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Abstract

Background: Measures of linkage disequilibrium (LD) play a key role in a wide range of applications from disease
association to demographic history estimation. The true population LD cannot be measured directly and instead
can only be inferred from genetic samples, which are unavoidably subject to measurement error. Previous studies
of r2 (a measure of LD), such as the bias due to finite sample size and its variance, were based on the special case
that the true population-wise LD is zero. These results generally do not hold for non-zero r2true values, which are
more common in real genetic data.

Results: This work generalises the estimation of r2 to all levels of LD, and for both phased and unphased data. First,
we provide new formulae for the effect of finite sample size on the observed r2 values. Second, we find a new
empirical formula for the variance of the observed r2, equals to 2E[r2](1 − E[r2])/n, where n is the diploid sample size.
Third, we propose a new routine, Constrained ML, a likelihood-based method to directly estimate haplotype
frequencies and r2 from diploid genotypes under Hardy-Weinberg Equilibrium. While serving the same purpose as
the pre-existing Expectation-Maximisation algorithm, the new routine can have better convergence and is simpler
to use. A new likelihood-ratio test is also introduced to test for the absence of a particular haplotype. Extensive
simulations are run to support these findings.

Conclusion: Most inferences on LD will benefit from our new findings, from point and interval estimation to
hypothesis testing. Genetic analyses utilising r2 information will become more accurate as a result.

Keywords: Linkage disequilibrium, Maximum likelihood estimation, Sampling error

Background
Introduction
Linkage Disequilibrium (LD) was first defined about 100
years ago as the non-random association of alleles at dif-
ferent loci [1]. Since that time there has been much
research on the topic, some focused on how LD is quanti-
fied and defined [2–7], and a larger fraction on the
connection between LD and various evolutionary forces
that shape it, including genetic drift [8–11] and selection
[12, 13]. These investigations have also extended to sub-
divided or structured populations [14–17]. In principle,
these theoretical works allow one to infer features of the
underlying processes from measures of LD [18, 19].

Another application of LD includes association studies to
identify genes for diseases, such as in the Human Haplo-
type Map project [20]. With the advance in sequencing
technology, computer packages have been developed to
calculate LD for large numbers of samples and genetic loci
[5, 21–24]. While there are plenty of applications utilising
LD information, they all rely on accurate and robust esti-
mation of the parameter of interest, which many have
taken for granted. There are, however, key gaps regarding
LD estimation that have yet to be resolved.
The squared correlation coefficient r2 is a popular

measure of LD alongside D or D’ [1]. One advantage of
r2 is that it is less sensitive to marginal allele frequencies.
It also relates to the ϕ correlation coefficient and χ2 test
statistic for association of contingency tables [25]. Fur-
ther, Sved and Feldman [26] showed the equivalence of
r2 and the probability of linked identity by decent
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between two random-chosen haplotypes. Most previous
studies concerning the estimation of r2, including the
mean and variance, have been based on the assumption
of linkage equilibrium (i.e. r2true ¼ 0). These findings do
not hold for real datasets where the true correlation be-
tween loci is non-zero. In this article we extend the the-
ory of r2 estimation to all levels of LD. We first study
the expectation of the observed r2 for finite sample size,
as sampling is known to bias the observed r2 [27]. Sec-
ond, we approximate the empirical variance of the ob-
served r2 as a function of sample size and its expectation
E[r2]. Third, we propose a direct routine to estimate
haplotype frequencies and r2 for unphased data under
Hardy-Weinberg Equilibrium (HWE). Throughout this
paper, we define r2true as the true population-wise, unob-
served LD between two loci, while r2phased and r2unphased as

the raw squared coefficient computed directly from
phased and unphased data respectively.

Effect of finite sample size
Consider a classical two-allele, two-locus scenario, with
alleles A and a at the first locus and alleles B and b at
the second. Let pAB, pAb, paB, pab be the true haplotype
frequencies of the four haplotype combinations AB, Ab,
aB, ab. Statistically speaking, if samples are taken with
replacement, the observed haplotype counts follow a
multinomial distribution with size 2n and probabilities
equal the true haplotype frequencies. Let gpAB; fpAb; fpaB;fpab be the sampled haplotype frequencies from our gen-
etic samples, which are also the maximum likelihood es-
timators (MLE) for the true haplotype frequencies. We
also let r2phased be the squared correlation computed dir-

ectly using the observed frequencies:

r2phased ¼ gpABfpab−fpAb fpaBð Þ2
fpA 1−fpAð Þ epB 1− epBð Þ ð1Þ

where fpA ¼ gpAB þ fpAb and epB ¼ gpAB þ fpaB are the ob-
served marginal allele frequencies for allele A and B.
Note that this formula is identical to the square of the ϕ
coefficient for a two-by-two contingency table [25, 28].
The invariant principle of MLE suggests that r2phased is

also the MLE for r2true , but does not guarantee its unbi-
asedness towards the parameter of interest. The next
step is to establish the effect of sample size and find a
formula to connect r2phased and r2true.

Sved and Feldman [26] showed the expected change in
r2 due to genetic drift over two successive generations is

E r2tþ1

� � ¼ 1
2Ne

þ 1−
1

2Ne

� �
1−cð Þ2r2t ð2Þ

with c being the recombination rate between a pair of
loci and Ne the effective population size. This equation

is seemingly irrelevant to our problem, but we may con-
sider the sampling process as another generation of gen-
etic drift with population size equal to the sample size
2n under complete linkage (c = 0). Therefore, given the
true r2true for a population, the expected observed r2phased
becomes:

E r2phased
h i

¼ 1
2n

þ 1−
1
2n

� �
r2true ð3Þ

Or when we estimate the underlying r2true from an ob-
served value r2phased the sample size correction formula

becomes:

dr2true ¼
r2phased−

1
2n

1−
1
2n

ð4Þ

For unphased data, the sample size correction should
largely follow the phased case, with n replacing 2n:

E r2unphased
h i

¼ 1
n
þ 1−

1
n

� �
r2true ð5Þ

and similarly if we estimate the underlying r2true from the
estimated haplotype frequencies, the sample size correc-
tion formula is:

dr2true ¼ r2unphased−
1
n

� �
= 1−

1
n

� �
ð6Þ

Empirical variance of r2

r2 is a ratio hence its variance is difficult to evaluate.
The variance is required when inferring the confidence
interval (C.I.) of an r2 estimate from a pair of loci, or in
hypothesis testing to test against a specific true value.
Many existing applications, such as those for effective

population size estimation, suggest that the observed r2
E½r2�

is approximately χ2 distributed with 1 degree of freedom,
which implies that var(r2) ≈ 2E[r2]2 [27, 29]. This expres-
sion is derived under the null distribution of the χ2 stat-
istic and is only correct if the underlying r2true ¼ 0 . An
obvious counter-example is a pair of perfectly correlated
loci, whose r2true and observed r2phased (or r2unphased ) are 1,

and hence the variance is 0 (instead of 2). While a
closed-form expression for the variance may not exist,
we will approximate it with empirical simulations and
relate it to sample sizes and other factors.

Estimating haplotype frequencies from unphased data
The term LD is often called the “gametic phase
disequilibrium”, which specifically refers the correl-
ation of alleles at the haplotype level. For diploid in-
dividuals, however, direct inference of haplotype
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frequencies is usually impossible when gametic phase
is not known. The reason is that we are unable to tell
the exact haplotype configuration for double heterozy-
gotes, as they can be AB/ab or Ab/aB. Under HWE
the expected frequencies for each genotype f1, f2, …,
f9 are shown in Table 1. As introduced by Hill in
1974, the log-likelihood with respect to the haplotype
frequencies, is [2]:

l pAB; pAb; paB; pabð Þ ¼ constant þ
X9
i¼1

ni log f ið Þ ð7Þ

where n1, n2, …, n9 are the counts for each genotype.
It is easy to understate the challenges in maximising
this log-likelihood. Direct maximisation of Eq. 7 is
not always feasible, hence the use of Expectation-
Maximisation (EM) algorithm was suggested [21]. The
second approach, adapted by CubeX, calculates the
first derivataes of Eq. 7 and solves the associated
cubic equation. This however works only for the two-
allele two-locus case.
Here we propose a new approach to directly maxi-

mise Eq. 7 and thus to estimate the haplotype fre-
quencies. Without loss of generality we drop the term
pab as the four haplotype frequencies must add to
one. The feasible region of the remaining three haplo-
type frequencies looks like a tetrahedron with vertices
(1, 0, 0), (0, 1, 0), (0, 0, 1), and (0, 0, 0). Our method,
called Constrained ML, transforms the haplotype
frequencies before maximising the log-likelihood func-
tion. For this two-allele two-locus scenario, the trans-
formation is as follows:

u ¼ pAB þ pAb þ paB
v ¼ pAB þ pAb

pAB þ pAb þ paB
w ¼ pAB

pAB þ pAb

ð8Þ

The feasible region of the new coordinates {u, v, w}
becomes a unit cube. The log-likelihood is then maxi-
mised with respect to the new coordinates in this
“box-like” constraint, where a number of common op-
timisation routines become available. The MLE for
the haplotype frequencies can be obtained by back

transforming the fû; v̂; ŵg values which maximise the
function.
Sometimes, we need to decide whether a haplotype ac-

tually exists in the population. For example, if n6 = n8 =
n9 = 0 then we cannot rule out the possibility of pab = 0,
even if the estimated frequency is not. The same
principle applies to the other haplotypes. While CubeX
provides an additional solution (denoted as the γ solu-
tion) should this happen, it gives little indication of
which set of estimated haplotype frequency we should
accept. Under this scenario, we propose to perform a
likelihood-ratio test (LRT), to test whether a particular
haplotype has zero frequency as a precaution. This use
of an LRT will be demonstrated in the analysis of a real
dataset.

Results
The plots of r2phased versus r2true are shown in Fig. 1 for

several sample sizes. Linear regressions were run
through these simulated data points, and the estimates
and confidence intervals (C.I.s) of the slopes and inter-
cepts are summarised in Table 2. The estimates of inter-
cepts and slopes were very close to 1/2n and (1 − 1/2n),
which agree to our derivation for r2 under finite sample
size E½r2phased� ¼ ð1− 1

2nÞr2true þ 1
2n in Eq. 3. In particular,

the 95% C.I. for slopes excluded 1 for all examined cases.
The results from the same study using genotypic
(unphased) data are shown in Fig. 2 and Table 3. The re-
sults were similar to the phased case, with estimates of
intercepts and slopes of about 1/n and (1 − 1/n) respect-
ively. In short, both phased and unphased simulations
followed closely our theoretical expectations of observed
r2 due to the effect of finite sampling.
Figures 3 and 4 show the variance plots against their

expectations for phased and unphased data. The vari-
ance decreased with sample size n. Under the same con-
dition the variances were smaller for phased than
unphased data. The variance generally increases with
their expectations for E[r2] < 0.5, and then come down
afterwards. As predicted, the variance goes down to 0
when E[r2] approaches 1.
Our final set of simulations compared the conver-

gence between Constrained ML and the EM algo-
rithm. For both methods, the maximisation
terminated at the kth iteration when ∣l(k + 1) − l(k) ∣ /
max(|l(k + 1)|, |l(k)|, 1) was smaller than the chosen
relative tolerance. The plots of relative log-likelihood
against relative tolerance are found in Fig. 5. The
global maximum of the log-likelihood surface will
have the relative value of 1, and all other points will
have values smaller than 1. For very loose relative
tolerance of 10−2 Constrained ML was inaccurate. Be-
tween 10−3 and 10−6 Constrained ML converged better

Table 1 Expected genotypic frequencies under HWE

BB Bb bb

AA f 1 ¼ p2AB f 2 ¼ 2pABpAb f 3 ¼ p2Ab

Aa f 4 ¼ 2pABpaB f 5 ¼ 2ðpABpab þ pAbpaBÞ f 6 ¼ 2pAbpab

aa f 7 ¼ p2aB f 8 ¼ 2paBpab f 9 ¼ p2ab

The expected frequency of genotypes given the haplotype frequencies under
HWE [2]. All the expected frequencies f 1; f 2;…; f 9 add up to one
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than the EM algorithm, and the two methods performed
equally well for 10−7 and smaller. The IF index in Fig. 6
measures the differences between the estimated and true
haplotype frequencies, with a value of 1 referring to the
scenario when the two are identical. Figure 6 suggests that
the two methods behaved similarly for tighter tolerance
(10−6 and beyond). The IF for Constrained ML was also

more predictable and stable, while there was greater vari-
ability for the EM algorithm.
To demonstrate the use of Constrained ML and the

relevant LRT we analysed a published dataset on APOE
[30]. The dataset consists of 9 loci from 80 human indi-
viduals whose haplotypes were experimentally identified.
We masked the haplotype phase (i.e. as if we obtained
their genotypes only) and tried to estimate the haplotype
counts for all 36 pairs of loci, and when required, to
conduct a LRT to test for the absence of a particular
haplotype.
The complete results are presented in Additional

file 1, with selected summary in Table 4. For com-
parison, the results from CubeX and MIDAS (repre-
senting the EM algorithm) are also presented [24].
MIDAS was able to correctly estimate the haplotype
counts for 28 out of 36 pairs of loci. CubeX provided
unique and correct estimates for 26 cases. Addition-
ally in 5 other cases, CubeX provided two solutions,
one of which was the correct one. Constrained ML
also gave unique and correct haplotype estimates for

Fig. 1 Plots of r2phased against r2true under different sample sizes: 20 (top left), 40 (top right), 60 (bottom left), and 80 (bottom right). A linear

regression (red line) is fitted to each plot and the estimates are reported in Table 2

Table 2 Slope and intercept estimates from phased data

n 1/(2n) Intercept estimate 1 − 1/(2n) Slope estimate

20 0.025 0.02357
[0.02096, 0.02619]

0.975 0.96700
[0.95638, 0.97761]

40 0.0125 0.01174
[0.00985, 0.01363]

0.9875 0.99060
[0.98293, 0.99827]

60 0.0083 0.00885
[0.00731, 0.01040]

0.9917 0.99136
[0.98506, 0.99766]

80 0.0063 0.00580
[0.00447, 0.00712]

0.9937 0.99201
[0.98665, 0.99738]

Slope and intercept estimates for the plots in Fig. 1. 95% C.I.s are reported
in brackets
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the same 26 cases as CubeX. LRT were run on the 5
remaining cases that potentially have only 3 haplo-
types. LRT made the correct decision on 4 cases (loci
pair 1–5, 4–8, 5–7, and 5–9. See Table 4), but falsely
rejected the correct answer for loci pair 1–9. To sum-
marise, Constrained ML and LRT jointly provided
correct haplotype count estimates for 30 cases.

Discussion
Effect of finite sample size
The theoretical derivation and computer simulations
both suggest the observed E½r2� ¼ 1

s þ ð1− 1
sÞr2true, where

s = n sampled diploid individuals for unphased data,
and s = 2n for haplotypic data. This is different from
most existing formulae, which have the form of E½r2�
¼ r2true þ correction factor [7, 27]. The explanation is
that most previous derivations were based on the null
distribution of the χ2 statistic for association [30], or
equivalently assuming r2true ¼ 0 [29]. These corrections
become less reliable when r2true > 0 . For the limiting
case of completely linked loci, our sample size correc-

tion (Eqs. 4 and 6) guarantees that the implied dr2true is
also 1, while the existing form over-corrects for sam-
ple size [16]. Further, Tables 2 and 3 show that the
slope estimates are significantly different from 1, and
thus the term (1 − 1/s) should be retained. Although
the difference can sometimes be small, it is conceptu-
ally important that all the squared correlation

Fig. 2 Plots of r2unphased against r2true under different sample sizes: 20 (top left), 40 (top right), 60 (bottom left), and 80 (bottom right). A linear

regression (red line) is fitted to each plot and the estimates are reported in Table 3. Simulation setting is described in text

Table 3 Slope and intercept estimates from unphased data

n 1/n Intercept estimate 1 − 1/n Slope estimate

20 0.05 0.04740
[0.04451, 0.05029]

0.95 0.93576
[0.92390, 0.94761]

40 0.025 0.02243
[0.02038, 0.02447]

0.975 0.96722
[0.95907, 0.97537]

60 0.0167 0.01574
[0.01398, 0.01750]

0.9833 0.97750
[0.97029, 0.98472]

80 0.0125 0.01157
[0.01009, 0.01306]

0.9875 0.98340
[0.97741, 0.98941]

Slope and intercept estimates for the plots in Fig. 2. 95% C.I.s are reported
in brackets
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coefficients must be bounded between 0 and 1. As
pointed out by Sved et al. [7], the exact expression
for sample size corrections may contain o(s−2) terms,
but are shown to be negligible here.

Empirical variance of r2

We pointed out earlier that most existing claims
about the variance of r2 are based on r2true ¼ 0 and do
not apply to a wider range of r2true values. The second
simulation investigated empirically the variance of the
observed r2phased and r2unphased against their expectations

and under various sample sizes. The variance plots in
Figures 3 and 4 look like parabolas, in which the vari-
ances first increase and peak at E[r2] = 0.5 and then
come down for larger values. Empirically speaking,
the variances go like 2E[r2](1 − E[r2])/n for most r2true
> 0 as modelled by the red lines in the plots. It is ex-
pected that the two marginal frequencies may play a
role in the variance, but the exact expression is too

complicated to be evaluated. This approximate for-
mula provides a quick and direct way to approximate
the variances and subsequently the confidence inter-
vals of r2. In addition, this formula helps predict the
gain in precision by phasing the data or by increasing
the sample size.

Estimating haplotype frequencies from unphased data
This work proposes a new routine, Constrained ML, to esti-
mate haplotype frequencies from genotypes under HWE. In
theory, Constrained ML, EM, and CubeX all aim to maxi-
mise the same Hill 1974 log-likelihood function and hence
should be identical. In reality they may produce inconsistent
results because of the different ways of maximisation.
CubeX estimates the haplotype frequencies by solving the
cubic equation for the two-locus two-allele case. It may re-
turn two sets of answers which are both real and biologically
feasible, and this is particularly common when the sample
size is small, or when the loci depart from HWE [5]. An-
other explanation of having multiple answers is that being a

Fig. 3 Plots of variance of r2phased against E½r2phased� under different sample sizes: 20 (top left), 40 (top right), 60 (bottom left), and 80 (bottom right).

The red lines shows the functional form of 2E½r2phased�ð1−E½r2phased�Þ=n
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root of the cubic equation is only a necessary condition for
maximising the likelihood. It is unfortunate that CubeX does
not provide any indications on which set of haplotype fre-
quencies we should accept, other than using our “prior
knowledge of the LD structure” [5]. For the more general
case with multiple alleles, the EM algorithm was introduced
because direct maximisation was not always available. It
experiences other computing challenges, for example, if pAB-
pab + pAbpaB= 0 in any intermediate E-step, the computation
halts as division by zero is not permitted. The method is also
known to be sensitive to initial conditions, and often to con-
verge to a local rather than the global maximum [21]. With
our new method, Constrained ML, the same log-likelihood
can be directly maximised within the transformed feasible
region. Optimisation within this box-like constraint is a
well-studied problem with many routines available across
platforms and programming languages, such as L-BFGS-B
used in this study. The last simulation compared the conver-
gence between EM and Constrained ML under different
sample sizes and stopping criterion. The two methods

performed similarly for very tight tolerance for a simple
two-allele two-locus setting. A looser relative tolerance is
normally implemented in real applications to balance
between accuracy and computing time, and in this
case Constrained ML produced better convergence
than the EM algorithm. Additionally, like the EM al-
gorithm, Constrained ML can handle loci with mul-
tiple alleles, by transforming haplotype frequencies
into higher-dimensional “cubes” (Additional file 2).
The idea of the LRT can also be extended to multial-
lelic cases to test for the absence of any particular
haplotypes. Further comparisons of these methods, es-
pecially under more challenging conditions, would be
welcome. The APOE dataset, with reasonable sample
size and often extreme haplotype counts, illustrates
the use of Constrained ML and the associated LRT in
real applications. The EM-based MIDAS, which pro-
vides one estimate a time, got the least correct cases.
Although CubeX apparently gave more correct haplo-
type count estimates, there were 5 ambiguous cases

Fig. 4 Plots of variance of r2unphased against E½r2unphased� under different sample sizes: 20 (top left), 40 (top right), 60 (bottom left), and 80 (bottom

right). The red lines shows the functional form of 2E½r2unphased�ð1−E½r2unphased�Þ=n
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with two solutions. For the 5 loci pairs that poten-
tially have only 3 haplotypes instead of 4, LRT cor-
rectly identified the answer in 4 cases, but marginally
rejected the correct answer for the loci pair 1–9 at
5% α level (LRT statistic = 1.84, p-value = 0.17). We
should also point out estimation errors were rare but
unavoidable, and this is exactly why phased data is
preferred. Nonetheless, LRT provides a valuable metric
to help decide which set of answer we should accept.
There exist some other methods, such as the Burrows’

method [3, 7], to estimate r2 without assuming HWE, but
they are beyond the scope of this work. Burrows’ Δ mea-
sures the so-called composite linkage disequilibrium from
non-gametic frequencies, which takes the departure from
HWE into account. One can further break down the nine
genotypes into eight parameters to include the single-
locus disequilibria and higher-order disequilibria [31]. On
the downside, they are not as efficient as the likelihood es-
timators if the HWE assumption is valid.

Conclusions
This work generalised the estimation of r2 to all levels
of LD, and for both phased and unphased data. New
formulae were provided to correct for finite sample
size during r2 point estimation. We approximated the
empirical variance of r2 based on computer simula-
tions. Lastly, a new framework called Constrained ML
was suggested to directly estimate haplotype frequen-
cies from diploid genotypic data under HWE. Most
inferences utilising LD information will benefit from
our new findings.

Methods
Computer simulation 1: effect of finite sample size
Simulations were run to verify whether the effect of
finite sample size on r2 estimates is the same as de-
scribed by Eqs. 3 and 5. First, to ensure most haplo-
type combinations are covered, a set of true
haplotype frequencies was drawn randomly from the

Fig. 5 Plots of relative log-likelihood against relative tolerance for the two maximisation routines using unphased data: the EM algorithm (black
circles), and Constrained ML (red crosses). Four different sample sizes were examined: 20 (top left), 40 (top right), 60 (bottom left), and 80 (bottom
right). The global maximum of the log-likelihood has the relative value of 1
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uniform Dirichlet(1, 1, 1, 1) distribution, which was
used to calculate the underlying r2true . Second, haplo-
types were sampled with a known sample size via the
multinomial distribution, and the observed r2phased
were calculated via Eq. 1. For unphased case, two
haplotypes were paired into one genotype. Haplotype
frequencies and r2unphased were estimated through Con-

strained ML. These two steps were repeated for 10,
000 times per sample size, and further repeated for
sample sizes of 20, 40, 60, and 80 diploid individuals.
The observed r2phased and r2unphased were plotted against

r2true for each sample size.

Computer simulation 2: empirical variance of r2

Another set of simulations was run to explore the
empirical variance of r2phased (or r2unphased). The proced-

ure was very similar to the first simulation. For each
r2true , 500 additional samples were simulated to calcu-
late the variance of the observed r2phased (or r2unphased ).

This was repeated for 10,000 different sets of true
haplotype frequencies per sample size, and further re-
peated for sample sizes of 20, 40, 60, and 80 diploid
individuals.

Computer simulation 3: estimating haplotype frequencies
from unphased data
The final set of simulations studied the convergence
of Constrained ML and the EM algorithm against
different stopping criterion and sample sizes. We
measured convergence by two metrics, the relative
log-likelihood [32], and the IF index [21]. For each
simulation, true haplotype frequencies were drawn
from the Dirichlet(1, 1, 1, 1) distribution, which were
then used to sample the genotypes with a known
sample size. Two haplotypes were randomly paired
up to form a genotype. All initially fixed/extinct loci
were discarded and resampled. Then the log-
likelihood function (Eq. 5) was maximised via Con-
strained ML and the EM algorithm. In particular,
Constrained ML was optimised by the L-BFGS-B

Fig. 6 Plots of IF index against relative tolerance for the two maximisation routines using unphased data: the EM algorithm (black circles), and
Constrained ML (red crosses). Four different sample sizes were examined: 20 (top left), 40 (top right), 60 (bottom left), and 80 (bottom right)
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routine within the optim() function in R [33, 34].
To avoid false convergence under a specific initial
condition, 100 initial conditions were applied to
each set of genotypes and the estimate with the lar-
gest maximised log-likelihood was used. The whole
simulation was repeated 500 times, and further
repeated for several different sample sizes and stop-
ping criterion. We used relative tolerance as our
stopping criteria, ranging between 10−2 and 10−9.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12863-020-0818-9.

Additional file 1. Complete results from the analysis of APOE dataset.
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