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Abstract: Epigenetics is known to be involved in regulatory pathways through which greenness
exposure influences child development and health. We aimed to investigate the associations between
residential surrounding greenness and DNA methylation changes in children, and further assessed
the association between DNA methylation and children’s intelligence quotient (IQ) in a prospective
cohort study. We identified cytosine-guanine dinucleotide sites (CpGs) associated with cognitive
abilities from epigenome- and genome-wide association studies through a systematic literature
review for candidate gene analysis. We estimated the residential surrounding greenness at age
2 using a geographic information system. DNA methylation was analyzed from whole blood using
the HumanMethylationEPIC array in 59 children at age 2. We analyzed the association between
greenness exposure and DNA methylation at age 2 at the selected CpGs using multivariable linear
regression. We further investigated the relationship between DNA methylation and children’s IQ.
We identified 8743 CpGs associated with cognitive ability based on the literature review. Among
these CpGs, we found that 25 CpGs were significantly associated with greenness exposure at age 2,
including cg26269038 (Bonferroni-corrected p ≤ 0.05) located in the body of SLC6A3, which encodes
a dopamine transporter. DNA methylation at cg26269038 at age 2 was significantly associated
with children’s performance IQ at age 6. Exposure to surrounding greenness was associated with
cognitive ability-related DNA methylation changes, which was also associated with children’s IQ.
Further studies are warranted to clarify the epigenetic pathways linking greenness exposure and
neurocognitive function.

Keywords: greenness; epigenetics; DNA methylation; intelligence quotient; cytosine-guanine dinu-
cleotide sites

1. Introduction

Exposure to greenness in urban areas is estimated to have physiological and psy-
chosocial health benefits in children [1–5]. Urban greenness can contribute to reducing the
harmful effects of urbanization [6], including reducing exposure to environmental toxi-
cants [7] and noise [8], increasing the level of physical activity [9,10], and enhancing social
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cohesion [11] in children. However, the biological mechanisms underlying the association
between greenness exposure and desirable health effects remain unclear.

Many epidemiological studies have shown that an adverse intrauterine environment,
including smoking [12–14], chemical exposures [15–18], ambient air pollution [19,20], and
stress [21,22], may result in epigenetic perturbations of the developing fetus and can be
associated with an increased risk of adverse health outcomes in later life. Additionally,
exposure to heavy metals in early childhood (ages 1–4 years) was significantly associated
with epigenetic change such as H19 hypermethylation, which may contribute to growth
and metabolic diseases [23]. Hence, DNA methylation may be a possible mechanism by
which early life environmental factors contribute to an increased risk of diseases in later
life [24,25]. In addition, epigenetic modifications, such as DNA methylation, are susceptible
to genetic and environmental factors and may provide insights into individual differences
in health outcomes [26]. Epigenetic change is hypothesized to be a regulatory pathway
through which exposure to greenness in early childhood may influence child development
and health.

However, few studies have assessed the association between greenness exposure and
changes in DNA methylation. Xu et al. (2021) showed an association between greenness
exposure and gene and their interactions on blood-derived DNA methylation in 479 adult
females [27]. They found greenness-associated DNA methylation changes of cytosine-
guanine dinucleotide (CpG) sites at genes related to various human diseases such as
mental disorders, neoplasms, nutritional and metabolic diseases [27]. The CNP gene at
cg04720477 was strongly associated with greenness exposure and encodes a protein that
has been related to low expression in brain tissue of schizophrenic [28] and depressive
patients [29]. These results suggest that high greenness may be related to elevated CNP
expression due to reduced methylation of this gene in female adults [27]. However, this
study had a cross-sectional design, and so it was unable to determine whether DNA
methylation plays a role in the association between improved mental health and exposure
to greenness. In addition, they did not estimate the epigenetic impact of greenness on
clinical outcomes.

Previously, we found that residential greenness was associated with IQ in the Environ-
ment and Development of Children (EDC) cohort study of 189 children [30]. We suggest
that postnatal greenness exposure is more strongly associated with IQ in children than
prenatal exposure to greenness. Cognitive skills are a strong predictor of a wide range of
later life outcomes [31]. We hypothesized that residential greenness in early childhood
may be associated with epigenetic alterations and that these alterations may influence later
childhood cognitive outcomes. Using a sub-study of 59 children with DNA methylation
data, we sought to evaluate the association between residential greenness exposure and
DNA methylation changes reported from genome-wide association studies (GWAS) and
epigenome-wide association studies (EWAS) of cognitive ability in children in a hypothesis-
driven approach. We then investigated the association between the DNA methylation
changes, which were significantly associated with greenness exposure, and children’s IQ in
the prospective EDC cohort.

2. Materials and Methods
2.1. Study Population

Our research was based on a subset of the EDC study cohort, an ongoing prospective
cohort study designed to evaluate the association between prenatal and postnatal envi-
ronmental exposures and physical or cognitive development. Detailed information on the
study design has been described elsewhere [32]. Briefly, a total of 726 eligible pregnant
women from eight local hospitals in Seoul and Gyeonggi province of South Korea were
enrolled from August 2008 to July 2010. We collected urine and blood samples to estimate
exposure to environmental factors during the second trimester of pregnancy. A total of
425 children aged 2 years and 574 children aged 6 years at enrolment were followed up.
DNA methylation analysis was conducted in a sub-study of 59 participants using blood
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samples collected at the age of 2 years. The study protocol, including ethical approval and
participant consent was reviewed and approved by the Institutional Review Board of the
Seoul National University Hospital (IRB No. C-1201-010-392).

2.2. Systematic Review of Literature and Selection of Candidate Cytosine-Guanine
Dinucleotide Sites

As we were specifically interested in the question of whether DNA methylation medi-
ates the effects of exposure to greenness on children’s IQ, we targeted CpG sites that were
more likely to be involved in cognitive ability instead of scanning the whole epigenome.
For the selection of previous EWAS or GWAS on association with cognitive abilities, we
searched PUBMED and EMBASE on April 1, 2021, using keywords (“epigenome-wide
association study” or “genome-wide association study”) and (“intelligence” or “cognitive
ability” or “cognitive development”) from titles or abstracts. The selection criteria were
EWAS or GWAS regarding cognitive ability in healthy children or adults. From previous
EWAS or GWAS that investigated the association between DNA methylation and cognitive
ability in healthy children or adults, we identified CpG sites associated with cognitive-
ability-related parameters (Figure 1). In the GWAS, single nucleotide polymorphisms
(SNPs) associated with cognitive ability were identified, and then the genes annotated
to these SNPs were identified. The CpG sites associated with these genes were pooled
using the Database for Annotation, Visualization, and Integrated Discovery (DAVID,
http://david.abcc.ncifcrf.gov/home.jsp). We added IQ-related genes from bibliographyies,
in which the genes were identified through enrichment analyses.
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2.3. Measurement of Residential Surrounding Greenness

To estimate exposure to greenness, the residential addresses were collected at the
age of 2 years. The surrounding greenness was recorded using Landsat image data
from the IKONOS satellite images [33] and Korean Arirang satellite images taken by
the Environmental Geographic Information Service of the Ministry of the Environment
(https://egis.me.go.kr/main.do). To estimate exposure to greenness, densities of green-
ness were calculated within buffer radii of 100, 500, 1000, 1500, and 2000 m of each child’s
residential address. We then determined the percentage of greenness (density) from the
area within each buffer radius. We separately analyzed two types of greenness, namely,
natural greenness, forest or natural grassland, and built greenness, including artificial
grassland, urban parks, and street trees. We did not analyze the effect of natural greenness
within buffer radii of both 100 and 500 m because natural greenness was barely observed
within these ranges.

2.4. Measurement of DNA Methylation
2.4.1. Assessment of DNA Methylation at Age 2 in the Environment and the Development
of Children Study Cohort

We performed genome-wide DNA methylation analyses using the whole blood sam-
ples of 59 2-year-old children as described in an earlier study [34]. Briefly, DNA samples
were tested for quality using a NanoDrop® ND-1000 UV-VIS spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, USA). Electrophoresis was performed using 1% agarose
gel, and samples with genomic DNA (gDNA) were diluted to 50 ng/µL based on Quanti-iT
Picogreen quantification (Thermo Fisher Scientific, Wilmington, DE, USA). The gDNA
samples (minimum 500 ng) were diluted, then bisulfite-converted using the Zymo EZ
DNA methylation kit (Zymo Research, Irvine, CA, USA), and the DNA was then ampli-
fied to be used on the DNA BeadChip. At age 2, we used the Illumina Infinium Human
MethylationEPIC BeadChip, which yielded 850,000 CpG sites (Illumina, San Diego, CA,
USA). Images were read by the Illumina BidArray Reader, and the image intensities
were extracted using the Illumina GenomeStudio software. Microarrays were handled
by Macrogen Co. (Seoul, Korea). For functional annotation analysis, we used the DAVID
(david.abcc.ncifcrf.gov) tool.

2.4.2. Quality Control of Methylation Data

Filtered data were normalized using the Beta Mixture Quantile (BMIQ) method [35].
With the Human MethylationEPIC BeadChip (850K), a total of 866,297 CpG sites were
extracted for the raw data, and 609 CpG sites (0.07%) which had detection p-value ≥ 0.05
across more than 25% of all samples were excluded from analysis. Thus, 865,688 CpG
sites were left for analysis. We also filtered CpG sites according to the following exclusion
criteria: (a) SNP-associated CpG sites defined as 0 or 1 base pair near SNP loci or minor
allele frequency (MAF) > 5% (213,660 CpG sites); (b) CpG sites that corresponded to the X or
Y chromosome (19,627 CpG sites); (c) CpG sites corresponding to non-CpG loci (3627 CpG
sites).; (d) cross-reactive CpG sites (42,558 CpG sites). We were finally left with 256,866 CpG
sites which overlapped with the available epigenome data of 6-year-old children for further
analysis. We also excluded multimodal CpG sites if they appeared in statistically significant
CpG sites, which were identified using the dip test statistic for multimodality, which was
calculated using the R package diptest module [36].

2.5. Measurement of Intelligence Quotient in Children

The IQ of the 6-year-old children was measured using the Korean Educational Devel-
opmental Institute’s Wechsler Intelligence Scale for Children [37]. Higher scores indicated
higher IQ. Two subsets were measured: verbal IQ, based on the sum of the test results for
vocabulary and arithmetic intelligence, and performance IQ, based on the sum of the tests
for picture arrangement and block design [38].

https://egis.me.go.kr/main.do
david.abcc.ncifcrf.gov
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2.6. Measurement of Other Exposure Variables

We collected demographic information on the children and their mothers by means of
interviews using structured questionnaires. Covariates were selected based on a literature
review [27,30]. The covariates used to analyze the association between greenness and DNA
methylation were mother’s age at pregnancy (years), mother’s educational level (middle
school graduate, high school graduate, college graduate, or graduate school attendance),
children’s exposure to environmental tobacco smoke (ETS) at age 2 (yes or no), children’s
sex (male or female), children’s age at follow-up (months, continuous variable), children’s
body mass index (BMI) (kg/m2, continuous variable), and cell type fractions (continuous
variables). The cell type fractions in blood samples were calculated using the R package
minfy module [39]. To estimate the percentage of CD8 + T cells, CD4 + T cells, natural killer
cells, B cells, monocytes, and neutrophils, adults’ leukocyte reference dataset was used [40].
We also used the covariates for analyzing the association between DNA methylation and
children’s IQ at age 6, including children’s age at follow-up, children’s BMI, maternal age
during pregnancy, maternal education level, exposure to ETS at age 2, maternal IQ, and
children’s sex. The short form of the Korean Wechsler Adult Intelligence Scale was used to
assess maternal IQ at the time of their children’s follow-up visit at the age of 6 [41].

2.7. Statistical Analysis

We compared the demographic and clinical characteristics of the sub-study population
to the population of the EDC study that was not included in our study using the Student’s
t-test (for continuous variables) or chi-square test (for categorical variables) (Table 1). We
used batch-effect-adjusted DNA methylation data obtained using the R package ComBat
module to adjust different distributions according to chips and positions from the array
data [42]. This process uses an empirical Bayes method to adjust batch effects in small
sample sizes. We performed multivariable linear regression to determine the relationship
between exposure to greenness at age 2 and cognitive-ability-related DNA methylation
at age 2, adjusting for monthly age at follow-up, BMI at age 2, maternal education level,
cell type fractions (CD8 + T cells, CD4 + T cells, natural killer cells, B cells, monocytes,
and neutrophils), ETS, maternal age at delivery, and child’s sex. Using the CpG sites
significantly associated with exposure to greenness at age 2, we tested the association of
DNA methylation levels at these CpG sites with total, verbal, and performance IQ scores
at age 6, adjusting for maternal age during pregnancy, exposure to ETS at age 2, maternal
IQ, and children’s sex using the selection criteria to select the best model by comparing
the Akaike Information Criterion (AIC) [43]. Using the CpG sites significantly associated
with exposure to greenness at age 2, we tested the association of DNA methylation levels
at these CpG sites with total, verbal, and performance IQ scores at age 6 in multiple linear
regression models, adjusting for maternal age during pregnancy, exposure to ETS at age
2, maternal IQ, and children’s sex using the selection criteria to select the best model
by comparing the AIC. To account for multiple testing, we used a Bonferroni-corrected
p-value ≤ 0.05 for statistical significance. Pathway enrichment analysis was performed
using the ReactomePA R package [44]. Enrichment analysis of functional terms revealed the
Reactome pathway enriched in the genes identified as significant from their association
between greenness exposure and cognitive-ability-related CpG sites (Bonferroni-corrected
p ≤ 0.05). All statistical analyses were performed using SAS version 9.4 (SAS Institute
Inc., Cary, NC, USA) and R software version 3.6.0 (R Foundation for Statistical Computing,
Vienna, Austria).
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Table 1. Characteristics of participants at age 2 in sub-study compared to total EDC population.

Variables

Study Population
(n = 59)

EDC Population Excluded
from the Study

(n = 366)
p-Value

n (%) or Mean ± SD n (%) or Mean ± SD

Maternal age at pregnancy (years) 31.10 ± 3.79 31.68 ± 3.60 0.256

Children’s age (months) 23.32 ± 0.77 23.31 ± 0.76 0.922

Children’s BMI at age 2 16.57 ± 1.20 16.48 ± 1.44 0.666

Maternal IQ 117.8 ± 11.5 115.8 ± 11.1 0.248

Maternal education level

High school graduate 9 (15.25) 70 (19.13)

0.669College graduate 42 (71.19) 257 (70.22)

Graduate school 8 (13.56) 39 (10.66)

Prenatal exposure to ETS
Yes 14 (23.73) 89 (24.32)

0.922
No 45 (76.27) 277 (75.68)

Children’s sex
Girl 30 (50.85) 172 (46.99)

0.582
Boy 29 (49.15) 194 (53.01)

Percentage of total greenness
at the home address at age 2

100 m 17.67 ± 12.8 19.82 ± 14.0 0.276

500 m 18.71 ± 11.1 21.36 ± 13.9 0.108

1000 m 19.95 ± 11.2 23.61 ± 13.6 0.028

1500 m 23.63 ± 12.8 24.77 ± 12.9 0.529

2000 m 25.29 ± 13.4 26.32 ± 12.7 0.569

IQ at age 6

Total IQ 107.4 ± 13.7 110.6 ± 12.5 0.088

Verbal IQ 21.08 ± 5.03 20.81 ± 7.06 0.732

Performance IQ 23.47 ± 5.10 22.91 ± 7.26 0.487

Abbreviations: EDC, Environment and the Development of Children; SD, standard deviation; ETS, environmental tobacco smoke; BMI,
body mass index; IQ, intelligence quotient.

3. Results
3.1. Participant Characteristics

Table 1 presents the participant characteristics. The mean maternal age at delivery was
31.10 years (standard deviation (SD): 3.79 years). The mean age and BMI of children were
23.32 months (SD: 0.77 months) and 16.57 kg/m2 (SD: 1.20 kg/m2), respectively. The mean
maternal IQ was 117.8 (SD: 11.5). The percentages of mothers who received less than a
high school education and more than a graduate school education were 15.25% and 13.56%,
respectively. A total of 23.73% of the participants were in a group with positive exposure to
ETS during pregnancy. There were similar numbers of girls and boys in the study (30 and
29, respectively). The percentage of greenness exposure at age 2 within 100–2000 m was
ranged from 17.67% to 25.29%. The mean total, verbal, and performance IQ scores at age 6
were 107.40 (SD: 13.70), 21.08 (SD: 5.03), and 23.47 (SD: 5.10), respectively. In addition, we
found that the characteristics of our study subcohort were not significantly different from
those of the participants in the entire EDC cohort, except for exposure to greenness at age 2
in 1000 m buffer of residential address.

3.2. Systematic Literature Review

We found a total of 896 studies (445 studies in PubMed and 451 studies in EMBASE)
after applying the keywords search strategy described in Table S1. Five studies were
included in the bibliographic search. After excluding duplicated studies (n = 64), 97 studies
were included for screening by title, and 735 studies were excluded because they were
studies of cognitive aging or cognitive disease or were not primary investigation. We
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further excluded irrelevant articles such as invalid study designs or cognitive outcomes,
such as mathematics, school performance, or memory, finally leaving a total of 19 articles
(Figure 1).

A total of 400 CpG sites were selected from 6 EWAS [26,45–49]. Additionally, a total of
31,981 CpG sites were selected, which were annotated to 835 genes reported from 13 GWAS
after excluding duplicate genes [50–62]. As a result, 8743 CpG sites were finally selected
(Tables S2 and S3).

3.3. Association between Greenness Exposure and DNA Methylation

A total of 209 CpG sites from the EWAS and 8,534 CpG sites from the GWAS were
analyzed in our study. We found that 25 cognitive-ability-related CpG sites were signifi-
cantly associated with greenness exposure at age 2 (8 CpG sites from EWAS and 17 CpG
sites from GWAS) (Table 2) in total greenness in buffers of 100–2000 m, natural greenness
in buffers of 1000–2000 m, and built greenness in buffers of 1000 m and 1500 m, with a
significance criterion for Bonferroni-corrected p-values < 0.05 (Table 2).

Table 2. The significant relationship between greenness exposure and selected DNAm at age 2 †.

Origin Study Greenness
Type Buffer CpG Gene Difference

(95% CI) § p-Value

EWAS
Study

Total

100 m cg13092901 TYMP 0.021(0.012, 0.029) 2.0 × 10−5

500 m

cg04789403 NA 0.031(0.015, 0.047) 1.1 × 10−4

cg07266431 CDK6 0.028(0.015, 0.040) 1.9 × 10−4

cg13599020 SAMD3 0.026(0.014, 0.039) 1.9 × 10−4

cg27492942 CISD3 0.029(0.013, 0.045) 1.7 × 10−4

1000 m cg00252813 GAPDH 0.013(0.006, 0.020) 6.1 × 10−5

Natural 1000 m
cg00252813 GAPDH 0.013(0.007, 0.019) 5.8 × 10−5

cg04789403 NA 0.020(0.010, 0.030) 7.7 × 10−5

Built
1000 m cg16594502 NA 0.015(0.008, 0.022) 9.4 × 10−5

1500 m cg25189904 GNG12 0.028(0.013, 0.044) 2.3 × 10−4

GWAS
Study

Total

100 m

cg26269038 SLC6A3 −0.011(−0.015, −0.007) 3.2 × 10−8

cg14464361 AGAP1 −0.023(−0.032, −0.016) 2.2 × 10−6

cg21175642 CELSR3 0.013(0.007, 0.016) 3.4 × 10−6

1000 m

cg23651585 AUTS2 −0.039(−0.056, −0.024) 9.9 × 10−7

cg27636559 EFTUD1 0.007(0.004, 0.009) 1.2 × 10−6

cg27609819 PLCL1 −0.027(−0.038, −0.015) 2.3 × 10−6

cg16296679 WBP2NL 0.015(0.009, 0.022) 2.9 × 10−6

1500 m
cg17146029 AUTS2 0.010(0.007, 0.013) 1.0 × 10−7

cg00809988 ELAVL2 −0.006(−0.009, −0.003) 1.5 × 10−7

2000 m

cg17146029 AUTS2 0.009(0.006, 0.012) 3.9 × 10−8

cg00809988 ELAVL2 −0.004(−0.008, −0.002) 3.2 × 10−7

cg03367519 PDE4D −0.005(−0.008, −0.002) 3.3 × 10−6
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Table 2. Cont.

Origin Study Greenness
Type Buffer CpG Gene Difference

(95% CI) § p-Value

Natural

1000 m

cg27609819 PLCL1 −0.029(0.039, −0.020) 3.7 × 10−8

cg23651585 AUTS2 −0.043(−0.059, −0.027) 7.4 × 10−8

cg27636559 EFTUD1 0.007(0.005, 0.009) 2.2 × 10−7

1500 m

cg23651585 AUTS2 −0.041(−0.055, −0.025) 2.6 × 10−7

cg23159678 NOVA1 0.009(0.004, 0.014) 1.9 × 10−6

cg05016953 SLC6A4 −0.004(−0.006, −0.001) 2.2 × 10−6

cg27609819 PLCL1 −0.025(−0.036, −0.016) 2.2 × 10−6

cg03367519 PDE4D −0.005(−0.007, −0.002) 2.9 × 10−6

cg00809988 ELAVL2 −0.005(−0.007, −0.002) 5.3 × 10−6

2000 m

cg17146029 AUTS2 0.010(0.006, 0.012) 1.8 × 10−6

cg23651585 AUTS2 −0.046(−0.064, −0.026) 1.9 × 10−6

cg11176256 BAIAP2 0.016(0.010, 0.023) 3.5 × 10−6

cg05897638 PROS1 −0.007(−0.010, −0.003) 5.1 × 10−6

cg00809988 ELAVL2 −0.005(−0.009, −0.002) 5.5 × 10−6

cg12414502 BTN2A1 0.010(0.006, 0.012) 5.6 × 10−6

Built 1500 m
cg19258882 ERBB3 0.024(0.015, 0.032) 4.6 × 10−6

cg18311871 PTPRN2 0.081(0.047, 0.115) 3.2 × 10−6

Abbreviations: CpG site location based on Illumina annotation, derived from the University of California, Santa Cruz (UCSC), adjusted
for children’s age, children’s BMI, maternal education level, cell type fractions (CD8 + T cells, CD4 + T cells, natural killer cells, B cells,
monocytes, and neutrophils), environmental tobacco smoke, maternal age, and children’s sex. The list was significantly associated as
per Bonferroni correction (p < 0.05). † Analyzed using a linear regression model. § Change in DNA methylation level by an increase of
1 interquartile range of greenness percentage within each buffer.

3.4. Pathway Enrichment Analysis

We investigated potential biological functions by performing pathway enrichment
analysis with the cutoff p-value set to 0.1. We found the top 20 pathways, including
transmission across chemical synapses, opioid signaling, and neuronal systems pathway
(Figure 2A). Notably, a single pathway of neurotransmitter clearance was only signifi-
cantly enriched for the SLC6A3 and SLC6A4 genes at the selected cutoff (p-value was 0.05)
(Table S4). SLC6A3 and SLC6A4 genes were significantly related to greenness exposure,
of which SLC6A3 also showed significant associations with IQ in this study. Figure 2B
shows linkages between the genes and biological functions as a network. In addition to the
neurotransmitter clearance pathway, SLC6A4 and SLC6A3 were non-significantly linked
via transmission across chemical synapses (adjusted p-value: 0.12, respectively; Table S4).
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3.5. Association between DNA Methylation and Children’s Intelligence Quotient

The association of the methylation levels of the 25 CpG sites at age 2 and total, verbal,
and performance IQ scores at age 6 are shown in Table S5. Notably, one interquartile range
(IQR) increase of the methylation level at cg26269038 was significantly associated with an
increased performance IQ score at age 6 (2.89-point increase in IQ was 2.89 (95% CI: 1.27,
4.51) in the adjusted models after Bonferroni correction (Table 3). However, there was no
significant association between total IQ or verbal IQ and the level of DNA methylation
(Table 3). In sensitive analysis, we analyzed these associations with additional covariates
such as breastfeeding pattern and mother’s previous smoking status in Table S6. The result
was not different from the main result in Table 3. We plotted the least-squares means of
the methylation level at cg26269038 by exposure to greenness as the quartile group. The
percentages of greenness in the 100 m buffer of residential address for each participant
were divided into quartiles and were then performed to determine whether individuals
in the three higher quartiles differed significantly from those in the lowest quartile. The
highest quartile of DNA methylation level at cg26269038 was significantly different from
the lowest quartile (Figure 3).

Table 3. Association between selected CpG sites and children’s Performance IQ (n = 59) †.

IQ CpG Sites Chr Gene Gene Group Difference
(95% CI) § p-Value *

Total IQ

cg26269038 5 SLC6A3 Body

3.68(−0.90, 8.26) 0.115

Verbal IQ −0.66(−2.47, 1.15) 0.475

Performance IQ 2.89(1.27, 4.51) 0.001

* Bold was significant association using Bonferroni correction p < 0.002. † Analyzed using a linear regression model. § Difference (95% CI)
was calculated by 1 interquartile range change in DNA methylation level at each CpG site. Adjusted for children’s sex, maternal age during
pregnancy, exposure to ETS, and maternal IQ.
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4. Discussion

We found that the methylation levels at 25 cognitive ability-related CpG sites at age 2
were significantly associated with greenness exposure during early childhood and that the
methylation level at cg26269038 at age 2 (SLC6A3) was significantly associated with the
performance IQ score at age 6.

Epigenetic markers, such as DNA methylation, are dynamically reprogrammed during
gametogenesis and early embryo preimplantation [63,64]. Experimental evidence suggests
that the epigenome of mammalian embryonic cells is more susceptible to environmental
stimulation than other differentiated cells [18,65] because of the abundance of de novo DNA
methyltransferases in these rapidly dividing pluripotent cells [63,64]. The most significant
DNA methylation change at cg26269038 is located in the body, intron between the third and
fourth exon, of the gene solute carrier family 6, the member 3 (SLC6A3) on the chromosome
5. The gene encodes a dopamine transporter (DAT), which is a member of the sodium- and
chloride-dependent neurotransmitter transporter family, and provides rapid clearance of
dopamine [66,67], which mediates the reuptake of dopamine from the synaptic cleft [68].
Cómbita et al. (2017) determined whether SLC6A3/DAT1 gene contributed to individual
differences in children’s self-regulation skills [69]. They evaluated self-regulation skills and
cognitive tasks such as conflict processing, inhibitory control, and intelligence assessments
in 127 children at ages 4 and 6 in Spain. They found that the presence of the 10 alleles of
the SLC6A3 gene was related to a declining function of the dopaminergic transmission
system, which was associated with poorer performance in self-regulation. Dopaminergic
neurotransmission related to the SLC6A3 and DRD2 genes is reportedly associated with
cognitive capacities, such as IQ, in previous studies [70–72]. Our results show that children
with greater exposure to greenness had lower DNA methylation levels of the SLC6A3
gene. This region might be linked to greenness exposure and neurological development
in children. However, further studies are needed to understand how these cognitive-
ability-related CpG sites are linked to greenness exposure. In line with previous findings,
we found that greenness exposure in early childhood is a modifiable factor related to
DNA methylation change, which was found to be associated with cognitive ability in a
previous study.



Int. J. Environ. Res. Public Health 2021, 18, 7429 11 of 16

In our study, several other genes also significantly associated with greenness exposure,
including PDE4D, PLCL1, GNG12, and SLC6A4, were also linked to neurotransmitter
clearance in the pathway-enrichment analysis results. Signaling in the central nervous
system (CNS) is terminated by the clearance of neurotransmitters from the synapse via high-
affinity transporter molecules in the presynaptic membrane [73]. Accumulated evidence
has shown that exposure to greenness has a positive effect on health by reducing oxidative
stress [74–77]. Additionally, oxidative-stress-induced damage to the brain is likely to
negatively affect normal CNS functions [78]. As these neurodegenerative disorders are
related to increased environmental stressors, toxins, and oxidative stress in adults [79],
brain development in children may also be linked to oxidative stress, which is reduced
by greenness exposure. Similarly, oxidative stress is widely related to brain development.
Recently, greenness exposure was significantly associated with reduced oxidative stress in
Italian children [75]. We suggested that exposure to greenness, which was a pathway to
reducing oxidative stress, may be involved in neurodevelopment.

A CpG site at cg05016953 (SLC6A4) as a serotonin transporter, which was significantly
associated with greenness exposure in our study, was reported to be regulated by a 5HT-
TLPR functional polymorphism, which was significantly associated with IQ scores in a
previous study [80]. However, our results showed no significant association between DNA
methylation changes at cg05016953 (SLC6A4) at age 2 and children’s IQ at age 6. As there is
a wide distribution of the 5HTTLPR genotype by race and ethnicity [81–83], further studies
should be conducted among Asian children.

The effect sizes of the association between residential greenness and DNA methylation
were within 1~3%. In an Australian study that investigated the association between
greenness and epigenome-wide DNA methylation, the coefficients ranged from−0.36%
to 1.73% [27]. Epidemiological studies concerning the effects of environmental exposures
typically show small effect sizes. For example, the differences in DNA methylation reported
between exposed vs. unexposed groups are generally on the scale of 2–10%, and in some
cases, even smaller differences have been observed [84]. It has been reported that for every
1% change in methylation at the differentially methylated region at IGF2, a halving or
doubling of IGF2 transcription was observed [85]. Although such a few percent change
in DNA methylation appears as a small effect size, it is only so in the perspective of the
population of cells. At a single-cell level, a CpG site is either methylated (100%), hemi-
methylated (50%), or non-methylated (0%), and such a difference could have substantial
effects on cell functions, including gene regulation [84].

Exposure to different types of greenness has been shown to have different effects
on children’s health. A previous study found a strong association between exposure to
built greenness, but not natural greenness, and children’s IQ at age 6 [30]. However, DNA
methylation changes were more significantly associated with natural greenness at age
2. There have been no previous studies of the association between the type of greenness
and DNA methylation change, and further studies are needed to investigate the effect of
exposure to various types of greenness and intelligence in children. The DNA methylation
changes and greenness exposure still need to be analyzed in the entire EDC cohort rather
than the sub-study [30].

Our study had several strengths. First, to our knowledge, this is the first epigenetic
study of the association between greenness exposure and cognitive-ability-related DNA
methylation changes in children. Second, we estimated the association between greenness
exposure related to DNA methylation at age 2 and children’s IQ at age 6 in a prospective
cohort study, which might provide a clue to explain the causal role of greenness in neu-
rodevelopment in children. Third, we estimated the proportions of greenness in buffers of
various sizes and exposure to various types of greenness. There is currently insufficient
evidence to determine which type of greenness exposure and which buffer size have the
greatest impact on mental health in children, and further studies should be performed
using buffers of various sizes and various types of greenness.
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However, our study has some limitations. First, we only had DNA methylation data
of 59 children, not the entire EDC cohort, even though we found no significant differences
in the characteristics of the children in the sub-cohort and the full EDC cohort; thus,
our findings need to be further evaluated in a larger cohort. Second, we measured the
surrounding greenness captured during a single period using satellite-derived land-cover
maps without considering the period of greenness assessment. Third, we focused on
residential surrounding greenness based on the residential addresses of our participants,
which did not reflect their exposure level to greenness at other places, which may have
caused exposure misclassification. Fourth, we were unable to evaluate participants’ access
to greenness due to the lack of information, so further study is needed to consider how
children’s exposure to greenness is related to their accessibility to greenness.

5. Conclusions

Surrounding greenness exposure at age 2 was associated with DNA methylation
changes, and further associated with cognitive abilities. Further studies are warranted to
clarify the epigenetic pathways linking greenness exposure and neurocognitive functions
in children.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18147429/s1: Table S1. Previous EWAS or GWAS studies for the association between
DNA methylation and IQ. Table S2. List of target cg sites from previous EWAS (n = 209). Table
S3. List of target cg sites from previous GWAS (n = 8534). Table S4. List of 20 top-ranked genes
in Reactome pathway analysis. Table S5. Association between selected CpG sites and children’s
Total, Verbal, and Performance IQ (n = 59). Table S6. Association between DNA methylation level at
cg26269038 and children’s Total, Verbal, and Performance IQ (n = 59).
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