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Abstract
To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency,
space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to
temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of
acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground
segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved
based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords
containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are
perceived as “figures” popping out of a stochastic “ground.”Magnetoencephalography (MEG)measurement in naïve, distracted,
human subjects revealed robust evoked responses, commencing fromabout 150 msafterfigure onset that reflect the emergence
of the “figure” from the randomly varying “ground.”Neural sources underlying this bottom-updriven figure-ground segregation
were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory
system, is also involved in the early stages of auditory scene analysis.”

Key words: auditory cortex, auditory scene analysis, intraparietal sulcus, magnetoencephalography, segregation, temporal
coherence

Introduction
Amajor challenge for understanding listening in the crowded en-
vironments we typically encounter involves uncovering the per-
ceptual and neuro-computational mechanisms by which the
auditory system extracts a sound source of interest from a hectic
scene. Until recently, most such attempts focused primarily on

“figure” and “ground” signals that differ in frequency, motivated
by findings that segregation is associated with activation of
spatially distinct populations of neurons in the primary auditory
cortex (A1), driven by neuronal adaptation, forwardmasking, and
frequency selectivity (for reviews, see: Fishman et al. 2001, 2004;
Carlyon 2004;Micheyl, Carlyon, et al. 2007;Micheyl, Hanson, et al.
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2007; Gutschalk et al. 2008; Elhilali, Ma, et al. 2009; Elhilali, Xiang,
et al. 2009; Fishman and Steinschneider 2010; Kidd et al. 2011;
Moore and Gockel 2012; Snyder et al. 2012).

However, emerging work suggests that spectral separation
per se is neither sufficient (Elhilali, Ma, et al. 2009) nor necessary
(Teki et al. 2011, 2013; Micheyl, Kreft, et al. 2013; Micheyl, Hanson,
et al. 2013; Christiansen et al. 2014; O’Sullivan et al. 2015) for
segregation to take place. Using a broadband signal (“stochastic
figure-ground”: SFG; Fig. 1), comprised of a sequence of brief
chords containing random pure tone components that vary
from1 chord to another, we demonstrated that listeners are high-
ly sensitive to the occasional repetition of a subset of tone-pips
across chords. Perceptually, the repeating tones fuse together to
form a “figure” that pops out from the randomly varying “ground”
(Teki et al. 2011, 2013). This emergence of structure from a sto-
chastic background captures the challenges of hearing in com-
plex scenes where sources overlap in spectrotemporal
dimensions such that segregation cannot be achieved based on
spectral cues alone. The notable sensitivity exhibited by listeners
confirms that the auditory system possesses specialized me-
chanisms which are tuned to the temporal coincidence of a
small subset of sound elements within a mixture. The general
pattern of performance, including that it scales with the number

of temporally correlated channels, is consistent with the predic-
tions of a recent model of auditory segregation—“temporal co-
herence model” (see extensive discussion in Shamma et al.
2011; Teki et al. 2013), based on a hypothesized mechanism
that captures the extent towhich activity in distinct neuronal po-
pulations that encode different perceptual features is correlated
in time (Krishnan et al. 2014). The model proposes that, in add-
ition to spectral separation, the auditory system relies on tem-
poral relationships between sound elements to perceptually
organize acoustic scenes (Elhilali, Ma, et al. 2009; Shamma et al.
2011; Micheyl, Hanson, et al. 2013; Micheyl, Kreft, et al. 2013).

Using fMRI, and an SFG signal that contained brief “figures”
interspersed within long random tone patterns, we previously
observed activations in planum temporale (PT), superior tem-
poral sulcus (STS), and, intriguingly, in the intraparietal sulcus
(IPS; Teki et al. 2011) evoked specifically by the appearance of
temporally coherent tone patterns. However, due to the poor
temporal resolution of fMRI, it remains unclear at what stage,
in the course of figure-ground segregation, these areas play a
role. In particular, a central issue pertains to whether activity in
IPS reflects early processes that are causally responsible for seg-
regation or rather the (later) consequences of perceptual organ-
ization (Cusack 2005; Shamma andMicheyl 2010; Teki et al. 2011).

The present magnetoencephalography (MEG) study was de-
signed to capture the temporal dynamics of the brain regions in-
volved in segregating the SFG stimulus. Participants performed
an incidental visual task while passively listening (in separate
blocks) to 2 versions of SFG signals (Fig. 1). One version (Fig. 1A)
hereafter termed the “basic” condition consisted of a sequence
of brief (25 ms) chords, each containing a random number of
pure tone components that varied from 1 chord to the next. Part-
way through the signal, a certain number of components were
fixed across chords for the remaining duration. The second ver-
sion (Fig. 1C) contained loud noise bursts (25 ms) interspersed be-
tween successive chords. The noise bursts were intended to
break the pattern of repeating tonal components that comprise
the figure and reduce possible effects of adaptation, which may
underlie figure detection. In previous behavioral experiments
(Teki et al. 2013), this manipulation revealed robust figure-
detection performance. In fact, listeners continued to detect
the “figure” significantly above chance for intervening noise
durations of up to 500 ms, demonstrating that the underlying
mechanisms, which link successive “temporally coherent” com-
ponents across time and frequency, are robust to interference
over very long time scales.

We used MEG to track, with excellent temporal resolution,
the process of figure-ground segregation and the brain areas in-
volved. We observed robust early (within 200 ms of figure onset)
evoked responses that were modulated by the number of tempor-
ally correlated channels comprising the figure. Sources underlying
this bottom-up figure-ground segregation were localized to PT
and, the IPS, demonstrating that this area, outside the “classic”
auditory cortex, is also involved in auditory scene analysis.

Materials and Methods
Participants

Sixteen participants (9 females; mean age: 26.9 years) with nor-
mal hearing and no history of audiological or neurological disor-
ders took part in the study. Experimental procedures were
approved by the Institute of Neurology Ethics Committee (Uni-
versity College London, UK), and written informed consent was
obtained from each participant.

Figure 1. Stochastic figure-ground stimulus. (A) An example spectrogram of the

basic SFG stimulus. Signals consisted of a sequence of 25 ms chords, each

containing a random number of pure tone components that varied from 1

chord to the next. At 600 ms after onset (black dashed line), a certain number of

components (coherence = 2, 4, or 8; 4 in this example; indicated by arrows) were

fixed across chords in the second half of the stimulus. The resulting percept is

that of a “figure” within a randomly varying background. (B) A schematic of the

basic SFG stimulus whose spectrogram is shown in A. Randomly varying

background chords (in black, 25 ms long) form the “no-figure” part of the

stimulus. Following the transition (indicated by red dotted lines), 4 extra

components (shown in pink) are added which are temporally correlated in the

figure condition (FIG4), while randomly occurring in the ground condition

(GND4). (C) The noise SFG stimulus is constructed similar to the basic SFG

stimulus except for the introduction of 25 ms chords of white noise between

each SFG chord. The plots in A,C represent “auditory” spectrograms, generated

with a filterbank of 1/ERB wide channels (Equivalent Rectangular Bandwidth;

Moore and Glasberg (1983)) equally spaced on a scale of ERB rate. Channels are

smoothed to obtain a temporal resolution similar to the Equivalent Rectangular

Duration (Plack and Moore 1990).
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Stimuli

Signals consisted of a sequence of 25 ms chords, each comprising
a random set of tones, drawn from afixed frequency pool ranging
from 0.17 to 2.5 kHz spaced in 1/24 octave steps. This range is nar-
rower than that in our previous studies (0.17–7.2 kHz; Teki et al.
2011, 2013) due to the low-pass filtering characteristics of the Ety-
motic tubes used for sound delivery. Each chord contained an
average of 10 (varying between 5 and 15) pure tone components
that changed randomly from 1 chord to the next. A “figure” is in-
corporated in this randomly varying tonal stimulus by randomly
repeating a number of frequencies (“coherence” of the figure: 2, 4,
or 8) over a certain number of chords (referred to as the “duration”
of the figure). The resulting percept is that of a grouped “auditory
object” (“figure”) that pops out from the background. Importantly,
the figure is only detectable by integrating the repeating compo-
nents across frequencyand timeas the “background” and “figure”
components are indistinguishable within a particular chord.

In earlier work, we used a stimulus design where the figure
appeared for a brief duration (ranging from 50 to 350 ms) amidst
an ongoing random chord sequence (Teki et al. 2011, 2013, 2016).
For the present study, the stimulus was modified such that the
figure was introduced exactly midway during the stimulus and
remained present until offset as shown in Figure 1. This design
was used to specifically examine time-locked responses evoked
by the appearance of the figure, as well as later activity potential-
ly related to the ongoing representation of the figure amid the
fluctuating background.

The stimulus was created by first generating a background-
only signal for the total duration of the stimulus and then incorp-
orating additional repeating (“temporally correlated”) tones (2, 4,
or 8, hereby referred to as “FIG2”, “FIG4”, and “FIG8”, respectively)
during the second half of the signal. Similarly, additional uncor-
related components (2, 4, or 8; randomly varying across chords)
were incorporated in the stimuli (50%) that did not contain a fig-
ure, to control for the increase in energy associated with the add-
ition of the figure components. These “ground” (or no-figure)
signals will be referred to as “GND2”, “GND4”, and “GND8”, re-
spectively. See a schematic representation of FIG4 and GND4 sig-
nals in Figure 1. Overall, half of the signals contained a figure
(with equal proportions of FIG2, FIG4, and FIG8) and the other
half did not (with equal proportions of GND2, GND4, and GND8).

Two versions of the SFG stimuli were used in different blocks:
the “basic” version (Fig. 1A) consisted of consecutive 25 ms
chords (1200 ms long stimulus with the figure appearing at
600 ms post onset); and the “noise” version (Fig. 1C) consisted
of 25 ms of wide-band white noise interspersed between succes-
sive 25 ms long chords (2400 ms long stimuluswith the figure ap-
pearing at 1200 ms post onset; note that the number of chords is
identical to that in the “basic” stimulus). The level of the noise
was set to 12 dB above the level of the chords.

All acoustic stimuli were created using MATLAB 7.5 software
(The Mathworks Inc.) at a sampling rate of 44.1 kHz and 16-bit
resolution. Sounds were delivered binaurally with a tube phone
attached to earplugs (E-A-RTONE 3A 10 Ω, Etymotic Research,
Inc.) inserted into the ear canal and presented at a comfortable
listening level adjusted individually by each participant. The ex-
periment was executed using the Cogent toolbox (http://www.
vislab.ucl.ac.uk/cogent.php).

Procedure

The recording started with a functional source-localizer session
where participants were required to attend to a series of 100 ms

long pure tones (1000 Hz) for approximately 3 min. A variable
number of tones (between 180 and 200) were presented with a
random interstimulus interval of 700–1500 ms. Subjects were
asked to report the total number of tones presented. This “locali-
zer” session served to identify channels that respond robustly to
sound. These were used for subsequent analysis of the sensor-
evoked responses to the SFG stimuli.

During the experiment, subjects were engaged in an inciden-
tal visual task while passively listening to the SFG stimuli. The
visual task consisted of landscape images, presented in a series
of 3 (each image was presented for 5 s, with an average gap of 2
s between groups during which the screen was blank). Subjects
were instructed to fixate in a cross at the center of the display
and press a buttonwhenever the third image in a serieswas iden-
tical to the first or the second image. Such repetitions occurred on
10% of the trials. Responses were executed using a button box
held in the right hand. The visual task served as a decoy task—
a means to ensure that subjects’ attention was diverted away
from the acoustic stimuli. At the end of each block, subjects re-
ceived feedback about their performance (number of hits,misses,
and false positives). To avoid any temporal correlation between
the auditory and visual presentation, the visual task was pre-
sented from a different computer, independent from the one
controlling the presentation of the acoustic stimuli.

The MEG experiment lasted approximately 1.5 h and con-
sisted of 8 blocks. Four blocks involved presentation of the
“basic” SFG stimulus, while the “noise” condition was presented
in the remaining 4 blocks. The order of the presentation was
counterbalanced across subjects. A total of 660 trials were pre-
sented for each condition—110 trials for each combination of
stimulus type (figure and ground) and number of added compo-
nents (2, 4, and 8). Each “basic” block took between 8 and 10 min
and the “noise” blocks took twice as long. Subjects were allowed a
short rest between blocks but were required to stay still.

MEG Data Acquisition and Preprocessing

Data were acquired using a 274-channel, whole-head MEG scan-
ner with third-order axial gradiometers (CTF systems) at a sam-
pling rate of 600 Hz and analyzed using SPM12 (Litvak et al.
2011; Wellcome Trust Centre for Neuroimaging, London) and
Fieldtrip (Oostenveld et al. 2011) in MATLAB 2013 (MathWorks
Inc.). The data from the localizer session were divided into
700 ms epochs, including 200 ms prestimulus baseline period,
baseline-corrected, and low-pass filtered with a cutoff frequency
of 30 Hz. The M100 onset response (Roberts et al. 2000) was iden-
tified for each subject as a source/sink pair in the magnetic field
contour plots distributed over the temporal region of each hemi-
sphere. For each subject, the 40 most activated channels at the
peak of the M100 (20 in each hemisphere) were selected for sub-
sequent sensor-level analysis of the responses evoked by the SFG
stimuli.

Data epochs from the main experimental blocks consisted of
a 500 ms prestimulus baseline and a 700 ms poststimulus period
(overall 2400 ms for “basic” and 3600 ms for “noise” conditions).
Epochs with peak amplitudes that deviated from the mean by
more than twice the standard deviation (typically ∼7%) were
flagged as outliers and discarded automatically from further ana-
lyses (∼100 epochs were obtained for each stimulus condition).
Denoising Source Separation analysis (DSS, see de Cheveigné
and Parra 2014 for an extensive review of the method and its ap-
plications) was applied to each stimulus condition to extract
stimulus-locked activity (the most reproducible linear combin-
ation of sensors across trials)—the 2 most repeatable
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components in each condition were retained and projected back
to sensor space.

Epochs were then averaged and baseline corrected to the
prestimulus interval. In each hemisphere, the root-mean-
squared (RMS) field strength across 20 channels (selected from
the localizer session) was calculated for each participant. The
time course of the RMS, reflecting the instantaneous power of
neural responses, is employed as a measure of neuronal re-
sponses evoked in the auditory cortex. As most of the observed
activity (including in the source space) was in auditory cortex, se-
lecting channels based on the M100 represents a reasonable ap-
proach for summarizing the sensor-level data in a single time
series. For purposes of illustration, group-RMS (RMS of individual
subjects’ RMS) is shown, but statistical analysis was always per-
formed across subjects, independently for each hemisphere.

Statistical Analysis

To estimate the time required to discover the figure, the differ-
ence between the RMS waveforms of each FIG and GND pair
was calculated for each participant and subjected to bootstrap re-
sampling (2000 iterations; balanced; Efron and Tibshirani 1993).
The difference was deemed significant if the proportion of boot-
strap iterations that fell above or below zero was >99.9% (i.e., P <
0.001) for 5 or more consecutive samples. The first significant
sample identified in this way is considered the earliest time
point at which the response to the figure differed significantly

from the corresponding GND control. The bootstrap analysis
was run over the entire epoch duration, and all significant inter-
vals are indicated in Figures 2 and 3 as shaded gray regions.

A repeated-measures ANOVA, with mean amplitude between
figure onset and offset (t = 600–1200 ms for basic, and t = 1200–
2400 ms for noise conditions, respectively) as the dependent vari-
able, was used to examine global effects of stimulus (FIG or GND),
number of added components (2, 4, and 8), and hemisphere.

Source Analysis

Source analysis was performed using the generic “Imaging” ap-
proach implemented in SPM12 (Litvak et al. 2011; López et al.
2014). We used a classical minimum norm algorithm that seeks
to achieve a good data fit while minimizing the overall energy
of the sources. In SPM12, this method is referred to as independ-
ent identical distribution (IID) as it is based on the assumption
that the probability of each source being active is independent
and identically distributed (Hämäläinen and Ilmoniemi 1994).
The IID method corresponds to a standard L2-minimum norm,
which consists of fitting the data at the same time asminimizing
the total energy of the sources. Standard processing steps were
employed. Specifically, datawere first concatenated across blocks
for each participant. A generic 8196-vertex cortical mesh tem-
plate was coregistered (as provided in SPM12 and defined in the
MNI stereotaxic space) to the sensor positions using 3 fiducial
marker locations (Mattout et al. 2007). We then used a standard

Figure 2. MEG evoked responses to the basic SFG stimulus. (Top) Each plot depicts the group-RMS response to the basic SFG stimulus in the right hemisphere (left

hemisphere responses are identical). The onset of the stimulus occurs at t = 0 and offset at t = 1200 ms, the transition to the figure, as indicated by the dashed vertical

lines, occurs at t = 600 ms. The responses to the figure and ground segments are shown in the darker and lighter shade of each color: red (FIG8 and GND8), blue (FIG4

and GND4), green (FIG2 and GND2). The shaded gray bars indicate times where a significant difference between the response to the figure and its corresponding

control stimulus was observed (based on bootstrap analysis; see Materials and Methods). (Bottom) Mean RMS amplitude in each of the conditions computed over the

figure interval (between 600 and 1200 ms poststimulus onset). A repeated-measures ANOVA analysis indicated significant differences between each FIG and GND pair.

** indicates P ≤ 0.01.
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single-shell head model for the forward computation of the gain
matrix of the lead field model (Nolte 2003). Source estimates on
the cortical mesh were obtained via inversion of the forward
model with the IID method described above.

The IID model was used to identify distributed sources of
brain activity underlying the transition from a background to a
coherent figure. The inverse estimates were obtained for all 6 ex-
perimental conditions together to allow statistical comparisons
between them (“basic” and “noise” blocks had to be analyzed
separately due to the different epoch lengths). The inverse recon-
struction was performed over the largest possible time window
to let the algorithmmodel all the brain sources generating the re-
sponse (Litvak et al. 2011). For the “basic” stimuli, the inversion
used the entire stimulus epoch (from −300 ms to + 1700 ms, rela-
tive to stimulus onset). For the “noise” stimuli, this approach did
not work well, because the signal-to-noise ratio of the data is in-
trinsically much smaller. To confirm this, we compared model
evidences in the “noise” conditionswith inversion over the entire
epoch, and inversion over the stimulus epoch from +1200 ms to
+2700 ms. The latter yielded a more accurate inversion for all
subjects (the difference in log-model evidences, i.e., log Bayes
factor, was >10 for all subjects; Penny et al. 2004) and was
therefore used for source localization.

Source activity for each condition was then summarized as
separate NIfTI images, by applying the projectors estimated
in the inversion stage to the averaged trials (to localize evoked
activity), over 2 distinct time windows: an initial transition
phase (“early”; a 100 ms period starting from the first time
point at which the figure and the corresponding ground became

significantly different), as well as a later phase (“late”; a 100 ms
period before stimulus offset). The specific values for the time
windows used for source localization for each coherence value
are detailed in the Results section. The resulting 3D images
were smoothed using a Gaussian kernel with 5-mm full-width
at halfmaximum and taken to second-level analysis for statistic-
al inference.

At the second level, the data were modeled with 6 conditions
(GND8, GND4, GND2, FIG2, FIG4, and FIG8) with a design matrix
including a subject-specific regressor and correcting for hetero-
scedasticity across conditions. We sought to identify brain
areas whose activity increased parametrically with correspond-
ing changes in coherence (i.e., over and above the changes in
power associated with adding components). For this purpose, a
parametric contrast [−8 −4 −2 +2 +4+8]/14 was used. Effectively,
the contrast can be expressed as: 2 × (FIG2-GND2) + 4 × (FIG4-
GND4) + 8 × (FIG8-GND8), thus targeting brain regions whose ac-
tivity is parametrically modulated by rising temporal coherence
(2 < 4 < 8) while controlling (by subtracting activity of matched
GND signals) for the increase in power associated with the
added figure components. We also used a simple “Figure versus
Ground” contrast: [−1−1−1 1 1 1]/3. Statisticalmapswere initially
thresholded at a level of P < 0.001 uncorrected, and peaks were
considered significant only if they survived family-wise error
(FWE) correction at P < 0.05 across the whole-brain volume. Be-
cause we had prior hypotheses regarding PT and IPS based on
our fMRI results (Teki et al. 2011), FWE correctionwas also applied
using small volume correction (SVC; Frackowiak et al. 2003) with-
in these regions. Due to limitations inherent to the resolution of

Figure 3. MEG evoked responses to the noise SFG stimulus. (Top) Each plot depicts the group-RMS response to the noise SFG stimulus in the right hemisphere (left

hemisphere responses are identical). The onset of the stimulus occurs at t = 0 and offset at t = 2400 ms, the transition to the figure, as indicated by the dashed vertical

lines, occurs at t = 1200 ms. The responses to the figure and ground segments are shown in the darker and lighter shade of each color: red (FIG8 and GND8), blue (FIG4

and GND4), green (FIG2 and GND2). The shaded gray bars indicate times where a significant difference between the response to the figure and its corresponding

control stimulus was observed (based on bootstrap analysis; see Materials and Methods). (Bottom) Mean RMS amplitude in each of the conditions computed over the

figure interval (between 1200 and 2400 ms poststimulus onset). A repeated-measures ANOVA analysis indicated significant differences between each FIG and GND

pair. ** indicates P ≤ 0.01; * indicates P > 0.02.
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our source analysis, a (conservative) compoundmaskover PTand
the adjacent Heschl’s Gyrus (HG) was used. The corresponding
cortical masks were determined by reference to the Juelich histo-
logic atlas (for IPS; Eickhoff et al. 2005; Choi et al. 2006; Scheper-
jans et al. 2008), and the Harvard–Oxford Structural atlases (for
Heschl’s gyrus and PT; Desikan et al. 2006), available in FSLview
(http://surfer.nmr.mgh.harvard.edu/), thresholded at 10% prob-
ability. SVC-corrected regions are indicated by asterisks in Ta-
bles 1 and 2.

Results
The performance on the incidental visual task was at ceiling for
all participants, suggesting that they remained engaged in the
task throughout the experiment. Since participants were naive
to the nature of the acoustic stimuli, and thus unlikely to actively
attend to the figures, it can be assumed that the observed audi-
tory responses primarily reflect bottom-up, stimulus-driven
processes.

Basic SFG: Evoked Responses

Figure 2 shows the group-RMS of stimulus-evoked fields, separ-
ately for the corresponding FIG and GND conditions, in the
right hemisphere (a similar pattern is observed in the left hemi-
sphere). In all conditions, a standard sound onset response is ob-
servedwith a clearM50,M100, andM200 peak complex (indicated
in Fig. 2). The ongoing slow evoked response is characterized by a
constant 40 Hz fluctuation of mean evoked power, which follows
the rate of presentation of individual chords (every 25 ms).

Following the transition to the figure, clear evoked responses
are observed in all FIG conditions. This response consists of an
early transient phase characterized by a sharp increase over a
few chords (more evident for FIG8 and FIG4), leading to a local
maximum in evoked activity, and followed by a more sustained
phase until stimulus offset.

The responses to the control GND stimuli allow us to distin-
guish whether the figure-evoked responses are mediated simply
by an increase in energy associated with the additional compo-
nents or relate specifically to the computation of temporal coher-
ence, linked to the appearance of the figure. Indeed, a transition
response (i.e., increase in RMS amplitude as a function of the
number of added components) is also present in the GND condi-
tions. However, this response is significantly lower in amplitude
and lacks the initial transient phase (sharp increase in power),
demonstrating that the response observed for the FIG conditions
is largely driven by the temporal coherence of the components
comprising the figure.

Bootstrap analysis (see Materials and Methods) revealed that
the difference between the response to the figure and its corre-
sponding control condition remains significant throughout the
figure segment (indicated by the gray-shaded region), until after
sound offset. The first significantly different sample (i.e., the time
when the response to the FIG condition first diverges from that to
GND) occurred at 158 ms (158 ms), 206 ms (195 ms), and 280 ms
(225 ms) posttransition in the left (right) hemispheres for FIG8,
FIG4, and FIG2, respectively (see Fig. 2).

A repeated-measures ANOVA with mean amplitude during
the figure interval as the dependent variable, and condition
(FIG vs. GND), number of components (8, 4, and 2), and hemi-
sphere (left vs. right) as factors indicated nomain effect of hemi-
sphere (F1,15 = 3.25 P = 0.091) but confirmed significant main
effects of condition: F1,15 = 58.53, P < 0.001, number of added com-
ponents: F2,30 =27.26, P < 0.001, as well as a significant interaction
between condition and number of added components: F2,30 =
13.25, P < 0.001. The interaction indicates that the amplitude of
mean evoked field strength is higher for the figure, over and
above the effect of increase in spectral energy, and it increases
significantly with the number of coherent components in the fig-
ure. We refer to this effect as the effect of coherence. A series of
repeated-measures t tests for each FIG and its corresponding
GND (data averaged over hemispheres) confirmed significant dif-
ferences for all pairs (FIG8 vs. GND8: t = 7.01 P < 0.001; FIG4 vs.
GND4: t = 6.77 P < 0.001; FIG2 vs. GND2: t = 4.25 P = 0.01), demon-
strating that the brains of naive listeners are sensitive to the tem-
poral coherence associated with only 2 repeating components.

Noise SFG: Evoked Responses

Figure 3 shows group-RMS of stimulus-evoked fields for the noise
SFG stimuli. The general time course of evoked activity is similar
to that observed for the basic SFG stimulus. The ongoing slow
evoked response is characterized by a constant 20 Hz fluctuation
of mean evoked power, which follows the rate of the (loud) noise
bursts interspersed between chords.

Table 2 MEG sources whose activity increased with coherence for the
noise SFG stimulus

Area Hemisphere Response
phase

x y z t value

PT* R Early 60 −24 20 4.21
62 −28 6 4.03

PT* L Early −60 −32 24 4.12
−62 −38 14 3.86

PT L Late −62 −30 24 6.76
−60 −38 14 5.44

Postcentral
gyrus

R Late 40 −16 38 5.40
50 −14 42 4.99

PT* R Late 54 −26 18 4.34
64 −34 12 4.15

IPS* R Late 30 −40 62 4.18
28 −46 54 4.13

Note: Local maxima are shown at P < 0.05 (FWE) at the whole-brain level.

*Small volume-corrected P < 0.05 (FWE).

Table 1 MEG sources whose activity increased with coherence for the
basic SFG stimulus

Brain
area

Hemisphere Response
phase

x y z {mm} t value

PT R Early 52 −18 12 6.23
64 −18 6 6.12

HG* R Early 42 −26 8 4.31
IPS R Early 50 −56 34 5.98

48 −62 28 4.53
IPS L Early −36 −72 42 4.81

−30 −66 46 4.59
PT* L Early −60 −32 12 3.56

−58 −30 18 3.46
IPS R Late 48 −56 32 5.08

44 −62 28 3.93
PT* R Late 56 −6 12 4.16

64 −20 8 3.75
PT* L Late −50 −20 14 3.75

−56 −20 4 3.44

Note: Local maxima are shown at P < 0.05 (FWE) at the whole-brain level.

*Small volume-corrected P < 0.05 (FWE).
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The addition of a figure is associated with a sharp increase in
power, followed by a sustained-like phase that persists until
stimulus offset. A bootstrap analysis revealed significantly great-
er responses to each figure condition compared with its corre-
sponding control, as shown in Figure 3. The latencies at which
FIG responses became significantly different from the responses
to theGNDwere approximately 238 ms (300 ms), 720 ms (410 ms),
and 412 ms (412 ms) in the left (right) hemisphere for coherence
of 8, 4, and 2, respectively.

A repeated-measures ANOVA with mean amplitude during
the figure interval as the dependent variable, and condition
(FIG vs. GND), number of components (8, 4, and 2), and hemi-
sphere (left vs. right) as factors indicated nomain effect of hemi-
sphere (F1,15 = 3.21 P = 0.093) but confirmed significant main
effects of condition: F1,15 = 31.98, P < 0.001, number of added com-
ponents: F2,30 = 7.28, P = 0.003, as well as a significant interaction
between condition and number of added components: F2,30 =
4.55, P = 0.019 (effect of figure coherence). A series of t tests for
each FIG and GND pair (data averaged over hemispheres) con-
firmed significant differences for all [FIG8 vs. GND8: t = 5.02 P <
0.001; FIG4 vs. GND4: t = 2.4 P = 0.024; FIG2 vs. GND2: t = 2.84 P =
0.012], demonstrating that despite the loud noise interspersed
between successive chords (resulting in large power fluctuations
across the entire spectrum and therefore reduced power differ-
ences between channels) even afigure consisting of only 2 coher-
ent components is reliably encoded by the brains of naive
listeners.

A repeated-measures ANOVA (over mean amplitude during
the figure period) with block (“basic” vs. “noise”), condition
(FIG vs. GND), number of components (8, 4, and 2), and hemi-
sphere (left vs. right) as factors indicated no main effect of
block (F1,15 = 2.5 P = 0.128) or hemisphere (F1,15 = 3.5, P = 0.08) but
confirmed significant main effects of condition: F1,15 = 61.3, P <
0.001, number of added components: F2,30 = 23.33, P < 0.001, as
well as an interaction between condition and number of added
components: F2,30 = 15.06, P < 0.001 (effect of figure coherence; as
observed separately for “basic” and “noise” stimuli). The follow-
ing interactions were also significant: 1) between block and num-
ber of added components F1,15 = 16.2, P = 0.001, 2) between block
and condition F2,30 = 5.23 P = 0.01, both due to the fact that the ef-
fects of condition and number of components wereweaker in the
“Noise” relative to the “Basic” stimuli. Crucially however, both
stimulus types show similar coherence effects.

Basic SFG: Source Analysis

To identify brain regions whose activity is parametrically modu-
lated by the coherence of the figure (on top of the increase in
power associated with the added figure components), we tested
for a signal increase with a parametric contrast over GND8,
GND4, GND2, FIG2, FIG4, and FIG8 conditions (see “Materials
and Methods”). This contrast mirrors the interaction observed
in the analysis of the timedomain data and is in linewith our pre-
vious fMRI study, where significant parametric BOLD responses
were observed in the right PT and IPS (Teki et al. 2011). Although
the spatial resolution of MEG does not match the high resolution
provided by fMRI, recent advances in MEG source inversion tech-
niques permit source localization with a relatively high degree of
precision (López et al. 2014).

To capture effects associated with the initial discovery of the
figures as well as later processes related to tracking the figures
within the random background, we analyzed sources of evoked
field strength in two 100 ms time windows: 1) “Early”: starting
from the first time sample that showed significant difference

between the figure and ground conditions as determined by the
bootstrap analysis above (FIG 8: t = 158–258 ms ; FIG4: t = 195–
295 ms; FIG2: t = 225–325 ms) and 2) “Late”: during the sustained
portion of the response, immediately preceding the offset of
the stimulus (i.e., from t = 1100–1200 ms).

The results for the early phase revealed robust activations in
the PT bilaterally (P < 0.05 FWE), and the right inferior parietal
cortex bordering the supramarginal gyrus that varied paramet-
rically with the coherence of the figure (Fig. 4A; Table 1). We
also observed activation in the IPS, and the corresponding activa-
tion clusters were clearly spatially separated from the temporal
sources, even in the uncorrected P < 0.001 t-maps (see Fig. 4).
We also observed some activity in lateral HG thatwas contiguous
with the PT activity in the right hemisphere only. A separate
mask, centered on bilateral medial HG, suggested that coher-
ence-related activity is also observed in the primary auditory cor-
tex. However, due to this being a post hoc analysis, and also
because of limits inherent to the resolution of MEG source ana-
lysis used here, it is difficult to distinguish this cluster from PT.

Activations in the late phase also involved PT bilaterally and
right inferior parietal cortex (P < 0.05 FWE; small volume-cor-
rected). We also examined activity in the IPS during both time
windows. Figure 4C,D show significant activation clusters in the
IPS (P < 0.05 FWE; small volume-corrected) observed during the
early and later response phase, respectively. There was no inter-
action between response phase (“early” or “late”) and coherence,
suggesting that IPS and PT contributed to the early and late phase
processing in equal measure.

Figure 5 shows the group-averaged source waveforms ex-
tracted from the right PT and IPS for the basic condition. Both
show activation consistent with the sensor-level RMS data (see
Fig. 2). The IPS source exhibits weaker onset and offset responses,
and lower amplitude sustained activity, consistent with its loca-
tion further upstream within the processing hierarchy. Import-
antly, however, the response associated with the appearance of
the figure is similar in magnitude in both areas. A repeated-mea-
sures ANOVA, with area (PT and IPS) and number of components
as factors, was run on the mean amplitude difference between
FIG and GND pairs during the figure period (600–1200 ms post
onset). This showed a significant main effect of number of com-
ponents (F2,30 = 3.70, P < 0.05) only. The effect of area was not
significant (F1,15 = 0.16, P > 0.1), and there was no interaction
between factors (F2,30 = 0.87, P > 0.1), confirming that the effect
of coherence was equally present in both PT and IPS.

We also conducted simple contrasts of “Figure” versus
“Ground” (over the “early” time windows as described above).
The negative contrast (“Ground” > “Figure”) was used to address
an alternative hypothesis for themechanisms underlying figure-
ground segregation, that is, adaptation-based mechanisms (e.g.,
stimulus-specific adaptation, SSA; Nelken 2014; Pérez-González
andMalmierca 2014), whichmay be sensitive to repetitionwithin
the “coherent” channels. This effect would be observable as a
decrease in activation for FIG relative to GND stimuli. However,
the relevant contrast yielded no significant activations, both
over the entire brain volume and within HG-centered masks.
The positive contrast (“Figure” > “Ground”) yielded activations
essentially identical to those reported in Figure 4 and Table 1.

Noise SFG: Source Analysis

We examined the sources of evoked field strength underlying fig-
ure-ground processing in the noise SFG stimulus using a 200 ms
long window starting from the first time sample that showed
significant difference between the figure and its ground control
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as determined by the bootstrap analysis (FIG 8: t = 238–438 ms;
FIG4: t = 410–610 ms; FIG2: t = 412–612 ms), and another 200 ms
window, during the later phase of the response, immediately
preceding the offset of the figure segment (t = 2200–2400 ms).
The longer window for source localization in the noise condition
(100 ms SFG chords and 100 ms noise) is effectively equal to the
100 ms window (all SFG chords) used for the localization of
activations in the basic condition.

The results for the early phase revealed robust activations in
the PT bilaterally (P < 0.05 FWE) and the right inferior parietal cor-
tex, including the supramarginal gyrus that varied parametrical-
lywith the coherence of the figure (Fig. 6A; Table 2). Activations in
the late phase (Fig. 6B; Table 2) involved PT bilaterally and right
inferior parietal cortex (P < 0.05 FWE; small volume-corrected).
Figure 6C shows significant activity in the right IPS (P < 0.05
FWE; small volume-corrected), observed during the later re-
sponse phase only. However, no significant interaction between
phase (“early” or “late”) and coherence was found. Thus, despite
the fact that the “Noise” condition localization was substantially
noisier than that for the basic condition (as also reflected in the
weaker sensor-level responses), the results suggest a pattern of
activation similar to that for the “basic” condition.

Discussion
We used MEG to assess the temporal dynamics of stimulus-
driven figure-ground segregation in naive, passively listening
participants. We used the “Stochastic Figure-ground” (SFG)

stimulus—a complex broadband signal, which comprises a
“figure”, defined by temporal correlation between distinct fre-
quency channels. The SFG stimulus differs from other commonly
used figure-ground signals (Kidd et al. 1994, 1995; Micheyl,
Hanson, et al. 2007; Gutschalk et al. 2008; Elhilali, Xiang, et al.
2009) in that the “figure” and “ground” overlap in spectrotemporal
space like most natural sounds do, and segregation can only be
achieved by integration across frequencyand time (Teki et al. 2013).

Evoked Transition Responses
Our results revealed robust evoked responses, commencing from
about 150–200 ms after figure onset, that reflect the emergence of
the “figure” from the randomly varying “ground” in the absence
of directed attention. The amplitude and latency of these re-
sponses varied systematically with the coherence of the figure.
Similar effects of coherence (for a coherence level of 8 and 10)
were recently reported in an EEG study based on a variant of
the “basic” SFG stimulus which used continuous changes in the
level of coherence (O’Sullivan et al. 2015). However, theyobserved
much longer latencies (e.g., 433 ms for a ramped SFG figurewith a
coherence of 8) than those here, possibly due to differences in the
stimuli used.

The early transient responses were followed by a sustained-
like phase, continuing until figure offset, the amplitude of
which also varied systematically with coherence. This general
pattern was observed for the basic (Fig. 2) and, remarkably, the
noise SFG stimulus (Fig. 3)—where successive chords are

Figure 4. MEG source activations as a function of coherence for the basic SFG stimulus. Activations (thresholded at P < 0.001, uncorrected) are shown on the superior

temporal plane of the MNI152 template image and the corresponding y coordinates are overlaid on each image. The heat map adjacent to each figure depicts the T

value. Coordinates of local maxima are provided in Table 1. Maximum response during the early transition period was observed in PT and right inferior parietal cortex

(A) as well as in the right IPS (C). Activity during the later responsewindowwas observed in PT bilaterally and the right inferior parietal cortex (B) as well as in both the left

and right IPS (D).
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separated by loud noise bursts. These results demonstrate that
the underlying brain mechanisms, hypothesized to compute
temporal coherence across frequency channels (Shamma et al.

2011), are robust to interference with the continuity of the
scene, even when listeners were naive and engaged in an inci-
dental visual task.

Figure 5.Group average of source activity waveforms for the basic SFG stimuli. The average source activity waveforms for the basic SFG stimuli were computed for sources

in the right posterior superior temporal gyrus (MNI coordinates [64,−14, 8]; left panels) and the right intraparietal sulcus (MNI coordinates [54, −50, 40]; right panels). The 6
experimental conditions (FIG and GND; 2, 4 and 8 added components) were inverted together over the entire stimulus epoch, and the corresponding source activity was

extracted using themaximumaposteriori (MAP) projector in SPM12 (López et al. 2014). The resulting time-course datawere first averaged over trials, then over all available

subjects (N = 16). The onset (t = 0 ms) and offset (t = 1200 ms) of the stimulus are marked by solid vertical lines; dashed vertical lines indicate the transition to the figure

(t = 600 ms). The brain insets in each panel indicate the location of the sources for each region.
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We additionally show that these transition responses scale
with coherence not only at the sensor level but also at the level
of the underlying neural sources. As shown in Figure 5, group-
averaged source waveforms from the right PT show a similar
morphology to the sensor-level transition responses: an initial
transient peak is followed by a more sustained response, and
the amplitude of these 2 response components varies paramet-
rically with the coherence. Interestingly, group-averaged source
responses from the right IPS also show striking coherence-modu-
lated transition responses.

Neural Substrates of Figure-Ground Segregation

The discussion below is predominantly focused on the localiza-
tion results from the “basic” condition. The responses for the
“noise” condition were overall consistent with the “basic” re-
sponses but, as expected, yielded weaker effects.

The approach for identifying the neural substrates underlying
the detection of the SFG figures was based on a parametric con-
trast, seeking brain areas where activity is parametrically modu-
lated by the coherence of thefigure.We also investigated a simple
“ground > figure” contrast to address the alternative hypothesis
that figure pop-out may be driven by frequency-specific adapta-
tion (Nelken 2014). According to this account, the presence of the
figuremay be detectable as a (repetition-based) decrease in activ-
ity within the “coherent” channels. That the ground versus figure
contrast yielded no significant activations, and in particular none
in the primary auditory cortex where stimulus-specific

adaptation is widely observed, suggests that adaptation may
not be the principal mechanism underlying figure-ground segre-
gation in the SFG stimulus. This is also in linewith behavioral re-
sults that show that listeners can withstand significant amounts
of interference, such as loud noise bursts up to 500 ms long, be-
tween successive chords (Teki et al. 2013).

Using the parametric contrast, we analyzed sources of evoked
field strength in 2 different timewindows to potentially capture 2
distinct response components: an early transient response re-
flecting the detection of the figure and later processes related to
following the figure amidst the background.We found significant
activations in PT (Figs 4A,B and 6A,B) in both the early and later
stages. This is in agreement with previous human fMRI studies
of segregation (Gutschalk et al. 2007; Wilson et al. 2007; Schad-
winkel and Gutschalk 2010a, b) based on simple tone streams
with different spectral or spatial cues for segregation. The similar
pattern of activations in PT for both stimulus conditions suggests a
common stimulus-driven segregationmechanism that is sensitive
to the emergence of salient targets in complex acoustic scenes.

Teki et al. (2011) did not observe any significant BOLD activa-
tion related to figure-ground segregation in primary auditory cor-
tex in the region of medial Heschl’s gyrus. Similarly, Elhilali, Ma,
et al. (2009) did not find evidence of temporal coherence-based
computations in the primary auditory cortex of awake ferrets
passively listening to synchronous streaming signals. This
could possibly be due to the low spike latencies (∼20 ms) in pri-
mary cortex, whereby longer integration windows as observed
in secondary and higher order auditory cortices (Bizley et al.

Figure 6.MEGsource activationsas a functionof coherence for the noiseSFG stimulus. Activations (thresholded at P < 0.001, uncorrected) are shownon the superior temporal

plane of theMNI152 template image, and the corresponding y coordinates are overlaid oneach image. Theheatmapadjacent to eachfigure depicts the t value. Coordinates of

localmaxima are provided in Table 2. Maximumresponse during the early transition periodwas observed in the right PTand leftMTG (A). Significant activity during the late

response period was observed in the PT bilaterally as well as the right precentral gyrus and rolandic operculum (B) and in the left IPS (C).
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2005; Hackett 2011; Atiani et al. 2014)might be crucial for analysis
of temporal coherence across remote cortical ensembles. The
present results tentatively indicate some evidence of coher-
ence-related activation in human primary auditory cortex during
the early phase, butwe cannot exclude the possibility that the ob-
served cluster reflects “spillage” of activity from PT and the issue
should be elaborated on with further work. Although how and
where the precise computational operations that underlie tem-
poral coherence analysis (Krishnan et al. 2014) are implemented
in the brain is not completely clear, it is likely that such opera-
tions occur along a processing hierarchy whereby cells in higher
order centers abstract temporal responses from lower level pro-
cessing stages. The present results demonstrate that PT forms
part of this network.

We found significant activity in the IPS during both early and
late response phases (Figs 4C,D and 6C). These results are in line
with our previous fMRI work where we observed that activity in
the IPS increases parametrically with the coherence of the figures
(Teki et al. 2011). The finding that IPS activity is modulated sys-
tematically by coherence is consistentwith earlierwork implicat-
ing the IPS in perceptual organization of streaming signals
(Cusack 2005). Since this area lies outside of the “classic” defin-
ition of the “auditory system”, it has previously been suggested
that IPS activation may not reflect auditory processing per se
but rather relate to attentional effects such as the application of
top-down attention (Cusack 2005) or the perceptual conse-
quences of a bottom-up “pop-out process” (Shamma andMicheyl
2010; Teki et al. 2011). Due to the inherently low temporal reso-
lution of fMRI, and hence the lack of precise information regard-
ing the timing of the observed BOLD activations, this conjecture
was unresolvable in previous data. Our subjects were naive and
occupied by an incidental task and as such it is unlikely that
they were actively trying to hear out the figures from within the
background. This, together with the finding that coherence-
modulated IPS activity is observed at the earliest stages of the
evoked response, strongly supports the hypothesis that IPS is in-
volved in the initial stages of figure-ground segregation.

Because the computation of temporal coherence relies on re-
liable, phase-locked encoding of rapidly evolving auditory infor-
mation, it is likely that the temporal coherence maps as such are
computed in auditory cortex, perhaps in PT. IPS might be in-
volved in reading out these coherence maps or in the actual pro-
cess of perceptual segregation (encoding the input as consisting
of several sources rather than a single mixture). Specifically, IPS
may represent a computational hub that integrates auditory
input from the auditory parabelt (Pandya and Kuypers 1969;
Divac et al. 1977; Hyvarinen 1982) and forms a relay station be-
tween the sensory and prefrontal cortex, which associates sen-
sory signals with behavioral meaning (Petrides and Pandya
1984; Fritz et al. 2010). Similar computational operations have
been attributed to the parietal cortex in saliency map models of
visual feature search (Gottlieb et al. 1998; Itti and Koch 2001;
Walther and Koch 2007; Geng and Mangun 2009). Overall our re-
sults suggest that IPS plays an automatic, bottom-up role in audi-
tory figure-ground processing, and call for a re-examination of
the prevailing assumptions regarding the neural computations
and circuits that mediate auditory scene analysis.
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