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ABSTRACT: Accurate evaluation of coalbed methane (CBM)
content is crucial for effective exploration and development.
Traditional gas content measurement methods based on laboratory
analysis of drill core samples are costly, whereas geophysical logging
methods offer a cost-effective alternative by providing continuous
high-resolution profiles of rock layer physical properties. However,
the relationship between CBM content and geophysical logging
data is complex and nonlinear, necessitating an advanced prediction
method. This study focuses on the No. 3 coal seam in the
Shizhuang South Block of the Qinshui Basin, utilizing geophysical
logging data and 148 sets of laboratory core samples. We employed
the Random Forest (RF) method optimized with a simulated
annealing-genetic algorithm (SA-GA) to develop the SA-GA-RF model for evaluating CBM content. The model’s performance was
validated using test data and new CBM well data, and it was applied to calculate the vertical gas content profiles of No. 3 coal seam
across 128 wells. The SA-GA-RF model demonstrated an average relative error of 13.13% in the test data set, outperforming
Backpropagation Neural Network (BPNN), Least Squares Support Vector Machine (LSSVM), Extreme Learning Machine (ELM),
and multivariate regression (MR) methods. The model also exhibited strong generalizability in new wells and improved model-
building efficiency compared to traditional cross-validation grid search methods. The construction of a three-dimensional CBM
content model, incorporating well coordinates and elevation data, allowed for detailed identification of high gas content areas and
layers. This three-dimensional model offers a more precise characterization than traditional two-dimensional isopleth maps,
providing valuable insights for CBM exploration, reserve evaluation, and production optimization.

1. INTRODUCTION
Coalbed methane (CBM) resources have garnered global
attention due to their potential to mitigate the depletion of
traditional oil resources and environmental impacts.1,2

Particularly amid concerns over coal mining safety and
greenhouse gas emissions, the significance of CBM exploration
and development has been underscored.3,4 Substantial research
efforts have been devoted to CBM development globally.5−8 In
China, abundant coal resources present extensive development
prospects, making CBM exploration a primary focus in
unconventional oil and gas resource research in recent
years.9,10 The evaluation of CBM resource productivity is
crucial for its exploration and development,11,12 yet estimating
CBM resources remains challenging due to inherent
uncertainties. CBM, classified as an unconventional gas
resource,13 exhibits reservoir and seepage mechanisms distinct
from conventional natural gas, with resource estimates affected
by multifaceted interactions.14 Moreover, the complex inter-
play among various CBM reservoir parameters complicates
their distribution and quantitative assessment.15−18 Of these

parameters, precise evaluation of gas content is particularly
critical.19,20 Assessing the gas-bearing properties of coal
reservoirs spans the entire CBM development lifecycle,21

from initial CBM selection to adaptive engineering design,
production capacity construction, and treatment of low-
production, low-efficiency wells, necessitating a thorough
understanding of coal seam gas properties.22,23 Given CBM’s
status as a clean energy source, accurate evaluation of CBM
content represents a critical research frontier with significant
implications for coalbed exploration and development.24,25

Currently, methods for evaluating CBM content can be
classified into direct and indirect approaches. The direct
method involves determining the gas content of core samples
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through desorption experiments conducted on cores obtained
from closed boreholes.26−28 This method is considered the
most direct and accurate.29 However, due to the poor
mechanical strength of coal seams, cores often suffer from
low integrity rates and potential damage to the borehole walls,
resulting in insufficient experimental data on coal sample
desorption.30 Moreover, this method is costly, time-consum-
ing, and impractical for widespread application since
production wells typically do not undergo coring measure-
ments across entire operational areas. In contrast, indirect
methods address the limitations of direct methods. These
approaches typically involve constructing models to evaluate
CBM content using data from isothermal adsorption experi-
ments and geophysical logging. Scholars internationally have
developed various methods based on CBM reservoir
mechanisms and desorption experiments. Notably, the KIM

method and its refined equations calculate coalbed gas content
using industrial components and have been proposed as
effective indirect evaluation tools.31 The isothermal adsorption
model is established by experiment, and the content of CBM is
predicted by the isothermal adsorption line. Subsequently,
geophysical logging technology has been gradually applied to
the evaluation of CBM content because of its high-cost
performance, strong reliability, and high resolution to
characterize the changes of vertical physical quantities of
boreholes.32−35 There are two main ways to evaluate the gas
content by using geophysical logging data: the first is to
combine the isothermal adsorption experiment method, use
the geophysical logging data to analyze the coal industrial
components, calculate the coefficient in the Langmuir equation
based on the analysis results or correct this equation,36 Kim37

and Hawkins38 used geophysical logging data to calculate

Figure 1. Geological map of the study area. (a) The study area is in Shanxi Province, China; (b) The geological survey map of the study area; (c)
The geological histogram of the study area; (d) The pie chart of coal structure and macroscopic coal rock description type in the study area.
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industrial components, and used the ratio of fixed carbon to
volatile matter to calculate the coefficient calculation in the
isothermal adsorption equation and dry ash-free basis
correction, and then predicted the experimental gas content
of coal samples and improved it. The precision of the
isothermal adsorption method for evaluation is contingent
upon field conditions, such as the number of parameter wells
and the accuracy of bottom hole flow pressure testing in the
field.39 Another approach involves directly utilizing geophysical
logging data to evaluate CBM content, including methods like
the volume-model40 and background-value41 methods, which
were initially prevalent but suffer from less-than-optimal
accuracy. The selection of parameters significantly influences
outcomes, and as industrial CBM content evaluation accuracy
improves over time, the applicability of these methods has
gradually diminished. Consequently, various mathematical
techniques, encompassing multiple linear regression, nonlinear
regression, and machine learning methods, have been
employed. These methods combine geophysical logging data
with core gas content derived from laboratory desorption to
construct CBM content prediction models. Applied across
diverse geographical contexts internationally, these approaches
consistently demonstrate feasibility.42−44

CBM reservoirs are characterized by greater complexity and
heterogeneity compared to conventional oil and gas reser-
voirs.45 The logging response of coal seams is influenced by
various factors, which complicates the relationship between
coalbed parameters and geophysical logging data, making it
nonlinear and intricate.46,47 Directly identifying the principal
controlling factors of CBM content proves challenging.
Machine learning methods show promise in elucidating these
nonlinear relationships within data, especially when dealing
with the complex interplay between geophysical logging data
and CBM content.48,49 Consequently, these methods often

achieve superior predictive accuracy compared to conventional
multiple regression techniques. Currently, various machine
learning approaches such as Back-propagation Neural Net-
works (BPNN),50 Extreme Learning Machines (ELM),51 and
Support Vector Machines (SVM)52,53 are employed to forecast
CBM content. Empirical evidence suggests that these methods
typically outperform traditional regression techniques.54

However, machine learning methodologies have limitations;
they require a substantial volume of core experimental data,
ideally with a uniform distribution. Obtaining coal core
samples that meet these stringent data quality requirements
poses a significant challenge, complicating the development of
predictive models. Accurately predicting CBM content in
individual wells is essential for constructing a three-dimen-
sional model of CBM content. While some scholars have
proposed methods for constructing three-dimensional param-
eters of coal seams in the past,12,55,56 there is limited research
on three-dimensional modeling of CBM content. This study
combines machine learning methods with geophysical logging
data to construct a CBM content prediction model. To ensure
the model’s generalizability, a three-dimensional CBM content
model was developed by evaluating CBM content from
numerous wells across the study area and integrating borehole
coordinates and elevation data obtained from remote sensing.
This paper introduces the Random Forest (RF) method and

employs the simulated annealing (SA) -genetic algorithm
(GA) to optimize its hyperparameters. The RF is known for its
robustness with small sample sizes and unbalanced data
distributions.57 The SA-GA ensures efficient tuning of RF
hyperparameters. The paper discusses the feasibility and
applicability of this hybrid approach in predicting CBM
content. It is applied to the Shizhuang South Block of Qinshui
Basin and validated against actual production data. Results
demonstrate that the enhanced random forest model, utilizing

Figure 2. Coal seam coring, sample feeding, desorption and reading calibration diagram. (a) Coal seam core sampling; (b) Laboratory instrument
for loading coal seam core; (c) Core desorption samples; (d) Reading of instrument recording parameters. Photograph courtesy of Guangshan
Guo. Copyright 2024.
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geophysical logging data, effectively assesses CBM content,
providing a reliable basis for constructing a three-dimensional
model. This model offers valuable guidance for subsequent
exploration and development, with practical engineering
significance and application value.

2. GEOLOGICAL OVERVIEW
Located in the southeast of the Qinshui Basin (Figure 1a),
Shanxi Province, China, the Shizhuang South Block stands out
as a prominent area for CBM exploration.58 Situated at the
southern terminus of the Qinshui syncline, the block exhibits a
predominantly monoclinic structural configuration (Figure
1b). Secondary folds, trending NNE in the west and NNS in
the east, characterize the basin’s western and eastern regions,59

respectively. Fault activity is minimal, with a gentle average
strata dip of approximately 5°. The geological history of the
region has been marked by various tectonic events, including
the Indosinian, Yanshanian, and Himalayan periods. The
structural layout of the Shizhuang South Block follows an
east−west zoning pattern, with elevations generally decreasing
from southeast to northwest.60 The Shanxi Formation,
characterized by a deltaic sedimentary environment,61,62

hosts the No. 3 Coal Seam, the focus of development efforts
and the subject of this study (Figure 1c). The No. 3 Coal Seam
typically exhibits a stable thick-ness distribution ranging from
4.0 to 8.0 m, with an average of 6.0 m, and is buried at depths
ranging from 400 to 1020 m, averaging 750 m. In the No. 3
coal seam of the study area, the coal structure displays
variations in composition. It can be segmented into
undeformed coal, cataclastic coal, and granulated coal.
Predominantly, undeformed coal and cataclastic coal constitute
the major components. Regarding microcoal constituents,
semibright coal and semidull coal prevail, with semibright coal
being more abundant. Dull coal registers the lowest occurrence
among these coal types, as illustrated in Figure 1d. The coal
and associated rocks exhibit high maturity, with vitrinite
reflectivity ranging from 2.5 to 3.0%, indicative of anthracite
coal.63,64 Permeability tests conducted on four parameter wells
reveal generally low permeability within the No. 3 Coal Seam,

typically ranging from 0.01 to 0.04 mD,65 characterizing it as
an ultralow permeability reservoir.

3. METHODS AND PRINCIPLES
3.1. Source of CBM Content Data and Geophysical

Logging Data. Focusing on the Shizhuang South Block as the
study area, this study aims to investigate CBM content under
the air-dry base state. Coal rock samples were obtained during
drilling operations (Figure 2a) and subsequently transferred to
the laboratory (Figure 2b). Desorption processes were
conducted on these samples (Figure 2c), with associated
data such as determination time, interval time, standard
quantitative tube readings, and gas volumes recorded (Figure
2d). Corrections were applied based on laboratory temperature
and pressure. Figure 3a illustrates the cumulative desorption
curve of the No. 3 coal seam sample in selected parameter
wells after correction. Residual gas was quantified, enabling the
calculation of lost gas volume for each sample. This involved
extracting cumulative desorption time (T) and interval time (t)
to derive T t( )+ , which was then linearly correlated with
the cumulative desorption amount of the initial 2 h desorption
phase. The intercept of the resulting linear equation provided
the amount of lost gas (Figure 3b). In conjunction with Figure
3, it is evident that the gas content of the No. 3 coal seam in
the Shizhuang South Block exhibits high complexity, with
significant variation among coal samples of equal weight,
underscoring the pronounced heterogeneity of coalbed
parameters. Based on experimental results, the average
proportions of desorption gas, loss gas, and residual gas in
coal samples are 94.2, 3.7, and 2.1%, respectively. The gas
content of cores from the No. 3 coal seam in the study area
ranges from 4.55 to 26.13 m3/t, with the majority of samples
falling between 5 and 15 m3/t.
Geophysical well logging involves deploying instruments

into the wellbore to conduct real-time measurements of
geological parameters using probes. These probes are
connected via cables to a surface data acquisition system,
transmitting data in real-time to provide geological insights at
various depths within the vertical wellbore (see Figure 4a).

Figure 3. Coal seam core sample desorption data display. (a) The cumulative desorption content curve of coal seam samples; (b) Calculation of
lost gas content.
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This data effectively characterizes physical properties of
subsurface rocks such as density, resistivity, and acoustic
velocity. Coalbed parameters are integrated with geophysical
well logging responses to develop parameter evaluation
models. Application of these models across the entire wellbore
facilitates the generation of continuous parameter curves (see
Figure 4b).

3.2. Principles of Random Forest Based on Simulated
Annealing-Genetic Algorithm Improvement. 3.2.1. Prin-
ciples of the Random Forest Algorithm. The Random Forest
(RF) algorithm, proposed by Breiman in 2001,66 is a learning
method that combines multiple individual learners to form an
integrated model. The RF method is composed of decision
tree models of the same type, which belongs to homogeneous
integration. This method regards a single decision tree as the
result of its model for the target and synthesizes it to get a new
model. One set of decision trees can be written as {h(X, θk), k
= 1, 2, ··· K}. Wherein, θk is a random variable, obeying
independent and identical distribution. X and K respectively
represent the number of independent variables and the number
of decision trees. The results of RF prediction are obtained by
averaging the results of each decision tree:

h X
K

h X( )
1

( , )
k

K

k
1

= { }
= (1)

To improve the predictive accuracy and stability of the model,
the Bagging approach is introduced into the RF method.
Bagging is a parallel ensemble learning method based on the
Bootstrap technique, which generates multiple individual
learners by sampling with replacement from the entire data
set, thereby enhancing the model’s generalization perform-
ance.67,68

The RF regression model used in this paper is CART tree.
The flow of RF method is as follows: given that the original

training sample size is N, and the number of features (log
curves) participating in modeling is M;
(1) Bootstrap is used to draw samples from the original

training samples with replacement to form subtraining
set. For each sample in the original training set, the
probability of each sample not being drawn is (1−1/
N)N. When N approaches infinity, there is

N elim (1 (1/ )) 1/ 0.368
n

N
(2)

In eq 2, e is a natural constant. And it can be obtained
that when the samples have an enough size, the number
of samples that did not participate in the modeling of the
decision tree approaches to 36.8% of the original
training samples. This part of data is called OOB (out
of bag), which can generally be used to test the effect of
the decision tree model.

(2) Using the subtraining set, a decision tree model is built.
First, m(m ≤ M) features are randomly chosen from the
complete set of features (geophysical logging curves),
and the ones resulting in the highest purity when
splitting nodes are selected. Mean square error (MSE) is
employed in regression to measure purity, where smaller
MSE indicates higher purity. Thus, the feature with the
lowest MSE is considered optimal for node splitting.
The specific calculation formula of MSE is

M A
y y

N
( )

( )i
N

i1= =
(3)

Equation 3 calculates the feature with the smallest MSE
among m features, where N is the number of samples in
the target split node, y̅ is the average value of sample
features, and A is one of the m features. This process
avoids feature vector magnitude differences, eliminating
the need for data normalization and preserving data

Figure 4. Collection of geophysical logging data and the schematic diagram of the evaluation parameter model constructed by logging curves. (a)
Simplified acquisition diagram of geophysical logging curve; (b) The geophysical logging curve is combined with the core data to construct the
model, which can be used for the whole depth section with logging data.
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features. Splitting in a binary tree form is based on this
principle, with the splitting ending determined by the
tree’s depth and the minimum number of samples in leaf
nodes.

(3) Through repeating steps (1) and (2) for K times, K
subtraining sets and their corresponding models can be
obtained. These independent models can be integrated
to form the Random Forest model.

(4) When the RF classification model is used to predict the
test set, each decision tree model will give a prediction
result. For the regression type problems, the RF
prediction results adopt the average method. That is,
the average of the prediction results of K base classifiers
is the RF prediction result, as shown in eq 1.

(5) For the generalization error of RF, the random vector (x,
y) which follows the independent and identical
distribution is taken as an example. Combined with eq
2, the corresponding mean square generalization error of
h(X) is

E Y h X( ( ))X Y,
2

(4)

In RF regression, if the number of decision trees tends
to be infinite, there is

E Y h X

E Y E h X

( ( , ))

( ( , ))

PE

X Y k

X Y

,
2

,
2

tree= * (5)

In eq 5, θk is the random variable of the kth decision tree. Eθ
corresponds to the mathematical expectation, and PEtree* is the
generalization error of RF regression. If the regression decision

tree is unbiased for the random variable θ and there is EY =
EXh(X, θ), then:

E E Y h XPE ( ( , )) PEX Y kforest ,
2

tree* = * (6)

In eq 6, ρ̅ is the correlation coefficient of the remaining Y −
h(X, θ) and Y − h(X, θ′), θ and θ′ are independent of each
other. To sum up, the RF method will eventually converge
with the increasing number of decision trees, and the
generalization error will tend to be a certain value.
RF exhibits randomness in two key aspects: the randomness

in training data selection for base classifiers and the
randomness in selecting features for node splitting. Utilizing
more base classifiers effectively leverages the original training
data, while the Bootstrap concept mitigates uneven sample
data distribution, rendering RF an efficient and practical
nonlinear algorithm.67

3.2.2. Principles of the Simulated Annealing-Genetic
Algorithm. To address the challenge of hyperparameter
selection in the RF algorithm, the simulated annealing (SA)
-genetic algorithm (GA) is employed for parameter opti-
mization. SA-GA combines the advantages of SA and GA,
allowing effective escape from local optima and rapid
convergence,69,70 while avoiding overfitting and oscillation
phenomena, thus achieving global optimization of parameters.
(1) Parameter Initialization: Select input and output

parameters, and randomly generate n individuals as the
initial population, representing the number of decision
trees and feature partitions. Set the maximum number of
iterations to Mmax, and determine the initial and final
temperatures to initiate the annealing process.

(2) Fitness Evaluation: Utilize the RF error evaluation
function (eq 7) as the fitness function to assess the
quality of individuals in the population.

Figure 5. Process diagram. (a) The schematic diagram of SA-GA optimized RF method; (b) Process diagram of coalbed methane content
evaluation model construction.
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f
n

y y1
( )

i

n

k
1

2=
= (7)

In eq 7, f is the fitness function, yk and y correspond to
the predicted value and the true value in the kth
population, respectively, and n is the number of
randomly generated individuals.

(3) Selection, Crossover, Mutation: Retain superior individ-
uals as parents (eq 8) through selection operations like
the roulette wheel method, then perform crossover and
mutation operations to generate new offspring.

p
f

fi
i

i
n

i

=
(8)

In eq 8, pi is the probability that an individual becomes a
parent, and f i is the fitness value of the ith fitness
function, dimensionless.

(4) Local Update: Apply simulated annealing to the new
individuals obtained from crossover and mutation along
with the parents, using the Metropolis criterion for
updating (eq 9). If the probability of the new individual
is less than the randomly generated value, keep the
offspring; otherwise, retain the parent for the next
optimization round.

P E T e( , ) E K T/ B= (9)

In eq 9, P is the probability of transition to offspring; ΔE
is the difference of fitness between parent and offspring,
dimensionless; KB is Boltzmann constant, dimensionless;
T is simulated annealing temperature, °C.

(5) Iteration Termination: Repeat steps 1 to 4 until reaching
the maximum iteration count, completing the parameter
optimization process.

The above algorithm flow is shown in Figure 5a. Figure 5b is
the process diagram of this study.

3.3. CBM Content Evaluation Model Construction
Method Process. The process of constructing a CBM
content evaluation model based on geophysical logging data
involves three key steps, as depicted in Figure 5b.
(1) Data Collection and Preprocessing: Initially, data are

collected and preprocessed. This includes aligning
geophysical logging data with gas content data, perform-
ing depth correction, and cleansing the data. Factors
induced by drilling, such as drill pipe deformation and
stretching, often cause discrepancies between cumulative
drill pipe length and actual drilling depth, necessitating
depth matching.71 Additionally, the fragile mechanical
strength of coal seams can lead to borehole wall collapse
during drilling, resulting in anomalous responses in
geophysical logging data. Therefore, samples showing
significant expansion are excluded, along with segments
displaying distorted logging curve responses in depth
sections, particularly near the initiation and termination
of the coal seam. Sections of noncoal rock typically
exhibit abnormal geophysical logging responses and are
thus removed.64 These preprocessing steps are crucial to
ensure the scientific rigor and accuracy of subsequent
modeling.

(2) Hyperparameter Optimization: Utilizing the method
outlined in Section 3.2.2, hyperparameter optimization
for the RF approach is conducted. The final optimized

hyperparameters are then employed to construct the
CBM content prediction model.

(3) Model Testing and Application: Following model
construction, it undergoes testing and application. This
involves its application to both test data and new wells
not utilized in the model’s initial construction phase.
The aim is to develop a comprehensive three-dimen-
sional gas content resource model.

4. THE ACTUAL MODELING PROCESS AND RESULTS
4.1. Modeling Process. 4.1.1. Geophysical Logging

Curve Selection. The coal seam reservoir itself has the
characteristics of low natural gamma response and easy
expansion. The porosity series shows the characteristics of
low density and high acoustic time difference, in which the
compensated neutron logging response is high. Compared to
the mudstone section of the coal seam roof, the coal seam
shows high resistivity, with some sections reaching up to 2000
Ω·m. The geophysical logging data in the study area consists
mainly of eight logging curves from seven logging series:
Caliper (CAL), Spontaneous potential (SP), Nature gamma
(GR), Compensation density (DEN), Compensated neutron
(CNL), Acoustic time difference (AC), Deep lateral resistivity
(LLD), and Shallow lateral resistivity (LLS). Based on the
physical properties reflected by the actual data, the porosity
logs, resistivity logs, and natural gamma logs are commonly
used for predicting the gas content in coal seams. Considering
that the target of the study is the No. 3 coal seam, which is
relatively shallow, depth is also incorporated into the model
construction. After preprocessing the geophysical logging
curves, a correlation analysis was conducted with the gas
content in core samples, employing formulas 10−12 to
calculate the Pearson correlation index (Pearson), Kendall
rank correlation coefficient (Kendall), and Spearman rank
correlation coefficient (Spearman). In total, more than 160 sets
of core sample gas content data were collected. After data
verification and cleaning, 148 sets were retained. The results of
the correlation analysis are presented in Table 1.
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In eqs 10−12, xi and yi represent the logging response values
and core gas content values, respectively, with subscript i

Table 1. Correlation Analysis between Logging Responses
and Core Gas Content

CBM content
(g/cm3)

AC
(μs/m)

CNL
Pu

DEN
(g/cm3)

GR
API

RD
(Ω·m)

DEPTH
(m)

Pearson 0.55 −0.43 −0.54 −0.59 0.28 −0.63
Kendall 0.35 −0.31 −0.38 −0.44 0.22 −0.39
Spearman 0.49 −0.48 −0.54 −0.64 0.36 −0.58
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Figure 6. Cross-plots of geophysical logging response versus experimental parameters. (a) Cross-plot of acoustic time difference logging response
and core gas content; (b) Cross-plot of compensated neutron logging response and core gas content; (c) Cross-plot of compensated density
logging response and core gas content; (d) Cross-plot of core ash content and apparent density; (e) Cross-plot of vitrinite content and fixed carbon
content of core.
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denoting the sample index, and M representing the number of
samples. A is the count of pairs where the ranks of the two
attributes agree in order. x̅ is the average value of the logging
response, and y̅ is the average value of the coalbed methane
content.
Based on the data presented in Table 1, corresponding

cross-plots were generated (Figure 6). Among the porosity
logging metrics, the AC curve shows a positive correlation with
gas content (Figure 6a), while the CNL and DEN curves
demonstrate negative correlations (Figure 6b,c). A significant
correlation was also observed between laboratory apparent
relative density and air-dried basis ash content (Figure 6d).
Increasing coal rock densification correlates with reduced
reservoir porosity and coalbed methane content; conversely,
less dense coal tends to be softer and typically has higher
methane content.72 Moreover, higher levels of inorganic
minerals such as ash can fill pores and fractures, thereby
hindering the storage and adsorption of coalbed methane. This
phenomenon explains the observed relationship between
methane content and compensated density logging re-
sponses.73,74 Additionally, regression analysis was performed
between air-dried basis fixed carbon content and vitrinite
content in microscopic components (Figure 6e). Both factors
facilitate the adsorption and retention of coalbed methane.
According to the literature, higher vitrinite content in higher-
rank coals enhances fragmentation, thereby increasing the
adsorptive surface area for methane and consequently boosting
gas content.75 Furthermore, significant fractures within the coal
rock can influence acoustic travel-time logging responses.76,77

Compensated neutron logging, affected by factors including
coal rock structure and gas content, shows a negative
correlation with methane content after compensation.78 It is
important to note that coalbed methane reservoirs differ from
conventional gas reservoirs in that methane primarily exists in
adsorbed form, which complicates the direct correlation
between gas content and logging responses, thereby challeng-
ing the assessment of gas content.

The GR curve shows a negative correlation with core gas
content (Figure 7a). Analysis of the intersection between clay
mineral content and the GR curve reveals a positive correlation
(Figure 7b). Clay minerals influence the gas content in coal
seams by affecting the adsorptive properties of the coal; an
increase in clay minerals in coal reduces the methane content,
while a higher presence of these minerals enhances the natural
radioactivity, which explains the trend observed between
coalbed methane content and natural gamma log responses.79

Resistivity logging is relatively complex; in comparison to other
log responses, the resistivity log response is influenced not only
by the gas content but also by factors such as the degree of coal
metamorphism, coal rock structure, mineral content, and
distribution, surrounding rock pressure, temperature, and
more.46 The deep radial exploration of the LLD curve shows
a low correlation with gas content (Figure 8), while the LLS
curve, affected by invasion, no longer represents the original

Figure 7. Cross-plot of natural gamma curve and core experimental parameters. (a) Cross-plot of natural gamma curve and core gas content; (b)
Cross-plot of core clay mineral content and natural gamma curve.

Figure 8. Cross-plot of LLD curve and core gas content.
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formation’s resistivity, and is not used for predicting gas
content. Effective depth shows the highest correlation
coefficient with gas content, indicating that depth is one of
the key factors affecting gas content.29 The depth of the coal
seam determines whether the gas produced by coalification can
be preserved. Theoretically, at shallower depths, the temper-
ature effect is relatively insignificant. As coal seam depth
increases, both the degree of coalification and the quantity of
generated hydrocarbons should increase, following Langmuir’s
adsorption isotherm; however, as depth further increases, the
temperature effect becomes more pronounced, and beyond a
certain critical depth, this relationship no longer holds. The
drilling sites in the study area are near an elevation of 1000 m,
with the No. 3 coal seam being relatively shallow and above sea
level. Therefore, this paper incorporates conversions of the on-
site logging instrument core height, elevation, and logging
depth, with converted depths approaching sea level (0)
indicating deeper burial. The intersection graph of burial
depth and gas content trend, as shown in Figure 9, suggests
that the closer to sea level, the deeper the burial depth, the
relatively higher the gas content.

Based on the correlation analysis tables and cross-plots,
combined with experimental data, it is evident that the
relationship between geophysical logging data responses and
variations in coalbed methane content is nonlinear. When
constructing models for coalbed methane content, six logging
curves are selected based on the physical properties they
represent: AC, DEN, CNL, GR, DEP, and LLD.

4.1.2. Types of Hyperparameters to be Optimized. Before
constructing a CBM content model using the RF method, it is
crucial to optimize the hyperparameters of the RF approach,
i.e., to explore the impact of these hyperparameters on model
construction. The hyperparameters studied in this paper are
the number of decision trees (n_estimators), the number of
features considered for splitting at each leaf node (max_fea-
tures), the maximum depth of the trees (max_depth), the
minimum number of samples required to split an internal node
(min_samples_split), and the minimum number of samples
required at a leaf node (min_samples_leaf). Based on previous
studies’ data ratios, the collected gas content data are first

divided into training and test data sets in a 7:3 ratio. A
controlled variable approach is employed for exploration,
systematically varying each parameter while keeping others at
their default values. To mitigate result variability, model
construction incorporates cross-validation. Cross-validation is a
widely accepted and effective technique for evaluating models,
commonly employing k-fold cross-validation.80 This method
entails partitioning the training data set into k subsets, with
each subset used once as a test set while the remaining k−1
subsets serve as training data. This process generates k models,
each assessed against its respective test data subset. Evaluation
employs an accuracy metric, and the final k-fold cross-
validation result is the mean accuracy across these models.
This paper employs 3-fold cross-validation, and to mitigate the
uncertainty from the model’s bagging approach during
exploration, a fixed random seed is used for each modeling
instance, ensuring consistency in the subsets used. The
exploration results are shown in Figure 10. From Figure 10a,
it is evident that if the number of decision trees is too low, both
cross-validation results and errors in the training and test data
sets are high, indicating an underfitted model. When the
number of trees exceeds 40, errors are effectively reduced with
minor differences between them. This indicates the significant
impact of the number of trees, which requires detailed
exploration. Figure 10b−d show the maximum tree depth,
the minimum number of samples required to split an internal
node, and the minimum number of samples required at a leaf
node, respectively. These three parameters are interdependent
and determine the model’s complexity. The default values for
CART trees are 2 for min_samples_split and 1 for
min_samples_leaf, which are the limits for binary splitting.
Thus, after a certain increase in maximum depth, the model
tends to stabilize, and further increases have no impact on the
model. For the small sample size of gas content data studied in
this paper, the model stabilizes at a depth of 13, as shown in
Figure 10b, where no fluctuations in cross-validation, training,
or test set errors occur, indicating no overfitting. When
exploring the minimum number of samples required at internal
nodes and leaf nodes, with tree depth set to None, model
depth (complexity) is determined solely by one parameter.
Increasing the minimum number of samples, which effectively
reduces model depth, tends to lead the model toward an
underfitted state, worsening performance across cross-
validation, training, and test data sets. As seen in Figure 10e,
when the number of features to consider per split is set to 1,
both cross-validation and test set errors are poor, indicating
suboptimal model performance. Furthermore, the strength of
the random forest lies in minimizing the correlation between
decision trees. When the number of features per split is large,
the correlation between trees increases, which can impact
model accuracy. The exploration of individual features with
other parameters at default values shows that when the number
of trees is set to 100, as shown in Figure 10a, the model
performs well. This demonstrates that the impact of the
number of features per split can be masked when analyzed in
isolation. Therefore, setting the number of trees to a lower
value, as shown in Figure 10f, where the number of trees is 4,
reveals significant differences in the impact of the number of
features per split on model accuracy. To establish a reliable
random forest classification model, the SA-GA algorithm is
utilized for hyperparameter optimization.

4.2. Results. After identifying the logging curves involved
in model construction and the hyperparameters requiring

Figure 9. Cross-plot of buried depth and core gas content after
conversion.
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optimization, the SA-GA method was employed for hyper-
parameter tuning. The iteration was set to 100 times, with a

population size of 10 and a temperature reduction parameter
of 0.98. The error function variation with iteration number is

Figure 10. Study on hyperparameters of RF method. (a) The influence of the number of decision trees on model performance; (b) The influence
of the maximum depth of the decision tree on model performance; (c) The influence of the minimum number of samples required to divide
internal nodes on model performance; (d) The influence of the number of leaf nodes on the model performance; (e) When the number of decision
trees is 100, the influence of the number of split features on the performance of the model; (f) When the number of decision trees is 4, the
influence of the number of split features on the performance of the model.
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depicted in Figure 11a: after exceeding 30 iterations, the error
function stabilized. At this point, the optimized hyper-
parameters for the random forest included 145 trees, 3
features per split, a tree depth of 14, a minimum of 2 samples
required to split an internal node, and a minimum of 1 sample
required at a leaf node. Additionally, eq 3 was used to calculate
the contribution of each logging sequence to the model, as
shown in Figure 11b. Depth made the largest contribution to
the construction of the gas content model, followed by AC,
CNL, DEN, and GR, with the contributions decreasing
sequentially, and RD contributing the least, less than 0.1,
consistent with theoretical analyses.
Figure 12a illustrates the relationship between the number of

features per split and the number of trees under optimized

hyperparameters, achieving a root-mean-square error (RMSE)
of 4.86. Figure 12b displays the out-of-bag error curve for the
finalized parameters, demonstrating stabilization as the number
of decision trees reaches 145, affirming the model’s efficacy
under these conditions. Figure 13a presents the results of back-
analysis on the training data, while Figure 13b illustrates the
model’s application to the independent test data set, which was
not used in model construction. The relative error for the
training set back-analysis is 5.99%, with a goodness of fit of
0.98 compared to laboratory results. For the test set, the
relative prediction error is 13.13%, with a goodness of fit of
0.84 compared to laboratory results, indicating robust model
training without overfitting.

Figure 11. Hyperparameter optimization process and final model contribution weights. (a) The optimization process of SA-GA algorithm for
hyperparameters in RF algorithm; (b) Contribution weights for each logging curve in the model.

Figure 12. Effectiveness of the model. (a) The relationship between the number of different nodes splitting features and the number of decision
trees.; (b) Out-of-bag error curve.
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After constructing the gas content model, two new wells
within the same study area were evaluated to assess the
model’s generalizability; their data were not included in the
model’s training or testing phases. The CBM content curves
predicted using the SA-GA-RF method and laboratory gas
content results are displayed in Figure 14. Figure 14a,b present
the logging curves and calculated gas content for these two
wells, respectively. The first track in the figures provides
stratigraphic information, specifically detailing the No. 3 coal
seam. The second track displays the lithology profile,
indicating that both wells exhibit mudstone at the top and
bottom of the No. 3 coal seam. The third track shows the
lithology logging data, including CAL, GR, and SP logging
curves. The fourth track displays the resistivity logging data
with three resistivity curves, while the fifth track shows the
porosity logging data with three porosity curves. Finally, the
sixth track presents the results, including the gas content curves
calculated using the method described in this paper, alongside
the core laboratory gas content. Both wells with the No. 3 coal
seam had 13 valid experimental samples each, excluding
samples from areas of severe diameter expansion. The average
relative errors for the eight samples in Well A1 and five
samples in Well A2 were 11.09 and 13.61%, respectively. These
errors are consistent with the test set error level, demonstrating
the generalizability of the established model.
Significant errors (with relative errors exceeding 35%) were

observed in the new well, particularly notable with the sample
at 796.33 m in Well A1, located where the borehole
experienced diameter expansion. This section’s logging curve
responses can be significantly disturbed, as logging instruments
measure from the bottom upward, potentially magnifying
judgment errors. As discussed in Section 3.3, despite excluding
anomalous data, inherent noise in the data itself can lead to
minor discrepancies between core laboratory measurements
and log interpretations. Therefore, it is important to note that
errors stemming from these factors should not solely be
attributed to the predictive capabilities of the SA-GA-RF
method.

The completed CBM content model was applied to wells
within the Shizhuang South Block, and a three-dimensional
methane content model was constructed based on the
evaluation results from multiple wells. Considering the area
of the study zone and the spatial distribution of coalbed
methane wells involved in this modeling, the No. 3 coal seam
underwent grid-based three-dimensional geological modeling,
with the horizontal grid set at 100 m × 100 m; the vertical grid
was controlled at 0.5 m based on the thickness and stability of
the No. 3 coal seam in the study area. Using well position
coordinates and elevations provided by satellite remote sensing
data, combined with actual logging data to determine the
position of the No. 3 coal seam, Employing the sequential
Gaussian algorithm, a three-dimensional methane content
attribute model (Figure 15a) was built using the methane
content curves from 128 wells and the Gaussian model, with
variogram analysis used to assess the continuity of methane
content in space and its anisotropy in various directions. Figure
15b is a grid diagram with the thickness of the three-
dimensional model, which can characterize the difference in
gas content in different sections of the three-dimensional
model. The three-dimensional coalbed methane content model
reveals that the methane content distribution within the No. 3
coal seam in the study area ranges from 6.4 to 25.4 m3/t,
consistent with core results. High methane content areas are
located in the western and northern parts of the block, with
two high methane content layers developing longitudinally
within 1.0 m from the top and 2.0 m from the bottom of the
seam.
After constructing the three-dimensional CBM content

model, the two-dimensional isopleth map of CBM content
represents the average values (Figure 16a). From Figure 16a,
the averaging of methane content values within individual wells
results in minimal overall variability, making it difficult to
accurately identify areas of high methane content. In contrast,
the three-dimensional methane content model allows for the
depiction of variations in methane content between different
wells within the No. 3 coal seam according to specific needs

Figure 13. Effect of model application. (a) The effect of training data regression; (b) The application effect of the test data set that is not involved
in the model construction.
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(Figure 16b) and enables the construction of cross-sectional
views of the CBM content across the entire study area (Figure
17).
To further characterize the advantages of the three-

dimensional model, 68 production wells in the study area
with a stable output over 6 years were selected. The average
effective daily gas production of each well was calculated, and
contour maps were plotted (Figure 18a). Based on the
calculated CBM content curves, the average gas content values
of the perforated sections in No. 3 coal seam were extracted
and mapped (Figure 18b). During the mapping of averages,
the selection range for color mapping was notably restricted.

Inappropriate choices for the lower and upper limits could
result in a uniform color fill of the isopach, due to the
significant loss of information in the average values of CBM
content. Utilizing the three-dimensional model, the peak gas
content values within the perforated sections and the values
within 0.5 m above and below the peak were averaged. This
method ensures that the true levels of coal seam gas content
are extracted, while additionally including an extra 1 m to
guard against outliers, with the results plotted in a contour map
(Figure 18c). A comparison of panels a, b, and c in Figure 18
shows a better correlation between high gas production wells
and the areas of high gas content depicted in Figure 18c.

Figure 14. Application effect of the model constructed by this method in the actual new wells. (a) The display of A1 well in the study area; (b) The
display of A2 well in the study area.
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Fitting analysis of the data extracted from the three-
dimensional model with gas production (Figure 18d) indicated
a positive correlation; the greater the peak segment of gas
content, the higher the coalbed methane well output. It should
be noted that the goodness of fit was 0.67, as the output of
coalbed methane wells is not only related to the level of gas
content but also influenced by a multitude of factors including
coal matrix structure, reservoir pressure, temperature, and
human interventions.81 In Figure 18d, wells with daily
production not reaching 500 m3 were defined as low-
production and inefficient. While some of these wells had
low gas content levels, others with peak values exceeding 12

m3/t could be re-evaluated for potential production enhance-
ment measures, showcasing the informational advantages
brought by the three-dimensional model. For low-production
and inefficient wells, quality control can be conducted by
combining records of fracturing conditions and on-site
measures to minimize unfavorable production events such as
well shutdowns.
The construction of the three-dimensional CBM content

model leverages the accuracy of the methane content
evaluation model and the richness of logging data, thereby
enhancing the practicality of CBM content evaluation.

5. DISCUSSION
5.1. Advantages of the Methodology. 5.1.1. Advantage

of Accuracy. To verify the accuracy of the method described in
this paper compared to other types of machine learning
approaches, previous researchers have used BPNN, Least
Squares Support Vector Machines (LSSVM), and ELM
methods to construct CBM content models.53,64 Models
were built using the same training sets, and predictions were
made on validation sets to compare different outcomes. Figure
19 illustrates the cross-plot of the gas content results calculated
by multiple methods with the gas content of the cores obtained
from laboratory measurements. Table 2 presents the accuracy
of the method used in this paper against three other machine
learning algorithms and multivariate regression. Analysis of

Figure 15. Three-dimensional CBM content model. (a) Three-dimensional model of gas content attribute; (b) Three-dimensional model with
thickness grid diagram.

Figure 16. Application of CBM content model. (a) Two-dimensional gas content contour map; (b) Using three-dimensional model to characterize
the difference of gas content in No. 3 coal seam between different wells.

Figure 17. Gas content distribution section of No. 3 coal seam in the
study area (Cross Section).
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Table 2 indicates that the SA-GA-RF method has the lowest
average relative error and root-mean-square error, with the
highest fit goodness of prediction results to core experimental
outcomes, achieving 0.84. Among the other four methods, the
least-squares support vector machine method ranked second in
effectiveness, while multivariate regression had the highest
error. Considering core methane content data and the
challenges associated with core sampling, as well as the
experimental cycle and economic costs of methane content
determination, core data availability is limited, presenting a
typical small-sample data problem. Additionally, the distribu-
tion of methane content data is uneven. Consequently, for the
BPNN method, the small sample size increases the difficulty of
model construction. Although the LSSVM method can address
small sample issues, it does not solve the problem of
imbalanced samples. The ELM has error propagation in the
opposite direction to BPNN and, while easier to construct than
BPNN, does not yield ideal practical results. As for the
multivariate regression method, despite its widespread
application, results from the study area indicate that the

correlation between logging responses and methane content is
not significant, not simply a linear relationship, and the
regression method’s requirement for a large sample size is also
unmet, resulting in suboptimal application effectiveness. The
RF method, due to its resampling characteristic, is suitable for
small and imbalanced data sets. Additionally, this method does
not require normalization of feature vectors, thus preserving
the integrity of features. The optimized SA-GA-RF can
efficiently and accurately determine hyperparameters, enhanc-
ing the applicability of the improved method.

5.1.2. Advantage of Model Building Speed. The SA-GA
algorithm can efficiently determine the hyperparameters of the
random forest method. For example, comparing it to
traditional grid search combined with cross-validation, where
the number of decision trees and the number of splitting
features are exhaustively searched, the search range for decision
trees is set between 1 and 200, with a step size of 1; the search
range for the number of splitting features is set between 1 and
6, with a step size of 1. To reduce the randomness of the
exploration results, leave-one-out cross-validation is used, with

Figure 18. Application comparison effect of two-dimensional model and three-dimensional model. (a) The average effective daily gas production
contour map of 68 wells; (b) Contour map of average CBM content of 68 wells; (c) Contour maps of CBM content peaks extracted from 68 wells
based on three-dimensional models; (d) The fitting relationship between the peak CBM content and the average effective daily gas production.
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each search taking 12 h. If further searching of other
hyperparameters is required, each additional set of hyper-
parameters exponentially increases the number of calculations
and the computational time. Using the SA-GA-RF method to
search for five groups of hyperparameters, the entire search
process takes only 0.48 h, significantly enhancing the
construction efficiency of the CBM content evaluation
model. The construction time of the model is also related to
the sample size. Table 3 shows the accuracy under different

training and validation data ratios, with the data ratios for the
training and test sets set at 5:5, 6:4, 7:3, and 8:2, respectively,
using the SA-GA-RF method to build the coalbed methane
content prediction model. As the proportion of the training
data set increases, the average relative error of the validation
data decreases, thus enhancing the model’s accuracy. Although
all data will be used when constructing the final model, the
results in the table indicate that increasing the training samples
positively impacts the precision of model evaluation. As
exploration and development in the study area deepen, the
number of core samples will increase. The continual enrich-
ment of core samples can further upgrade the existing
prediction model. The method presented in this paper can

accelerate the upgrade of the model, enhancing the efficiency
of the approach.

5.2. Limitations of the Methodology. While the gas
content prediction model developed using the SA-GA-RF
method demonstrates generalizability within the same coal
seam of a specific area, it remains susceptible to noise
interference. Such noise can be introduced during data
collection and preprocessing of logging data, potentially
reducing the accuracy of the final model. While these errors
are inevitable, they are deemed acceptable within the scope of
the model’s application. However, the model’s applicability
may be limited when applied to areas with different geological
backgrounds or coal seams at varying depths. Particularly at
depths below a critical threshold, the relationship between coal
seam depth and gas content changes, which could lead to
inaccuracies in methane content predictions. In such scenarios,
the model may lose its effectiveness. Nevertheless, the model
construction process outlined in this paper can be adapted to
develop a tailored CBM content evaluation model suitable for
these specific conditions.
In practical applications, numerous technical challenges are

encountered. One major issue is the incompleteness of logging
curve series in some wells due to previous construction
techniques and a lack of clarity in understanding. This
deficiency, whether in constructing curves or in remodeling,
inevitably results in a loss of accuracy. Specifically, the absence
of AC and CNL logging curves, when only the DEN porosity
curve is available, significantly impacts model precision. This
paper considers the error introduced by substituting other
parameters during modeling and therefore does not use coal
quality analysis data for modeling. Although scholars have
demonstrated that geophysical logging data can effectively
construct coal seam industrial components, the approach is
difficult to generalize when the logging series in production
wells are incomplete. The accuracy of the three-dimensional
model depends on the density of CBM wells. The dense CBM
wells and the high accuracy of the model can improve the
accuracy of the model. In the current production, the
distribution of CBM wells is not uniform, and there are no
wells to control in some areas. The current three-dimensional
model faces challenges in accurately incorporating structural
belts, relying primarily on gas content curves generated by the
logging evaluation model. This approach still lacks a
comprehensive geological perspective and necessitates im-
provements across multiple scales to enhance model fidelity.82

With the advancement of geophysical logging instruments
and continuous improvement in experiments, issues related to
the instruments’ resistance to interference and the measure-
ment of CBM content are gradually being resolved. Using the
determination of gas content in coalbed as an exemplar,
numerous scholars have made significant advancements. For
instance, some have utilized adsorption theory and production
dynamics to assess gas content levels,83 while others have
employed desorption mechanisms to identify parameters
indicative of CBM content.84,85 Accurate determination of
gas content plays a crucial role in enhancing model precision
and provides a robust foundation of data for logging-based
CBM content evaluations. Furthermore, with ongoing
advancements in evaluation techniques, both coal quality
parameters and CBM content assessments are becoming
increasingly precise.

Figure 19. Multimethod calculation of CBM content and core
experimental results of the intersection diagram.

Table 2. Application Error Comparison of CBM Content
Method Constructed by Different Methods

method SA-GA-RF BPNN SVR ELM MR

average relative error
(%)

13.13 21.52 19.12 20.84 24.32

RMSE (m3/t) 1.99 2.91 2.42 2.63 3.02
R2 0.84 0.75 0.80 0.78 0.69

Table 3. Accuracy of the Model in the Test Data under
Different Training and Verification Data Ratios

average relative error (%)

ration (training/testing) training data testing data

5:5 7.29 22.42
6:4 6.96 17.20
7:3 5.99 13.13
8:2 5.96 12.98
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6. CONCLUSIONS

(1) The relationship between CBM content and geophysical
logging responses is complex, and the limited number of
core sample data makes it challenging to accurately
evaluate gas content in coal seams.

(2) Based on the RF method, suitable for addressing issues
with uneven sample distribution and small data volumes,
the SA-GA method was used to optimize the hyper-
parameters within the RF method, resulting in the SA-
GA-RF method. The SA-GA-RF method offers advan-
tages such as rapid model construction, high precision,
and strong generalizability. It performs well with
validation data and new wells, outperforming BPNN,
LSSVM, ELM algorithms, and multivariate regression
method in terms of accuracy and is more efficient than
the traditional grid search-cross-validation pattern.

(3) Using the CBM content results calculated by the SA-
GA-RF method, a three-dimensional coalbed methane
content model for the No. 3 coal seam applicable to the
area was constructed. Compared to two-dimensional
isopleth maps, this three-dimensional model provides a
more detailed description of CBM content, effectively
identifying areas with high gas content and the
distribution of high-gas-content layers vertically.

Accurate evaluation of CBM content provides a data
foundation for exploration, reserve estimation, and production
capacity building in coalbed methane fields. It has significant
implications for precision selection of CBM areas, optimal
choice of perforation layers, and comprehensive management
of low-production and inefficient wells. The research methods
discussed in this paper hold practical engineering significance.
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