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Abstract 

Background: Local policymakers require information about public health, housing and well-being at small geo-
graphical areas. A municipality can for example use this information to organize targeted activities with the aim of 
improving the well-being of their residents. Surveys are often used to gather data, but many neighborhoods can have 
only few or even zero respondents. In that case, estimating the status of the local population directly from survey 
responses is prone to be unreliable.

Methods: Small Area Estimation (SAE) is a technique to provide estimates at small geographical levels with only few 
or even zero respondents. In classical individual-level SAE, a complex statistical regression model is fitted to the survey 
responses by using auxiliary administrative data for the population as predictors, the missing responses are then pre-
dicted and aggregated to the desired geographical level. In this paper we compare gradient boosted trees (XGBoost), 
a well-known machine learning technique, to a structured additive regression model (STAR) designed for the specific 
problem of estimating public health and well-being in the whole population of the Netherlands.

Results: We compare the accuracy and performance of these models using out-of-sample predictions with five-fold 
Cross Validation (5CV). We do this for three data sets of different sample sizes and outcome types. Compared to the 
STAR model, gradient boosted trees are able to improve both the accuracy of the predictions and the total time taken 
to get these predictions. Even though the models appear quite similar in overall accuracy, the small area predictions 
at neighborhood level sometimes differ significantly. It may therefore make sense to pursue slightly more accurate 
models for better predictions into small areas. However, one of the biggest benefits is that XGBoost does not require 
prior knowledge or model specification. Data preparation and modelling is much easier, since the method automati-
cally handles missing data, non-linear responses, interactions and accounts for spatial correlation structures.

Conclusions: In this paper we provide new nationwide estimates of health, housing and well-being indicators at 
neighborhood level in the Netherlands, see ’Online materials’. We demonstrate that machine learning provides a good 
alternative to complex statistical regression modelling for small area estimation in terms of accuracy, robustness, 
speed and data preparation. These results can be used to make appropriate policy decisions at a local level and make 
recommendations about which estimation methods are beneficial in terms of accuracy, time and budget constraints.
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Introduction
The health and housing situation of the Dutch popula-
tion is regularly monitored by local authorities. In the 
Netherlands an extensive national survey, called the 
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“Health Monitor Adults and Elderly (Gezondheidsmoni-
tor Volwassenen en Ouderen)” (HeMo), is designed to 
gather the health information at a national and munici-
pality scale. The survey is carried out every four years 
by the 25 Dutch municipal Health services (MHS) [1] 
and is coordinated by the National Institute for Pub-
lic Health and the Environment (RIVM) and Statistics 
Netherlands (CBS). A second survey, called the “Hous-
ing Survey of Netherlands (Woon Onderzoek Neder-
land)” (WoON), collects information about the current 
and desired living situation. This survey is carried out 
every three years by Statistics Netherlands (CBS) in col-
laboration with the Ministry of Internal Affairs (BZK) to 
assess the living situation of the Dutch population and 
their wishes and needs in the field of housing [2]. Even 
though both surveys include tens to hundreds of thou-
sands of respondents, many of the Netherland’s 13,808 
neighborhoods have only few or even zero respondents. 
In that case, directly estimating the health and welfare at 
neighborhoods level from the survey responses becomes 
impossible.

To resolve this challenge, the field of Small Area Esti-
mation (SAE) has developed many methods, we refer 
to the literature for a comprehensive review of their 
strengths and weaknesses [3]. Regression approaches 
train a model on the observed responses predicted by 
an auxiliary data set of features of the respondents, such 
as age and educational level. In our problem, regression 
models are particularly suitable because Statistics Neth-
erlands has an extensive administrative data set of demo-
graphic variables covering the entire Dutch population. 
We can therefore train a regression model based on the 
observed health-related indicators or living quality rat-
ings using the sub-population of respondents in the sur-
vey. We then use this model to predict the missing survey 
responses of the remaining population. We can aggregate 
these predictions to any desired geographical level, such 
as municipalities, districts and neighborhoods.

A previous study has shown that complex regres-
sion models, such as a structured additive regression 
(STAR) model, achieve well-calibrated predictions of 
several health-related indicators at neighborhood level 
in the Netherlands [4]. The statistical regression-based 
approach has however some drawbacks. First, one has 
to select a model. This model should handle non-linear 
relations between the auxiliary data and the outcome, 
but also interactions and spatial effects. This usually 
requires a statistician who translates prior knowledge 
into a model, and careful data preparation. Second, and 
this applies to any model, the model should be trained 
and over-fitting should be prevented by regularization 
techniques, such as shrinkage or penalization methods 
[5]. Third, such complex statistical models may run into 

computational difficulties when handing huge data sets 
with millions of records.

Machine learning techniques can be used as an attrac-
tive alternative. They have many potential benefits com-
pared to statistical models: more accurate predictions, 
faster training times for large data sets, more robustness 
to different data sets, and they require less work and 
knowledge from the statistician to design and implement. 
Machine learning is gaining recognition as a potential 
solution to the problem of SAE, even though it has seen 
limited use so far [6–10]. In our study, we apply machine 
learning to a massive prediction problem with an impor-
tant spatial component: we generate predictions for every 
adult individual in the Netherlands. From a machine 
learning perspective, the above procedure is a supervised 
learning task. A supervised machine learning method 
can be seen as a general learning algorithm that takes any 
data set of features with examples of correct labels, and 
outputs a model that is able to predict unknown labels 
from the features.

In this paper we provide estimates of health, housing, 
and welfare indicators at municipality, district and neigh-
borhood level using gradient boosted trees (XGBoost), a 
well-known machine learning technique [11]. We com-
pare the performance of XGBoost to a complex statistical 
structured additive regression model (STAR), designed 
specifically for this problem [4]. We show that it is pos-
sible to predict the indicators at the individual level using 
XGBoost and that the results are generally better com-
pared to complex statistical SAE models.

Methods
Data sources
In this section we introduce the data sets that are being 
used in this study. Dutch policy makers are interested 
in small area estimation of many different surveys. It is 
important to verify that machine learning is able to adapt 
to each of these surveys, which can have quite different 
characteristics. The method could then be used in the 
future to automatically produce the desired estimates. 
We consider three surveys: 

1 “Health Monitor Adults and Elderly” (HeMo)
2 “Housing Research of the Netherlands” (WoON)
3 “Experienced noise disturbance from traffic” (Noise) 

subsurvey of HeMo.

For the survey data sets we construct a corresponding 
population data set with features based on administrative 
data provided by Statistics Netherlands. The population 
data set includes the entire Dutch population, aged 18 
years or older for the year of the survey, with the excep-
tion of institutionalized people who are not included in 
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either survey. A secured identification number that links 
each survey to the administrative data was assigned to 
each respondent. Authorization for this linkage was pro-
vided by CBS. Disclosure and tracing of individuals is not 
possible. The data sets are summarized in Table  1. The 
outcomes and features will be described in further detail 
in the next sections.

Health monitor—HeMo
The Adult and Elderly Health Monitor (HeMo) is an 
extensive national survey about self-reported health and 
well-being. The survey is administered every four years 
by the MHS regions in collaboration of the National 
Institute for Public Health and the Environment (RIVM) 
and Statistics Netherlands (CBS). At the time of writing, 
data has been collected for years 2012, 2016, and 2020. 
In this paper we consider the results of the 2020 sur-
vey. Data were collected in September 2020 on 539,895 
respondents (3.9% of the Dutch adult population) by an 
online questionnaire [1]. We consider 34 binary health 
indicators chosen from the survey. These include indi-
cators like alcohol use, smoking behaviour, body weight, 
physical and mental health, disabilities, financial difficul-
ties, exercise, loneliness, self perceived health and infor-
mal care giving. Table 9 in the Appendix describes all of 
the indicators.

Housing research of the Netherlands—WoON
The Dutch housing survey (WoON) is also a national sur-
vey, administered every three years by Statistics Nether-
lands (CBS) in collaboration with the Ministry of Internal 
Affairs (BZK). The survey gathers information about the 
current and desired housing situation of non-institution-
alized Dutch residents aged 18 years or older. At the time 
of writing, data has been collected for years 2006–2018. 
Here we consider the results of the 2018 survey. Data 
were collected between August 2017 and April 2018 on 
67,523 respondents (0.54% of the Dutch adult popula-
tion, non-institutional) by an online questionnaire [2]. 
We consider eight continuous ratings of housing satis-
faction from the survey. The first seven ratings are 1–5 
scores (1: strongly disagree, 2: disagree,..., 5: strongly 
agree) and the last rating is a composite score between 1 
and 10. Table 10 in the Appendix gives a full description.

Experienced noise disturbance from traffic—noise
Noise disturbance from traffic is an important subset of 
questions in the 2016 HeMo survey. The source of noise 
is identified as road, train or air traffic noise. The road 
noise is further divided into any noise, noise from traf-
fic less than 50  km/h, or noise from traffic more than 
50 km/h. The noise nuisance is then classified as (1) seri-
ous (2) moderate or serious, resulting in 10 indicators 
in Table  11 in the Appendix. The administrative data 
is expected to provide only limited information about 
how much the Dutch population experiences noise dis-
turbance from traffic. Instead, the measured noise level 
at the individual’s spatial location can be expected to 
provide most information. RIVM has developed a noise 
dispersion model that predicts the noise level at each 
address based on actual measurements, knowledge of 
road and rail infrastructure, flight paths, etc. [12]. For 
this task, we only use the 18–64 year old population and 
add this as an additional feature to the administrative 
data. Table 12 in the Appendix describes the noise level 
predictions.

Administrative data for the population
The features of the Dutch population are obtained from 
CBS administrative data. Based on previous research 
and expert opinion of MHS and RIVM, we used 14 fea-
tures for modelling the responses for HeMo, WoON, 
and Noise. At individual level we use age, sex, ethnicity, 
marital status, and highest completed level of education. 
At household level we have household type, size, income 
source, home ownership, income and assets and X- and 
Y-coordinates of the home address. At neighborhood 
level we have the address density. For WoON, we also 
add eight additional neighbourhood features to test how 
well the models developed for HeMo generalize. First, the 
percentage of uninhabited houses, single-family homes, 
non-rental houses, social housing, and houses built 
before 2000. Second, the distance from an individual’s 
house to the nearest forest, backwater and public green. 
For Noise, we include the additional noise level predic-
tions from the RIVM noise dispersion model.

Tables  2 and 3 summarize these features. For categori-
cal features, the categories are given. For continuous fea-
tures, the median and range are given. The percentage of 
missing features in the population data is provided as well. 

Table 1 Data sets used in this study

Survey Year Respondents Outcomes Type Population Features

HeMo 2020 539,895 34 Binary 13,845,474 14

WoON 2018 67,523 8 Continuous 13,510,237 22

Noise 2016 202,065 10 Binary 10,366,070 21
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Table 2 Summary of features used for prediction in HeMo and WoON

Feature Categories/median (min.–max.) % missing

Age 50 (18–108) 0.0

Sex Male 0.0

Female

Ethnicity Netherlands 0.0

Morocco

Turkey

Suriname

Netherlands Antilles

Other non-western

Other western

Marital status Single 0.6

Married

Divorced

Widowed

Education (descriptions Table 13) Basis 37.8

VMBObk

VMBOgt

MBO23

MBO4

HAVO-VWO

HBO-WO-BAC

HBO-WO-M/PhD

Household type Single person household 0.0

Unmarried without children

Married without children

Unmarried with children

Married with children

Single parent family

Other

Household size 2 (1–10) 0.0

Household income source Wage 2.4

Wage director/shareholder

Self-employed

Unemployment benefit

Social assistance benefit

Disability benefit

Old-age pension

Other benefit

Student loan

Property income

Home ownership Homeowner 2.0

Rental no allowance

Rental with allowance

Household income (percentile) 63 (1–100) 2.4

Household assets (percentile) 56 (1–100) 2.4

Neighborhood address density 71 (1–100) 0.0

x-coordinate (m) 140,348 (13,666–277,711) 0.0

y-coordinate (m) 453,926 (306,922–611,538) 0.0
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The most significant problem is the missing highest com-
pleted level of education. However, educational level is a 
very important predictor for health because it can be used 
to distinguish students that differ from other young indi-
viduals with low income. Therefore this feature is consid-
ered too important to be excluded. The handling of missing 
feature data will discussed in the next sections. To obtain 
demographic and spatial features of every individual as 
close to survey date as possible, we use a reference date of 
September 1, 2020 for HeMo. For WoON we have access to 
the dates on which people filled in the survey and therefore 
use these dates to obtain demographic and spatial informa-
tion about the household on this exact date. However, sev-
eral data sources are only updated yearly, so for those we 
use the reference date of January 1, 2018.

Municipalities, districts and neighborhoods
In 2020, the CBS administrative data had individuals reg-
istered in 25 municipal health regions, 355 municipali-
ties, 3163 districts and 13,478 neighborhoods. Municipal 
health services work through a common system for several 
municipalities in a given region, called an MHS region, to 
carry out a number of tasks in the field of public health. 
Municipalities are administrative divisions that have corpo-
rate status and powers of self-government or jurisdiction. 
Their duties are delegated to them by the central govern-
ment. Districts are nested within municipalities and neigh-
borhoods within districts. Districts and neighborhoods are 
coherent regions that typically share similar population 
characteristics such as age, social structure, economic area, 
geographical features, etc. They have no formal status; they 
are defined for administrative purposes and data collection 
by CBS.

Models
Formalization of the prediction problem
We train a model based on the observed health indicators, 
living quality ratings, or noise disturbance indicators using 

the sub-population of respondents in the survey. We then 
use this model to predict the missing survey responses of 
the remaining population and generate predictions for 
every adult individual in the Netherlands. From a machine 
learning perspective, this is a supervised learning task.

Suppose we have a set of N individuals denoted by 
[N ] = {1, 2, . . .N } . The survey is a subset I ⊂ [N ] of n 
individuals from this population. From the administra-
tive data set we get a vector of d features xi ∈ R

d for each 
individual i. From the survey data set we get responses 
yi ∈ {0, 1} (classification) or yi ∈ R (regression) if the indi-
vidual was in the survey ( i ∈ I  ) and yi = NA otherwise 
( i /∈ I).

The goal of supervised learning is to learn an unknown 
function f : Rd → {0, 1} or f : Rd → R from a set of 
training examples D = {(xi, yi)}i∈I each consisting of an 
input vector xi ∈ R

d and an associated output which may 
be binary yi ∈ {0, 1} or real-valued yi ∈ R . This function 
should approximate the unknown true function yi ≈ f (xi) 
on the training data i ∈ I  with the aim of generalizing to 
new data i /∈ I  which is not seen in the training phase. 
When predicting the prevalence or average rating for pol-
icy makers, we would use the observed responses when 
available in the survey and the model predictions for every 
individual not in the survey. We therefore define the pre-
dicted response y∗i  as:

Given a partition of individuals into r = 1, . . . ,K  
mutually exclusive geographic regions Rr , where 
R1 ∪ . . . ∪RK = [N ] and Rr ∩Rs = ∅ if r �= s , we cal-
culate the predicted prevalence or average rating in each 
region as simply the average:

Model agnostic prediction intervals can be determined 
as follows. The goal is to calculate b = 1, . . . ,B boot-
strapped statistics p(b)r  for the true mean in each region, 
and take their 95% percentile intervals as prediction 
intervals. To quantify model uncertainty, we boot-
strap resample the training data as data sets {D(b)}Bb=1 
and denote a model trained in each as f (b) . The out-
come uncertainty in classification is a Bernoulli trial 
yi ∼ Bern(pi) from true probability pi and we assume 
the outcome in regression follows a normal distribution 
yi ∼ N (µi, σ

2
i ) given true mean µi and variance σ 2

i  . The 
outcomes are independent given their true means. We 
estimate the mean with the bootstrapped model predic-
tion and a constant variance σ 2 = 1

|I|

∑

i∈I(yi − f (xi))
2 

where f (xi) =
1
B

∑B
b=1 f

(b)(xi) . For every bootstrap 

y∗i :=

{

yi i ∈ I

f (xi) i /∈ I

pr =
1

�Rr�

∑

i∈Rr

y∗i

Table 3 Additional features used for prediction in WoON

Feature Median (min.–max.) % missing

% in the neighborhood of

   Uninhabited houses 3 (0–100) 0.2

   Single-family houses 78 (0–100) 0.2

   Owner-occupied houses 62 (0–100) 0.2

   Social rental houses 26 (0–100) 0.2

   Houses built before 2000 91 (0–100) 0.2

Distance (m) from home to closest

   Forest 1463 (0–16,271) 0.0

   Backwater 2080 (0–24,852) 0.0

   Public green 280 (0–10,139) 0.0
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sample b = 1, . . . ,B , we train model f (b) and sam-
ple the outcomes. For unknown outcomes ( i /∈ I  ) we 
simulate y

(b)
i ∼ Bern(f (b)(xi)) in classification and 

y
(b)
i ∼ N (f (b)(xi), σ

2) in regression. The known out-
comes ( i ∈ I  ) are taken as observed y(b)i := yi , which cor-
responds to a finite sample correction. The bootstrapped 
mean is then calculated as p(b)r = 1

�Rr�

∑

i∈Rr
y
(b)
i  . Their 

95% percentile intervals are the prediction intervals.

Null model
The first model is the null model. This model simply pre-
dicts the mean in the Netherlands: either prevalence or 
the average rating. Each individual and therefore each 
geographical region gets the same outcome:

Structured additive regression model (STAR)
The second model under consideration is a statistical 
model specifically designed for small area estimation 
in the Netherlands. This model is a structured addi-
tive regression model (STAR) and provides an elaborate 
framework for modelling nonlinear effects using penal-
ized B-splines and spatial information using Markov 
random fields. The generalized linear model and the gen-
eralized additive model can be considered as a special 
case of the STAR model [5].

In this paper we use an updated version of the STAR 
model that was presented by [4]. The current STAR 
model used by the RIVM has several improvements. 
First, the updated model includes educational level. Sec-
ond, more two-way interactions are included: age by 
sex, age by ethnicity, age by marital status, age by educa-
tional level, sex by ethnicity, sex by marital status and sex 
by educational level. Third, all features enter the model 
using basis functions (B-splines for continuous features, 
dummies for categorical features) and penalization of the 
regression coefficients. This also enables automated fea-
ture selection, i.e., features that are not relevant will not 
be selected in the model, resulting in a more parsimoni-
ous model [13]. The original STAR model was used to 
make the HeMo 2012 predictions, but the updated model 
was used for the HeMo 2016 predictions. It will also be 
used as a reference for the HeMo 2020 predictions.

Estimation of (hyper)parameters is carried out with 
restricted maximum likelihood (REML) using the bam 
function in the mgcv R package [14, 15]. Because of the 
size of the data set and the complexity of the model, it is 
impossible to fit this model to the entire data sets. The 

f (xi) =
1

�I�

∑

j∈I

yj

data sets is therefore split by MHS regions and a sepa-
rate model was fit to each split, as in the original paper 
[4]. To avoid boundary effects, the model for each MHS 
region also includes all data within a 10 km buffer around 
the considered MHS region. These models have identical 
specification but the estimated coefficients and smooth-
ing penalty may differ between regions.

Missing feature values are not allowed in the STAR 
model. We therefore used the random forest algorithm 
to sequentially impute the missing values from the least 
missing feature to the most missing feature.

Gradient boosting (XGBoost)
The third model is a gradient boosting with decision 
trees. This is a general machine learning technique for 
classification, regression, etc. It has been shown across 
many data sets that sophisticated machine learning mod-
els (random forest, kernel methods, neural networks, 
boosting with decision trees) tend to have good classi-
fication accuracy in tabular data sets such as our prob-
lem [16]. We chose gradient boosting with decision trees 
because previous studies that have compared machine 
learning methods in SAE have found them to work 
slightly better [8, 9] and they are computationally much 
faster in our large data sets.

Boosting creates a strong prediction model iteratively 
as an ensemble of weak prediction models, where at each 
iteration a new weak prediction model is added to com-
pensate the errors made by the existing weak prediction 
models. Gradient boosting generalizes other boosting 
methods by allowing the optimization of arbitrary differ-
entiable loss functions. Typically decision trees are used 
as the model, which is called gradient boosted trees. A 
decision tree model called Classification And Regression 
Trees (CART) can be used for both classification and 
regression. Given an arbitrary loss function L(yi, f (xi)) , 
the gradient boosted trees can be described in a general 
form as [13, 17]: 

1 Start with a constant function: f0(x) = argminγ0
∑n

i=1 L(yi , γ0)

2 For each iteration t = 1, . . . ,T  construct a new tree: 

(a) For example i = 1, . . . , n , compute the negative 
gradient 

(b) Fit a classification and regression tree to the 
targets ri,t giving terminal nodes j = 1, . . . , Jt 
with corresponding terminal regions Rj,t , i.e. 

rit = −

[

δL(yi, f (xi)]

δf (xi)

]

f=ft−1
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the set of examples in terminal node j at itera-
tion t.

(c) For j = 1, . . . , Jt compute the terminal node 
estimates 

(d) Using learning rate α update a new function 
ft(x) as 

The gradient boosting algorithm above has two main 
hyperparameters: the number of iterations i.e., the num-
ber of trees constructed T, and the learning rate α . We 
use the R package XGBoost implementation of gradient 
boosting [18]. The extreme gradient boosting (XGBoost) 
model [11] has been successfully used in many competi-
tions and we selected it as a state-of-the-art method. We 
denote the default hyperparameter values as “XGBoost0”, 
and the optimized model as “XGBoost”. We found that 
the default hyperparameter values α = 0.3,T = 50 work 
well. However, a lower learning rate α always resulted in a 
more accurate model. The optimal number of iterations T 
depends on both the predicted outcome and the learning 
rate. In the optimized model, we therefore set a reason-
ably low value to the learning rate α = 0.1 and limited the 
number of iterations by early stopping based on five-fold 
cross-validation on training data. XGBoost is able to han-
dle missing feature values directly by considering these 
as a tree splitting criterion, just like ordinary values, so 
there was no need to impute missing feature values first. 
We found that missing values gave slightly better predic-
tions with XGBoost.

Attention should be paid to the spatial location feature 
here, because location may provide information that can-
not be accounted for by the demographic, household or 
neighborhood features only. While in the STAR model 
location is implicitly included in the model as a spatially 
correlated random effect using a Markov random field 
term, for a tree-based model this information could be 
provided by simple x and y coordinates. However, this 
may result in orthogonal artifacts in the maps [19]. We 
therefore used oblique geographic coordinates (OGC) as 
an alternative. These are K additional features added to 
the data by a feature transformation of xi and yi coordi-
nate features, calculated by:

γj,t = argminγ

∑

xi∈Rj,t

L(yi, ft−1(xi)+ γ )

ft(x) = ft−1(x)+ α

Jt
∑

j=1

γj,tI(x ∈ Rj,t)

x
OGCk
i =

√

x2i + y2i cos

[

θk − atan

(

yi

xi

)]

,

where the angle θk takes the values π(k − 1)/K , k = 1, . . . ,K , in 
which K is a reasonably large number, chosen such that 
model accuracy does not improves any further. We found 
K = 24 to be a good trade-off. We added an extension 
“_ogc” to denote a model with this location information 
and “_xy” as the model with ordinary x &y-coordinates.

Validation
To evaluate model performance, we use the data set 
D = {(xi, yi)}i∈I of survey respondents with known binary 
health-related indicators or living quality ratings. We split 
this data set into five mutually exclusive training and test set 
pairs with five-fold cross-validation, i.e., Dtrain ∪Dtest = D 
and Dtrain ∩Dtest = ∅ . For each pair, a model f is fitted 
to the training set Dtrain with observed responses and the 
unknown responses are predicted in the test set Dtest . Tak-
ing together the predictions in the five mutually exclusive 
tests sets, we therefore have out-of-sample predictions for 
the original data set D.

To validate the models, two aspects are particularly 
important: discrimination and calibration. Discrimination 
only applies to classification, while calibration applies to 
both classification and regression. Discrimination meas-
ures to what extent the model is able to discriminate a high 
risk individual from a low risk individual, without neces-
sarily considering the absolute values of the predictions. 
Calibration on the other hand quantifies how close the pre-
dicted probabilities or ratings are to the observed probabil-
ities or ratings. In our classification task we aim to predict 
the individual probabilities as accurately as possible, so we 
need models that are also well calibrated.

The Receiver Operating Characteristic (ROC) is a popu-
lar discrimination visualization. The area under the ROC 
curve (AUC) only measures discrimination because it is 
calculated from the number of correct rankings of positive 
examples over negative ones [20]. Accuracy also consid-
ers discrimination because it is the proportion of correctly 
classified individuals for a given threshold value. In the case 
of binary responses, a calibration curve compares the pre-
dicted probability quantiles and the true probability of 1 in 
each quantile.

Statistics that measure both discrimination and calibra-
tion are the mean squared error (MSE) and negative log-
likelihood (NLL), which we normalized by dividing by the 
sample size. We verified that different metrics gave con-
sistent results across the models. We primarily report the 
model accuracy as the MSE, which is also a valid metric in 
binary classification known as the Brier score [21]:

MSE(Dtest) =
1

|Dtest|

∑

i∈Dtest

(yi − f (xi))
2
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Results
In this section, we first investigate the prediction task 
in detail using the HeMo indicator “drinker”, which is 
the first indicator in the data set. We then summarize 
the results for each of the 34 health-related indicators, 
the 8 living quality ratings, and the 10 noise disturbance 
indicators.

The predicted prevalences for all indicators at neigh-
bourhood, district and municipality level for 2020, based 
on the HeMo survey, can be found in the URL provided 
in the Online materials.

Health‑related indicator “drinker”
The task is to predict the binary response yi ∈ {0, 1} , cor-
responding to the health survey question “Did you drink 
alcohol in the past 12 months?”, given demographic and 
spatial characteristics of individuals. The estimated prev-
alences of this indicator based on XGBoost model pre-
dictions are shown in the middle panel of Fig. 1.

There are some differences in XGBoost and STAR 
model predictions, even though the maps they produce 
seem very alike. We plot the differences in predicted 
prevalences in the right panel of Fig. 1 and list the abso-
lute differences in Table 4.

In Table  5 we report the accuracy, AUC, MSE, NLL, 
and the average time taken to train the model and predict 

Raw estimates

(0.33,0.78] (0.78,0.81] (0.81,0.84]

Model estimates

(0.33,0.78] (0.78,0.81] (0.81,0.84]

(0.84,0.86] (0.86,0.94] NA (0.84,0.86] (0.86,0.94] NA

−0.100 −0.075 −0.050 −0.025

0.025 0.050 0.075 0.100

XGBoost vs. STAR

Comparison of estimates: Prevalence of ’drinker’

Fig. 1 Illustration of small area estimation at neighbourhood level in the Netherlands. Prevalence of “drank alcohol in the past 12 months” based 
on survey responses (raw estimates), XGBoost model predictions for the population (model estimates), and the percentage point difference of two 
models (XGBoost vs. STAR). XGBoost is based on X and Y-coordinates

Table 4 XGBoost vs. STAR: percentage point difference in predicted prevalence

Difference in 
prevalence

[0,0.025) [0.025,0.05) [0.05,0.075) [0.075,0.1) [0.1,0.125)

Total neighbourhoods 
(%)

92.07 7.29 0.57 0.05 0.02

Table 5 Different accuracy metrics for “drinker” indicator

Bold values indicated the best result, not statistical significance

Model Accuracy AUC MSE NLL Time

Null 0.801 0.500 0.160 0.500 0 s
STAR 0.814 0.737 0.138 0.437 28 min

XGBoost0_xy 0.815 0.742 0.137 0.434 6s

XGBoost_xy 0.816 0.744 0.136 0.433 3 min

XGBoost0_ogc 0.815 0.742 0.137 0.434 17s

XGBoost_ogc 0.816 0.744 0.136 0.433 6 min
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the responses in each fold. XGBoost is the most accurate 
model in every metric, and it is possible to obtain predic-
tions in the matter of seconds for XGBoost with default 
hyperparameters, while training the STAR model takes 
almost half an hour.

To investigate the full profile of discrimination ability 
and make sure the models are well-calibrated, we calcu-
lated the ROC curve and calibration curve in Fig. 2. Since 
Statistics Netherlands does not allow reporting individ-
ual predictions, we used 100 different threshold values 
for the ROC curve and 100 different quantiles of preva-
lence for the calibration curve. The models appear very 
close to each other in discrimination ability and every 
model is well-calibrated.

Since the primary interest is small areas, we also 
wanted to make sure that the new model (XGBoost) 
matched the previous model (STAR) in these areas. In 
Fig.  3, we compare the predicted prevalence in each 
neighborhood and measure model accuracy by MSE for 
different area sizes. The Pearson correlation coefficient 
in this example is 95%, which means that the two models 
predict quite similar but not identical prevalences. The 
XGBoost model has a lower MSE for all area sizes for the 
’drinker’ indicator.

All health‑related indicators, living quality ratings, 
and noise disturbance
We fitted the XGBoost models (x and y, ogc) with opti-
mized hyperparameters and the STAR model to each 
of the 34 health-related indicators, the 8 perceived liv-
ing quality ratings, and the 10 experienced noise distur-
bance indicators. We measure the performance by their 
MSE, since the previous experiment indicated that differ-
ent metrics give consistent results. Because the primary 
goal is to improve upon the existing statistical model by 
using a machine learning model, we also summarized the 
XGBoost vs. STAR model comparison with the following 
columns in each table:

• The Pearson correlation (corr) of predictions for each 
neighborhood.

• The % improvement in MSE of predictions (pred) 
obtained by XGBoost.

• The % improvement in train & prediction time (time) 
by XGBoost.

In Table  6 we see that XGBoost is the best model for 
every one of the 34 health indicators. In Table 7, we see 
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Fig. 2 ROC and calibration curves. The ROC curve measures discrimination by plotting the false positive and true positive rates at different 
threshold values. The calibration curve shows how well the predicted probabilities match the true probabilities: the mean of predicted probabilities 
is calculated at different quantiles of true probabilities with the diagonal line indicating a perfect fit
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that XGBoost is the best model for all but one of the 8 
housing survey ratings. In Table 8, we find that XGBoost 
is always better or equally good to the STAR model for 
the noise disturbance indicators.

The improvements of XGBoost over STAR appear small 
in terms of the overall MSE, being under 1%, but there 
are still differences between prevalences predicted for 
each neighborhood as indicated by the 84–97% correla-
tion. The training and prediction time is much improved 
even in the XGBoost model that searches for the optimal 
hyperparameters. The training and prediction times are 
around 10% in the health monitor, under 1% in the hous-
ing survey, and around 5% in the noise disturbance of the 
STAR model.

Discussion
Ease of application
We investigated machine learning for small area estima-
tion using gradient boosted trees. The idea of machine 
learning is to use a generic learning algorithm that can 
be applied to any new problem. The algorithm works as 
a ‘black box’ model: we must only define the features as 
input and labels as output. An accurate model is learned 
as a result. This means that an explicit model specifica-
tion is not required, as is the case with statistical models.

The generic learning algorithm is very flexible: it can 
learn non-linear effects, arbitrary interactions to several 
degrees, and complex spatial patterns. Spatial heteroge-
neity remains in the the survey data even after account-
ing for the features, so special attention should be paid to 
the spatial component. Simple x and y-coordinates work 
well, but oblique coordinates represent a feature trans-
formation that may improve the accuracy. The approach 
allows for any possible interactions between location and 
the features in a flexible way, so it can also mimic Geo-
graphically Weighted Regression (GWR) if necessary.

Model application is straightforward. This model can 
be fitted into the entire Dutch population instead of split-
ting the data into subsets. The original data set can be 
used directly because the decision trees perform auto-
matic feature selection, scaling, and splitting. Missing 
values can be used in the model instead of imputing them 
with complex methods. XGBoost saves a lot of time in 
data preprocessing, model specification, and prediction 
compared to the STAR model.

Accuracy of the models
All models achieved a significant improvement over the 
null model in our example task, indicating that there is 
some relationship between the demographic and spatial 
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features to the survey outcomes. The null model is use-
less in practice because it predicts the same prevalence 
in each area. Otherwise the models appear very close to 
each other in the overall metrics. The models also have 

a similar profile of false positive and true positive rates 
at different threshold values. The calibration curves show 
that every model is well-calibrated. Using oblique coor-
dinates consistently resulted in lower errors than x and 

Table 6 Comparison of models by MSE over all health-related indicators. XGBoost oblique coordinates vs. STAR: correlation between 
predictions (corr), MSE reduction in percentages (pred), training and test prediction time reduction in percentages (time)

Indicator Nullmodel XGB_xy XGB_ogc STAR Corr Pred Time

Drinker 0.1597 0.1364 0.1364 0.1377 0.95 0.94 78.05

Drinker_over6gd 0.0510 0.0478 0.0478 0.0480 0.93 0.42 87.55

Drinker_heavy 0.0670 0.0642 0.0642 0.0645 0.91 0.47 89.94

Drinker_excess 0.1464 0.1402 0.1402 0.1409 0.89 0.50 79.73

Drinker_excess_old 0.0623 0.0610 0.0610 0.0611 0.85 0.16 85.96

Drinker_under1gd 0.2470 0.2106 0.2105 0.2117 0.96 0.57 73.94

Weight_overweight 0.2493 0.2264 0.2265 0.2277 0.96 0.53 84.71

Weight_obese 0.1296 0.1235 0.1235 0.1240 0.94 0.40 84.80

Weight_underweight 0.0135 0.0133 0.0133 0.0133 0.90 0.00 93.04

Weight_healthly 0.2484 0.2287 0.2288 0.2299 0.95 0.48 85.35

Weight_overweight 0.2340 0.2242 0.2242 0.2247 0.95 0.22 92.95

Smoker 0.1133 0.1047 0.1048 0.1054 0.95 0.57 85.48

Smoker_past 0.2441 0.2102 0.2102 0.2110 0.98 0.38 87.72

Smoker_never 0.2467 0.2147 0.2147 0.2162 0.96 0.69 80.51

Health_reportgood 0.1785 0.1583 0.1583 0.1592 0.97 0.57 87.26

IIlness_longterm 0.2322 0.2117 0.2117 0.2126 0.97 0.42 90.56

Health_limited 0.2288 0.1981 0.1981 0.1994 0.97 0.65 88.88

Health_limited_severe 0.0508 0.0478 0.0478 0.0482 0.94 0.83 90.42

Illness_longterm_limit 0.2216 0.1931 0.1932 0.1945 0.97 0.67 87.97

Disability_hearing 0.0457 0.0434 0.0434 0.0435 0.93 0.23 89.39

Disability_vision 0.0495 0.0471 0.0471 0.0472 0.95 0.21 89.99

Disability_mobility 0.0985 0.0796 0.0796 0.0801 0.98 0.62 86.37

Disability_any 0.1382 0.1153 0.1153 0.1159 0.98 0.52 85.34

Feels_lifecontrol 0.0892 0.0838 0.0838 0.0842 0.95 0.48 87.39

Anxitydepression_mod 0.2415 0.2229 0.2228 0.2234 0.97 0.27 88.44

Anxitydepression_high 0.0442 0.0420 0.0420 0.0422 0.95 0.47 90.18

Exercise_guideline 0.2483 0.2293 0.2292 0.2300 0.94 0.35 80.00

Exercise_weekly 0.2488 0.2149 0.2149 0.2170 0.95 0.97 84.73

Lonely 0.2471 0.2296 0.2296 0.2306 0.96 0.43 86.80

Lonely_severe 0.0841 0.0799 0.0799 0.0802 0.95 0.37 89.13

Lonely_emotional 0.2500 0.2304 0.2305 0.2315 0.97 0.43 90.67

Lonely_social 0.2415 0.2310 0.2311 0.2317 0.94 0.26 88.60

Volunteer 0.2051 0.1900 0.1900 0.1915 0.94 0.78 83.09

Difficultyfinancial_12 0.0777 0.0662 0.0662 0.0676 0.95 2.07 86.25

Caregiver_informal 0.1318 0.1236 0.1236 0.1240 0.95 0.32 87.21

Much_stress 0.1129 0.1045 0.1045 0.1048 0.97 0.29 91.62

Severe_noise_disturb 0.0584 0.0572 0.0572 0.0574 0.95 0.35 96.10

Walk_to_work 0.1359 0.1251 0.1251 0.1257 0.95 0.48 91.47

Bike_to_work 0.1878 0.1602 0.1601 0.1614 0.96 0.81 79.63

Walk_or_bike_work 0.2222 0.1824 0.1823 0.1840 0.97 0.92 84.52
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y-coordinates in the noise prediction task. It is possi-
ble that the signal is mostly spatial in this task and the 
smoothing effect benefits the model by removing orthog-
onal artifacts [19].

However, there are some differences if we look at the 
actual predictions of ‘drinker’ prevalence in each small 
area. Table  4 indicates that there are few neighbour-
hoods (0.6%) with more than ±5% percentage point 
difference in predicted prevalences, even though these 
can differ up to ±12% between XGBoost vs. STAR. 
Neighbourhoods with small but significant differences 
in the 0–5% range are more common. We could not 
identify characteristics of neighbourhoods that cause 
this difference, but spatial trends are identifiable in the 
right panel of Fig. 1. The STAR model has a more elabo-
rate spatial model, while XGBoost has more flexibility 
in specifying how the demographic features affect the 
outcome. It is not possible to learn the spatial effect 
from very few respondents, but the spatial effect is able 
to compensate a biased model if many respondents are 
available. This bias could be caused by an oversimpli-
fied model specification or the data missing important 
features. For example, the study that introduced the 
original STAR model [4] found implausible estimates 
of smoking prevalence caused by the model specifica-
tion missing the level of ‘education’ combined with few 
respondents in the neighbourhood.

These findings suggest that the overall metric may 
indicate little difference between the models whereas 
the actual prediction task shows considerable differ-
ences. It may be beneficial to pursue marginally more 
accurate models for better predictions into small areas. 
The ultimate goal is to predict prevalences accurately 
at neighborhood level, and we hope that improve-
ment in accuracy metrics works as a surrogate measure 
of this ability. The overall metric is no guarantee that 
the model is better for small areas. For this reason, we 
verified that XGBoost was uniformly better for all area 
sizes. The smallest difference was observed for very 
small areas.

Interpretation of model fits
In many cases it is of interest to interpret the predictive 
model. The STAR model is directly interpretable: each 
of the terms describes how the prediction changes as a 
function of one feature value when all other features are 
held constant. It is possible to calculate both effect sizes 
and statistical significance from this model. In Fig.  4 in 
the Appendix, we plot all the different terms included 
in the model. Even though the model is interpretable in 

theory, it is quite challenging to understand the effect of 
several features (age, sex, ethnicity, marital_status, edu-
cation) since this model includes so many interactions.

Shapley additive explanations [22] is one approach to 
the problem of interpreting machine learning models. 
A Shapley value is calculated for every feature value of 
every individual. On a conceptual level, the SHAP values 
explain every individual’s prediction as a sum of contri-
butions of their features. In Fig.  5 in the Appendix, we 
plot the mean SHAP value of XGBoost at every feature 
value. They provide an interpretation which is very simi-
lar to the STAR model.

Limitations and possible extensions
Many other surveys that allow the linking of individual’s 
survey data to their administrative data could be investi-
gated with the same method. The main limitation in our 
approach is the amount and quality of data. Regression 
based SAE requires an administrative data set for the 
population and a survey data set of reasonable size for a 
subset of the population.

The Netherlands collects a high quality administrative 
data set which is available in a secured CBS environment, 
but this is not the case in many other countries. Many 
features were available to train a complex model based 
on machine learning, but with less information simpler 
models could be competitive. Another limitation may be 
the survey size. We had tens to hundreds of thousands 
of respondents in each survey. With considerably fewer 
respondents it is possible that simpler approaches are 
sufficient because it is not possible to learn a complex 
model from little data. We have not investigated the min-
imum number of respondents required, but this may be a 
topic for further research.

Our surveys were a stratified sample throughout the 
Netherlands [1, 2], and the estimation procedure can in 
principle account for a non-representative sample. This 
is because a regression approach assumes data of the 
entire population is available and predicts the answers 
of individuals who are not in the survey. For exam-
ple, if high income individuals answer the survey more, 
directly using the survey would give biased results. The 
model based estimates should still be correct, because we 
predict the answers for both high and low income indi-
viduals as they are represented in the population. The 
only requirement is that the model is unbiased for the 
response, given the individual’s features. Simpler meth-
ods like survey weighting take this into account by incor-
porating design weights and post-stratification.
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Conclusion
We have used gradient boosted decision trees, as 
implemented in the ‘XGBoost’ R package, as a machine 
learning method for providing small area estimates of 
public health, housing and well-being in the popula-
tion of Netherlands. The labels are responses in a sur-
vey and the features come from a registry data set of 
demographic and spatial variables. These responses 
are available for a small subset of the population, but 
the registry data is available for the entire adult popu-
lation of Netherlands. The missing survey responses 
can therefore be predicted by a model trained on the 
observed responses, and these predictions aggregated 
into the predicted prevalence or average rating in each 
small area.

We have seen that machine learning has multiple 
benefits. A single machine learning method can learn 

the prediction task in a matter of minutes with similar 
accuracy as purpose built models for small area estima-
tion in the Netherlands. Gradient boosted decision trees 
are able to slightly improve the accuracy, and drastically 
improve the training and prediction time. Default hyper-
parameters worked well and tuning achieved only a small 
performance improvement. The model is unmatched in 
the simplicity and ease of use. The statistician does not 
have to do a complex, time consuming, and error-prone 
model specification process. The method automatically 
learns non-linear feature effects, interactions to many 
degrees, and complex spatial signal from x and y-coor-
dinates. Accuracy and interpretation could be further 
improved using the oblique coordinate transformation 
when the signal was mostly spatial. These results suggest 
that machine learning is an attractive alternative for small 
area estimation.

Table 7 Comparison of models by MSE over all living quality ratings

Indicator Nullmodel XGB_xy XGB_ogc STAR Corr Pred Time

Afraid_ngbh 0.7266 0.6667 0.6655 0.6676 0.88 0.31 99.1

Social_cohesion 2.8648 2.5505 2.5474 2.5615 0.91 0.55 99.03

Satisfied_region 0.4222 0.4018 0.4001 0.3995 0.83 − 0.15 99.11

Annoyed_w_ngbh 0.5648 0.5180 0.5182 0.5203 0.88 0.4 99.24

Attached_to_ngbh 1.1237 1.0079 1.0082 1.0173 0.88 0.89 98.97

Satisfied_house 0.6503 0.5386 0.5389 0.5458 0.91 1.26 99.2

Satisfied_surroundings 0.6608 0.6056 0.6046 0.6054 0.89 0.13 99.01

At_home_in_ngbh 0.6382 0.6011 0.6009 0.6047 0.85 0.63 99.09

Table 8 Comparison of models by MSE over all noise disturbance indicators based on a relevant noise measurement separated by ’-’

Indicator Nullmodel XGB_xy XGB_ogc STAR Corr Pred Time

Road_high-road 0.0665 0.0635 0.0635 0.0635 0.94 0.00 95.76

Rail_high-rail 0.0114 0.0109 0.0109 0.0109 0.91 0.00 96.62

Air_high-air 0.0357 0.0314 0.0313 0.0313 0.96 0.00 95.88

Road_medhigh-road 0.2234 0.2060 0.2056 0.2058 0.96 0.10 93.73

Rail_medhigh-rail 0.0780 0.0671 0.0667 0.0671 0.96 0.60 93.31

Air_medhigh-air 0.1593 0.1295 0.1286 0.1286 0.98 0.00 93.42

Road_high_gt50-road_pwrw 0.0328 0.0320 0.0320 0.0320 0.91 0.00 96.43

Road_medhigh_gt50-road_pwrw 0.1557 0.1465 0.1462 0.1467 0.95 0.34 94.11

Road_high_sm50-road_gw 0.0519 0.0501 0.0501 0.0502 0.92 0.20 96.73

Road_medhigh_sm50-road_gw 0.2045 0.1918 0.1914 0.1914 0.94 0.00 93.85

Road_high_gt50-road 0.0328 0.0320 0.0320 0.0320 0.90 0.00 95.94

Road_medhigh_gt50-road 0.1557 0.1472 0.1465 0.1467 0.93 0.14 92.50

Road_high_sm50-road 0.0519 0.0501 0.0501 0.0501 0.92 0.00 96.73

Road_medhigh_sm50-road 0.2045 0.1914 0.1911 0.1911 0.95 0.00 94.70
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Appendix

Table 9 Subset of health-related indicators from the Public health monitor (‘HeMo’)

Health‑related indicator Original name Description

Drinker lfala217 Drank alcohol in the past 12 months

Drinker_over6gd lfalaa213 Drinks over 6 glasses of alcohol per day

Drinker_heavy lfala213 Drinks at least 1 times a week at least 6 (M) or 4 (F) glasses per day

Drinker_excess lfals231 Drinks alcohol in excess of recommendation

Drinker_excess_old lfals230 Drinks alcohol in excess of recommendation (old definition)

Drinker_under1gd lfals232 Drinks under 1 glass of alcohol per day

Weight_overweight aggws204 Overweight, BMI 25 or higher

Weight_obese aggws205 Obese, BMI 30 or higher

Weight_underweight aggws206 Underweight, BMI 18.5 or lower

Weight_healthy aggws207 Healthy weight, BMI 18.5–25

Weight_overweight_moderate aggws208 Moderately overweight, BMI 25–30

Smoker lfrka205 Smoker

Smoker_past lfrka206 Smoked in the past

Smoker_never lfrka207 Has never smoked

Health_reportgood klgga208 Considers own health as good

Illness_longterm calga260 Has an illness of duration 6 months or longer

Health_limited calga264 Is limited in daily life by problems with health

Health_limited_severe calga265 Is seriously limited in daily life by problems with health

Illness_longterm_limited calga267 Is limited in daily life by problems with health 6 months or longer

Disability_hearing lgbps203 Has a hearing disability (great difficulty with 1 of 2 OECD items)

Disability_vision lgbps204 Has a vision disability (great difficulty with 1 of 2 OECD items)

Disability_mobility lgbps205 Has a mobility disability (great difficulty with 1 of 3 OECD items)

Disability_any lgbps209 Has a hearing, vision, or mobility disability (1 of 7 OECD items)

Feels_lifecontrol ggrls203 Feels moderate or much control over their own life

Anxietydepression_moderate ggada202 Moderate or high risk of anxiety disorder or depression

Anxietydepression_high ggada203 High risk of anxiety disorder or depression

Exercise_guideline ki_rlbew2017 Complies with the 2017 exercise guideline

Exercise kisporter Core indicator of actual exercise

Lonely ggees217 Is lonely

Lonely_severe ggees209 Is seriously lonely

Lonely_emotional ggees218 Is emotionally lonely

Lonely_social ggees219 Is socially lonely

Volunteer mmvwa201 Does volunteer work

Difficultyfinancial_12m mmika201 In the past 12 months experienced difficulty with household income

Caregiver_informal mcmzgs203 Caregiver (at least 3 months and/or at least 8 hours a week)

Much_stress ggsts16 Experienced a lot of stress in the past 4 weeks

Severe_noise_disturb woghba218 Experiences severe noise disturbance by neighbors

Walk_to_work wwlmwk (Partly) walks to work at least 1 day a week

Bike_to_work wwfmwk (Partly) bikes to work at least 1 day a week

Walk_or_bike_to_work wwfmwk, wwlmwk (Partly) bikes or walks to work at least 1 day a week
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Table 10 Perceived living quality ratings from the Housing survey (‘WoON’)

Living quality rating Original name Description

Social cohesion Cohesie GSB indicator of social quality

Satisfaction house Twoning Satisfaction with the current home

Satisfaction surroundings Twoonomg Satisfaction with the surroundings

Satisfaction region Tevrstr Satisfaction with the region where you live

Bothered by neighborhood Tvervele It’s annoying to live in this neighborhood

At home in neighborhood Brtthuis I feel at home in this neighborhood

Afraid in neighborhood Brtveilig Afraid of being harassed or robbed in this 
neighborhood

Table 11 Experienced noise disturbance subset of the Public health monitor (’Noise’)

Noise disturbance indicator Original name Description

Road_medhigh_gt50 WOGHBA202 Moderate or serious noise nuisance from road traffic > 50 km/h

Road_high_gt50 WOGHBA203 Serious noise nuisance from road traffic > 50 km/h

Road_medhigh_sm50 WOGHBA205 Moderate or serious noise nuisance from road traffic < 50 km/h

Road_high_sm50 WOGHBA206 Serious noise nuisance from road traffic < 50 km/h

Road_medhigh WOGHBA202/205 Moderate or serious noise nuisance from road traffic

Road_high WOGHBA203/206 Serious noise nuisance from road traffic

Rail_medhigh WOGHBA208 Moderate or serious noise nuisance from train traffic

Rail_high WOGHBA209 Serious noise nuisance from train traffic

Ail_medhigh WOGHBA211 Moderate or serious noise nuisance from air traffic

Ail_high WOGHBA212 Serious noise nuisance from air traffic

Table 12 Estimated noise level (dB) from the RIVM noise 
dispersion model

Estimated noise level Original name Description

Air lden_air Noise from air traffic

Rail lden_rail Noise from railway traffic

Road lden_wegv Noise from road traffic

Road_gw lden_wegv_gw Noise from municipal roads

Road_pwrw lden_wegv_pw, 
lden_wegv_rw

Noise from secondary and 
main motorways

Table 13 Description of Dutch education levels

Education level Description

Basis Primary education

VMBObk Lower secondary education (predominantly practical)

VMBOgt Lower secondary education (predominantly theoreti-
cal)

MBO23 Post-secondary vocational education (lower levels)

MBO4 Post-secondary vocational education (highest level)

HAVO-VWO Higher secondary education

HBO-WO-BAC Undergraduate degree

HBO-WO-M/PhD Graduate/doctoral degree
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Fig. 4 STAR model terms for “drinker” indicator.. Because a different model is fitted for each of the 25 GGD regions, we calculate the average term 
value over these models for a given feature value. Even though interpretation is seen as a strength of statistical models, it is quite non-trivial to 
interpret such a complex model. Compared to the XGBoost SHAP values below, the STAR model appears to have a similar interpretation
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Fig. 5 XGBoost SHAP values for “drinker” indicator.. Because SHAP values explain each individual’s prediction as a sum of the contribution of 
their features, we calculate the average SHAP value of these individuals for a given feature value. These have intuitive interpretations. Positive 
contributions to drinking are: age in early 20s, sex is man, being divorced, higher socioeconomic status. Negative contributions: being retired, sex is 
woman, ethnic backgrounds where Islam is the main religion, larger household size, income and assets around the lowest 25%



Page 18 of 18Viljanen et al. International Journal of Health Geographics            (2022) 21:4 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Acknowledgements
We thank the researchers involved with the Health monitor 2020.

Author contributions
MV was responsible for the model and experiments, authored the manuscript. 
LM participated in the model development and implemented WoON experi-
ments, exported the online results, and reviewed the manuscript. LZ coordi-
nated the project and reviewed the manuscript. JK authored and approved 
the manuscript. All authors read and approved the final manuscript.

Funding
This research was carried out in the framework of the Strategic Program RIVM 
(SPR), in which expertise and innovative projects prepare RIVM to respond to 
future issues in health and sustainability.

Availability of data and materials
Tables https:// statl ine. rivm. nl/#/ RIVM/ nl/ datas et/ 50090 NED. Code https:// 
gitlab. com/ majuvi/ smap- 2020- paper. Data can be accessed in the CBS remote 
access environment by authorized researchers, see https:// www. cbs. nl/ en- gb/ 
onze- diens ten/ custo mised- servi ces- micro data/ micro data- condu cting- your- 
own- resea rch.

Declarations

Ethics approval and consent to participate
Authorization to the administrative data and a secured identifier linking the 
data sets was provided by the CBS. Disclosure and tracing of individuals is not 
possible. Only authorised institutions have access to the CBS microdata under 
strict conditions for statistical research.

Competing interests
The authors declare that they have no competing interests.

Received: 4 March 2022   Accepted: 12 May 2022

References
 1. Hiemstra M, Dinnissen C. Opbouw en instructie totaalbestand Gezond-

heidsmonitor Volwassenen 2020. Netherlands: Centraal Bureau voor de 
Statistiek; 2021.

 2. Janssen S. Woon 2018 onderzoeksdocumentatie en kwaliteitsanalyse. 
Canada: Bron; 2019. p. 24.

 3. Pfeffermann D. New important developments in small area estimation. 
Stat Sci. 2013;28(1):40–68.

 4. van de Kassteele J, Zwakhals L, Breugelmans O, Ameling C, van den Brink 
C. Estimating the prevalence of 26 health-related indicators at neigh-
bourhood level in the netherlands using structured additive regression. 
Int J Health Geogr. 2017;16(1):1–15.

 5. Fahrmeir L, Kneib T, Lang S, Marx B. Regression; models, methods and 
applications. Berlin: Springer; 2013.

 6. Kriegler B, Berk R. Small area estimation of the homeless in Los Ange-
les: an application of cost-sensitive stochastic gradient boosting. Ann 
Appl Stat. 2010. https:// doi. org/ 10. 1214/ 10- AOAS3 28.

 7. Anderson W, Guikema S, Zaitchik B, Pan W. Methods for estimating 
population density in data-limited areas: evaluating regression and 
tree-based models in Peru. PloS ONE. 2014;9(7):100037.

 8. Robinson C, Dilkina B, Hubbs J, Zhang W, Guhathakurta S, Brown MA, 
Pendyala RM. Machine learning approaches for estimating commercial 
building energy consumption. Appl Energy. 2017;208:889–904.

 9. Kontokosta CE, Hong B, Johnson NE, Starobin D. Using machine 
learning and small area estimation to predict building-level munici-
pal solid waste generation in cities. Comput Environ Urban Syst. 
2018;70:151–62.

 10. Singleton A, Alexiou A, Savani R. Mapping the geodemographics of 
digital inequality in great Britain: an integration of machine learning into 
small area estimation. Comput Environ Urban Syst. 2020;82:101486.

 11. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. San Fran-
cisco: Proceedings of the 22nd Acm Sigkdd International Conference on 
Knowledge Discovery and Data Mining; 2016. p. 785–94.

 12. Schreurs E, Jabben J, Verheijen E. Stamina-model description standard 
model instrumentation for noise assessments. Utrecht: RIVM; 2010.

 13. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data 
mining, inference, and prediction. New York: Springer; 2009.

 14. Wood SN. Fast stable restricted maximum likelihood and marginal likeli-
hood estimation of semiparametric generalized linear models. J R Stat 
Soc Ser B. 2011;73(1):3–36. https:// doi. org/ 10. 1111/j. 1467- 9868. 2010. 
00749.x.

 15. Wood SN, Goude Y, Shaw S. Generalized additive models for large data 
sets. J R Stat Soc Ser C. 2015;64(1):139–55. https:// doi. org/ 10. 1111/ rssc. 
12068.

 16. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need 
hundreds of classifiers to solve real world classification problems? J Mach 
Learn Res. 2014;15(1):3133–81.

 17. Friedman JH. Greedy function approximation: a gradient boosting 
machine. Ann Stat. 2001. https:// doi. org/ 10. 1214/ aos/ 10132 03451.

 18. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, 
Cano I, Zhou T, Li M, Xie J, Lin M, Geng Y, Li Y. Xgboost: extreme gradient 
boosting. Vienna: R package version 1.4.1.1; 2021.

 19. Møller AB, Beucher AM, Pouladi N, Greve MH. Oblique geographic 
coordinates as covariates for digital soil mapping. SOIL. 2020;6(2):269–89. 
https:// doi. org/ 10. 5194/ soil-6- 269- 2020.

 20. Fawcett T. An introduction to roc analysis. Pattern Recognit Lett. 
2006;27(8):861–74.

 21. Rufibach K. Use of brier score to assess binary predictions. J Clin Epide-
miol. 2010;63(8):938–9.

 22. Lundberg SM, Lee S-I. A unified approach to interpreting model predic-
tions. Long Beach: Proceedings of the 31st international Conference on 
Neural Information Processing Systems; 2017. p. 4768–77.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://statline.rivm.nl/#/RIVM/nl/dataset/50090NED
https://gitlab.com/majuvi/smap-2020-paper
https://gitlab.com/majuvi/smap-2020-paper
https://www.cbs.nl/en-gb/onze-diensten/customised-services-microdata/microdata-conducting-your-own-research
https://www.cbs.nl/en-gb/onze-diensten/customised-services-microdata/microdata-conducting-your-own-research
https://www.cbs.nl/en-gb/onze-diensten/customised-services-microdata/microdata-conducting-your-own-research
https://doi.org/10.1214/10-AOAS328
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/rssc.12068
https://doi.org/10.1111/rssc.12068
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.5194/soil-6-269-2020

	A machine learning approach to small area estimation: predicting the health, housing and well-being of the population of Netherlands
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Data sources
	Health monitor—HeMo
	Housing research of the Netherlands—WoON
	Experienced noise disturbance from traffic—noise
	Administrative data for the population
	Municipalities, districts and neighborhoods

	Models
	Formalization of the prediction problem
	Null model
	Structured additive regression model (STAR)
	Gradient boosting (XGBoost)

	Validation

	Results
	Health-related indicator “drinker”
	All health-related indicators, living quality ratings, and noise disturbance

	Discussion
	Ease of application
	Accuracy of the models
	Interpretation of model fits
	Limitations and possible extensions

	Conclusion
	Acknowledgements
	References




