of water and fluorine of compound
17, (middle) oxygen of water and oxygen of compound 17 in the
hydroxide group closest to fluorine in compound 17, and (bottom)
oxygen of water and oxygen of compound 17 in the hydroxide group
farthest away from fluorine in compound 17.

Figure 6. λ and Fλ values over simulation time from the OSRW simulations of compounds 1, 11, and 17 (data collected at every 5 ps). The spikes in
Fλ correspond to barriers crossed by the system.
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calculated by OSRW as a function of time (Figure 2) clearly
demonstrate its efficiency and convergence. For the neutral
compound 17, the HFE has reasonably converged in about 300
ps in a single OSRW simulation. For the two charged
compounds 1 and 11, it takes about 1.5 ns to reach a similar
level of convergence while the absolute value of the HFE is
much large for charged compounds.
Since the free energy is dependent on the λ and ∂U/∂λ, a

sufficient sampling of the system in both spaces is crucial to the
accuracy of the estimated free energy. Distributions of λ and its
generalized force Fλ = ∂U/∂λ against time are shown in Figure
6. It can be seen that the OSRW method samples the order
parameter space multiple times during the simulation. There
are frequent peaks and valleys in the ∂U/∂λ plot. By examining
the free energy surface with respect to ∂U/∂λ and λ in Figure 7,
it can be seen that the large positive values of ∂U/∂λ
correspond to the initial state when the solute is mostly
decoupled from the environment while the negative attractive
∂U/∂λ occurs toward the end state when λ = 1. There is a

broad and flat region in between, which corresponds to ∂U/∂λ
around zero. A significant feature of the OSRW is that it flattens
the energy surface in both λ and ∂U/∂λ dimensions, while the
latter is the exact quantity needed to compute free energy (G =
∫ ⟨∂U/∂λ⟩/dλ). Most other methods that sample only the λ
space do not actively handle the energy barriers along ∂U/∂λ at
a given λ. Figure 7 shows that the surface along ∂U/∂λ at a
given λ can be complicated. In a typical OSRW simulation, the
system quickly reaches the minimum (negative) ∂U/∂λ region
and biasing Gaussian potentials are added in both λ and ∂U/∂λ
dimensions until it reaches the middle flat region (∂U/∂λ ∼
zero) and then glides back and forth along the λ dimension
many times. Sufficient sampling near both initial and end states
is important as both contribute significantly to the free energy.
It should be noted that our implementation involves the use

of metadynamics for the calculation of the biasing potential.
The choice of biasing Gaussian heights and λ particle
movement has not been fully optimized in this study. In
addition, other implementations alternative to metadynamics
can be used and have been explored.23

The convergence of the free energy calculated using BAR, as
seen for compounds 1, 11, and 17 in Figure 3, generally takes
∼300 ps simulations for each window to converge to a
reasonable level. However, if we take the number of windows
needed in BAR simulation into account, it is roughly equivalent
to 8 ns of a single molecular dynamics simulation. Thus, the
superior efficiency of OSRW is apparent.
The OSRW simulation is in general easier to set up and

process as compared with the BAR method. In the TINKER
implementation, only a single molecular dynamics simulation is
required, while the BAR approach requires the maintenance of
∼25 simulations (in this study). A way to improve the sampling
ability of the BAR method is to allow configuration exchanges
among different simulation windows as in the multistate BAR
(mBAR) method.48

■ CONCLUSION
We have implemented the OSRW method for the polarizable
multipole based AMOEBA force field in TINKER and applied
it to the hydration free energy calculations. All pairwise
interactions including vdW and electrostatics in real space were
treated with soft-core. The dual topology approach is applied to
all nonpairwise interactions such as the reciprocal component
of Ewald, polarization energy, and forces. Our implementation
involves the use of metadynamics to introduce the total biasing
potential while other methods used to improve the overall
robustness of the OSRW method are under consideration.23

Current implementation in TINKER can be used to evaluate
hydration as well as binding free energy of host−guest systems.
The OSRW method has been shown to exhibit superior

efficiency for hydration free energy calculations which can be
reliably calculated by using traditional methods such as BAR.
The hydration free energies for a set of 20 compounds were
computed by using both BAR and OSRW. We found excellent
agreement between the two, with a RMSD of 0.49 kcal/mol. A
noticeable difference between the OSRW and BAR results was
observed for compound 17, which has two hydroxyl groups and
a fluorine atom attached to a benzene ring, even after the
simulations were extended significantly. This discrepancy shows
that even for a relatively small solute, the sampling of solute−
solvent configurations can be challenging. In the BAR method,
1 ns at each of 25 steps or more have been performed. For
OSRW, one simulation of 4 ns led to similar results within the

Figure 7. Plots of free energy surfaces for compounds 1 (top), 11
(middle), and 17 (bottom). The color represents the number of visits
to a particular state.
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statistical uncertainty. While further studies are required to
thoroughly evaluate the different free energy methods, our
results suggest that OSRW is an efficient alternative sampling
method that polarizable force fields can benefit from.
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