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A B S T R A C T

Measurement of hippocampal volume has proven useful to diagnose and track progression in several brain
disorders, most notably in Alzheimer's disease (AD). For example, an objective evaluation of a patient's hip-
pocampal volume status may provide important information that can assist diagnosis or risk stratification of AD.
However, clinicians and researchers require access to age-related normative percentiles to reliably categorise a
patient's hippocampal volume as being pathologically small. Here we analysed effects of age, sex, and hemi-
sphere on the hippocampus and neighbouring temporal lobe volumes, in 19,793 generally healthy participants
in the UK Biobank. A key finding of the current study is a significant acceleration in the rate of hippocampal
volume loss in middle age, more pronounced in females than in males. In this report, we provide normative
values for hippocampal and total grey matter volume as a function of age for reference in clinical and research
settings. These normative values may be used in combination with our online, automated percentile estimation
tool to provide a rapid, objective evaluation of an individual's hippocampal volume status. The data provide a
large-scale normative database to facilitate easy age-adjusted determination of where an individual hippocampal
and temporal lobe volume lies within the normal distribution.

1. Introduction

One of the most common brain imaging markers used in clinical
research to study severity and progression of Alzheimer's Disease (AD)
is hippocampal volume on a structural MRI scan (Frisoni et al., 2010;
Ahmed et al., 2014). Both longitudinal and cross-sectional studies have
reported reduced volume of the hippocampus in patients with AD or
mild cognitive impairment (MCI) compared to healthy controls
(Henneman et al., 2009; Shi et al., 2009; Frankó and Joly, 2013). In
addition, a meta-analysis of nine studies found a 3.33% difference in
atrophy rate between AD and controls (Barnes et al., 2009). Increased
atrophy of the hippocampus has also been associated with neurofi-
brillary tangle and amyloid plaque deposition, which are considered to
be the hallmark features of Alzheimer's disease (Kril et al., 2002; Schuff
et al., 2009). Similarly, using the rate of hippocampal atrophy, re-
searchers have been able to distinguish between those with MCI who
progressed to AD, and those who did not (Frankó and Joly, 2013).

Importantly, the regions of the hippocampus with the highest atrophy
rate also presented with the most severe amyloid deposition (Frankó
and Joly, 2013). Hence, hippocampal volume is considered to be a
useful – and widely available – proxy to measure disease burden and
progression in AD, including in clinical trials (Mielke et al., 2012;
Frankó and Joly, 2013; Kishi et al., 2015; Choe et al., 2016).

Precise estimations of hippocampal volume may also facilitate ear-
lier diagnosis, with some researchers reporting that the rate of hippo-
campal atrophy deviated from a healthy trajectory about 5.5 years be-
fore the stage of clinical AD was reached (Chételat et al., 2005). Indeed,
it appears that baseline hippocampal volume and atrophy rate may be
more suitable than whole brain volume to distinguish between MCI and
controls (Henneman et al., 2009).

It is now appreciated that estimation of hippocampal volume may
also be useful for measuring disease burden or progression in other
disorders. For example, hippocampal atrophy has been related to im-
paired episodic memory in patients with multiple sclerosis (Koenig
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et al., 2014) and temporal lobe epilepsy (Reyes et al., 2018), and can
predict cognitive impairment in patients with Parkinson's disease
(Kandiah et al., 2014). Similarly, a cross-sectional study in patients with
autoimmune encephalitis (Chakos et al., 2005) reported that the se-
verity of the disease course is associated with lower hippocampal vo-
lume, which also predicted worse cognitive outcome (Finke et al.,
2017).

In psychiatric disorders too, hippocampal volume has been im-
plicated as an important imaging correlate. For example, reduced hip-
pocampal volume has been repeatedly linked to depression (Campbell
et al., 2004; Videbech and Ravnkilde, 2004), and a meta-analysis has
reported that smaller hippocampi in depressed patients predict lower
response rates to antidepressant drugs (Colle et al., 2016). Similarly, in
schizophrenia, hippocampal volume is reduced in chronic cases com-
pared to healthy controls (Adriano et al., 2012). In addition, in a recent
study on the effects of cognitive remediation therapy for cognitive
impairment in schizophrenia, improvement was correlated with in-
creased hippocampal volume post-treatment (Morimoto et al., 2018).
These findings demonstrate that hippocampal volume estimations have
the potential to provide important information to assist diagnosis, risk
stratification and possibly even monitor the effects of intervention.
However, several key challenges in the processing, analysis, and in-
terpretation of structural MRI scans outside of a research setting have so
far prevented this method from being used in standard clinical practice.

First, in order to calculate hippocampal volume from a structural
MRI scan, the image has to be processed with software requiring expert
knowledge. Automated brain segmentation tools, e.g. the FIRST tool in
FMRIB Software Library (FSL) (Jenkinson and Smith, 2001; Jenkinson
et al., 2002), or FreeSurfer (http://surfer.nmr.mgh.harvard.edu/), and
openly available standardised processing pipelines (Alfaro-Almagro
et al., 2018), may therefore improve the accessibility of this method in
clinical practice.

Second, hippocampal atrophy has not only been described in pa-
thological, but also in healthy ageing. A meta-analysis estimated the
average yearly rate of hippocampal atrophy at 1.4% in healthy ageing,
and 4.7% in AD (Barnes et al., 2009). Thus, in order to reliably cate-
gorise a patient's hippocampal volume, clinicians and researchers re-
quire access to age-related normative percentiles to distinguish between
healthy and pathological ageing. Few studies have attempted to provide
such normative values – or nomograms – not least because of metho-
dological obstacles. The acquisition of large MRI datasets is costly, time
consuming, and involves highly specialised hardware and staff. Pre-
viously published studies on hippocampal volume in the general po-
pulation are therefore often limited by small sample sizes, low statis-
tical power, and cohort effects (Ioannidis, 2011; Button et al., 2013;
Fraser et al., 2015; Nord et al., 2017). In addition, other potentially
confounding factors, such as method used, sex, head size, years of
education, smoking status, and effects of normal ageing have to be
considered when applying such normative percentiles.

Here we report a first attempt to provide detailed normative in-
formation on the hippocampus and neighbouring temporal lobe vo-
lumes in relation to age, sex, total grey matter volume, symmetry, and
lifestyle factors in 19,793 generally healthy older adults in the UK
Biobank resource (http://www.ukbiobank.ac.uk). We chose a model-
free sliding window approach to study the relationships of temporal
lobe volumes and total grey matter with age, as this method makes few
assumptions and does not impose a linear relationship. While efforts to
harmonize analysis across MRI datasets have not yet been successful,
the large dataset analysed here allows an attempt to provide robust
normative data when these are used with estimates obtained using the
same, or similar, acquisition protocols, hardware and pre-processing
pipelines.

We also supply a webtool, where a patient's estimated brain volume
may be entered to calculate their hippocampal volume status as com-
pared to age-matched norm values (www.win.ox.ac.uk/open-
neuroimaging/analyse-your-data/hippocampal-volume-tool). These

norms will become especially useful with the acquisition of longitudinal
health outcomes of participants in UK Biobank. The UK Biobank cohort
includes over 500,000 participants aged 40–69 years, of which a subset
of 100,000 participants will undergo brain imaging. Within this subset,
6000 participants are likely to have developed AD by 2027 (Miller
et al., 2016). UK Biobank has been granted access to the UK National
Health Service records and can thus follow up on future health out-
comes of participants, making it a powerful resource to study disease
progression. In addition, both the acquisition and analysis of MRI
are standardised across the scanning sites according to publicly avail-
able protocols designed by the UK Biobank Imaging Working Group
(www.ukbiobank.ac.uk/expert-working-groups). This increases gen-
eralisability of results and resolves some of the issues of previous stu-
dies using different scanners and protocols.

2. Methods

2.1. Participants

The most recent release of brain imaging data of the UK Biobank
includes scans of 20,542 participants aged 45–80 years at the time of
scanning. Participants with self-reported neurological and psychiatric
disorders, substance abuse disorders or a history of head trauma were
excluded from our analyses, leaving a sample of 19,793 generally
healthy participants scanned in 2014–2018.

2.2. MRI acquisition and analysis

Image acquisition and pre-processing of MRI scans have been performed
by UK Biobank. Brain images were acquired on a Siemens Skyra 3.0 T
scanner (Siemens Medical Solutions, Germany) with a 32-channel head coil.
T1-weighted images with 1mm3 isotropic resolution were previously ana-
lysed with FMRIB Software Library (FSL) (http://fsl.fmrib.ox.ac.uk/fsl),
with image-derived phenotypes (IDPs – imaging summary statistics such as
brain volume and hippocampal volume) made available for general access.
More detailed information on MRI acquisition and analysis have been re-
ported elsewhere (Miller et al., 2016; Alfaro-Almagro et al., 2018). UK
Biobank also published a standardised MRI analysis pipeline (FMRIB's
Biobank Pipeline version 1.0) that is freely available to the public, including
the source code (https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_
v_1) (Alfaro-Almagro et al., 2018).

2.3. Statistics

All calculations were performed in MATLAB 2017b with the ex-
ception of Joinpoint regression, which was computed with the Join-
point Regression Program (version 4.6.0.0; Surveillance Research Pro-
gram, National Cancer Institute) (Kim et al., 2000).

2.3.1. Data preparation
Outliers in brain volume estimations were identified and excluded

based on a Median Absolute Deviation (MAD) denominated distance
from the median of >5, as this method is more robust to non-Gaussian
distributions. The cut-off of 5 was chosen by visual inspection of data
histograms. Brain volumes were always corrected for scanning date,
and when indicated, for head size and age. This was done with a
General Linear Model, ‘regressing out’ variance accounted for by the
confounds. Brain volumes were corrected for scanning date to adjust for
gradual changes in the scanner hardware, an effect called scanner drift.
These changes lead to variation of the signal distribution in scans over
time, resulting in over- or underestimations of volumes (Takao et al.,
2011). Head size was corrected for using a head scaling variable ob-
tained from the MRI scan, which is the volumetric scaling for the
transformation of the native head image to standard space, with final
scaling being driven by outer-skull surface (Smith et al., 2002, 2004). A
number of studies have shown that global and regional brain volumes
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correlate positively with head size (Barnes et al., 2010). Thus, when
investigating sex differences in brain volume, head size should be cor-
rected for. This was done by regression rather than using a ratio mea-
sure (e.g. brain volume/head size), as not all brain volumes scale pro-
portionately with head size (Barnes et al., 2010). However, measures of
head size related variables vary widely in the literature (e.g. total in-
tracranial volume, total brain volume, MRI head scaling, or body
height), leading to heterogenous results. We therefore report both head
size corrected and un-corrected results.

2.3.2. Analysis
For comparison we also present analyses for volumes of some

structures near the hippocampus within the temporal lobe. Available
cortical grey matter volume IDPs (in mm3) within the UK Biobank
dataset that are reported here include superior temporal gyrus, middle
temporal gyrus, inferior temporal gyrus, fusiform gyrus, para-
hippocampal gyrus and temporal pole. These were previously calcu-
lated using FSL-FAST in conjunction with cortical atlas regions-of-in-
terest (Miller et al., 2016; Alfaro-Almagro et al., 2018).

t-tests (with Bonferroni-correction for resulting p-values) were cal-
culated for sex differences in age and all included volumes of interest
(unpaired t-test), as well as for differences in hemisphere (paired t-test),
hypertension status (unpaired t-test), smoking status (unpaired t-test,
for hippocampus and total grey matter only) and hippocampal volume
estimations by method (FSL-FIRST, vs. FSL-FAST within Atlas-based
regions of interest; paired t-test). While FSL-FIRST is a segmentation/
registration tool that estimates subcortical volumes based on shape and
appearance models (Patenaude et al., 2011), FSL-FAST is a brain tissue
segmentation tool (Zhang et al., 2001), with which subcortical volumes
were estimated from grey matter within Atlas-based regions of interest.

Pearson correlations were calculated for associations of the brain
volumes of interest with BMI. ANOVAs were run for the effects of level
of education and smoking status on the brain volumes of interest.
Education level was binarized into higher education degree (college/
university degree, NVQ), and lower education degree (A levels, O le-
vels, CSE). In addition to scanning date, brain volumes of interest were
corrected for age and head size before analysing effects of sex, hy-
pertension status, smoking status, education, and estimation method.
No additional corrections were applied before testing for volume
asymmetries.

For visualisation purposes, volume differences based on sex, hemi-
sphere, hypertension status, and education are plotted as proportional
differences, calculated with +2 Mean volume a Mean volume b

Mean volume a Mean volume b
(| ( ) ( ) |)

( ( ) ( )) . This was
done to allow for comparison across different brain areas with different
sizes, as the proportional differences can be plotted on one scale. Effect
sizes were calculated with the ‘Measures of Effect Size (MES) Toolbox’
in MATLAB (Hentschke and Stuettgen, 2011), using the Hegdes' g sta-
tistic.

2.3.3. Normative percentiles
The 2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97.5th per-

centiles for hippocampal volume (left and right) and total grey matter
were calculated separately for males and females. This was done using
residuals from a corresponding sliding-window analysis (see below),
that were added back onto the mean of the brain volume estimations.
These values were then used as the age-adjusted input to calculate the
percentiles. Percentiles are provided for volumes corrected for head size
and scanning date. Percentiles corrected for scanning date, but un-
corrected for head size can be found in the Supplementary material.

2.3.4. Sliding-window curves for relationship of volume and age
To analyse trajectories and quantiles of measured volumes as a

function of age, we applied a sliding-window, model-free analysis, in
which an age-window of observations of fixed age-quantile width was
moved along the age distribution (based on function ‘conditionalPlot’ in

https://osf.io/vmabg/; (Manohar, 2019)). The windows overlapped, so
that each window contained 10% of the participants. The analysis of
interest was performed for each window, providing in this case the
mean volume of brain structure, such as hippocampal volume. The
volumes were then smoothed using the moving average method with a
gaussian kernel of 20. Results from using varying smoothing kernels
and quantile widths can be found in the Supplementary Material. The
mean brain volume was plotted against the mean bin centre of age,
along with standard errors of the mean. This provided an estimate of
mean brain volume that varied smoothly as a function of age. This
method enables representative contours to be calculated for each
quantile as a function of age, in a non-parametric, data-driven manner.
Here, we present sliding-window curves across age for all available
temporal lobe areas, and total grey matter volume. In addition, curves
for the ratio of the individual temporal lobe volumes to the rest of grey
matter volume are shown, as well as the slope of the hippocampal
volume versus age (in Supplementary Material), using bootstrapped
confidence intervals. Volumes were corrected for head size and scan-
ning date. The trajectory for hippocampal volume across age, un-
corrected for head size, is included in the Supplementary Material.

We tested for differences in the peak of the ratio curves between
males and females. This was performed using a permuted t-statistic,
correcting p-values for false discovery rate. Specifically, we permuted
matched age bins of the male and female groups, i.e. shuffling males
and females within age-windows. We then calculated the p-value as the
proportion of permuted datasets (n=5000), which produced a mean
difference between the peaks of the curves at least as extreme as the one
observed from the actual data.

This data-driven analysis is particularly useful for large samples. As
opposed to traditional curve fitting methods, it makes few assumptions,
has only one free parameter (number of samples per bin), and improves
visualisation and interpretation of results and corresponding errors.
Note that as there are fewer participants at the minimum and maximum
age limits compared to around the mean age, this method leads to wider
age ranges for the lowest and highest percentile bins. As shown in
Supplementary Fig. S14, similar effects to our main analysis were ob-
served when using windows of fixed age bins (5 years width), rather
than bins of fixed numbers of observations. Again, the mean brain vo-
lume was computed within each age bin, and plotted against the mean
bin centre of that bin, along with standard errors.

As a parametric alternative to using sliding-window analysis for the
estimation of normative percentiles, we present results from a gen-
eralised additive model for location, scale and shape (GAMLSS)
(Stasinopoulos and Rigby, 2007) in Supplementary Material. This
method has previously been used for growth chart percentiles published
by the World Health Organization (World Health Organization
Multicentre Growth Reference Study Group, 2006), and has some ad-
vantages over a non-parametric method as it produces smooth per-
centile curves, and allows extrapolation to the youngest and oldest age
groups. However, the sliding-window analysis was chosen here as it
generates a true representation of the raw data, makes no assumptions
about the shape of the distribution, and has minimal free parameters.

2.3.5. Joinpoint regression
To determine if there were significant points at which the rate of

hippocampal atrophy changed across age, we used joinpoint regression.
This is a regression analysis recommended by the National Cancer
Institute (NCI, https://surveillance.cancer.gov/joinpoint/, (Kim et al.,
2000)) to estimate time points of change in trend data, often used for
changes in cancer incidence rates. The analysis fits separate line seg-
ments to trend data, which are connected at positions called joinpoints.
No joinpoints would suggest no changes in slope, and thus no changes
in, for example, cancer incidence. Here we applied joinpoint regression
to test for the presence of one or more joinpoints (i.e. inflection points)
along the brain volume trajectories across age. Thus, instead of cancer
incidence rate, here the dependent variable was mean volume per 1-
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year, non-overlapping age window. Bins of 1-year width were chosen to
retain adequate accuracy with a feasible number of datapoints. Simi-
larly, instead of diagnosis year, the independent variable used here was
age group.

The Joinpoint Regression Program fits between zero and a chosen
maximum number of joinpoints to the data. Starting from zero join-
points, we tested whether more joinpoints are statistically significant
(p< .05) using a Monte Carlo Permutation method, assuming un-
correlated errors. The maximum was chosen at 4 joinpoints, as re-
commended for our number of data points using grid search (Kim et al.,
2000). This recommendation is based on allowing at least seven data
points to find one joinpoint, and at least two data points between
consecutive joinpoints. A joinpoint can also not occur within two data
points from the beginning or end of a series.

This analysis was done with hippocampal volume, rest of total grey
matter volume (total grey matter minus hippocampal volume), superior
temporal gyrus, middle temporal gyrus, inferior temporal gyrus, fusi-
form gyrus, parahippocampal gyrus, and temporal pole volume, for
males and females separately. All volumes were corrected for scanning
date and head size. More detailed information on methods used within
the Joinpoint Regression Program can be found at https://surveillance.
cancer.gov/help/joinpoint/.

3. Results

3.1. Demographics

Demographics as well as means and standard deviations for un-
corrected hippocampal volume with respect to head size are sum-
marised in Table 1. Number of observations exclude outliers (e.g. 137
outliers removed for left hippocampal volume, 134 outliers removed for
right hippocampal volume).

3.2. Method of segmentation affects hippocampal volume estimates

Mean hippocampal volumes differed between methods. On average
estimates calculated with FSL-FAST with atlas were larger
(mean=4285.08mm3, std=309.32mm3) than estimates calculated
with FSL-FIRST (mean=3863.40mm3, std=353.61mm3, p< .001,
Hedges' g=1.27). This overestimation of hippocampal volume with
FSL-FAST compared to FSL-FIRST is further demonstrated in Fig. 1,
which shows a Bland-Altman plot of average hippocampal volume.
Estimates were corrected for head size, scanning date, and age. How-
ever, there were no differences in the overall results from the joinpoint
and sliding-window analyses between the two hippocampal volume
estimates (see sections below). As FSL-FIRST is the recommended and
most widely used method for subcortical segmentation, we present
analyses throughout using the IDPs that were generated using FSL-
FIRST.

3.3. Normative percentiles

Example nomograms for the 2.5th, 5th, 10th, 25th, 50th, 75th, 90th,
95th, and 97.5th percentiles for left and right hippocampal volume in

women and men, corrected for head size, are shown in Table 2,
Figs. 2–5. Overlapping, age-adjusted windows of 10% of observations
are plotted, with age on the x-axis corresponding to the median age of
participants within the overlapping quantile windows. Because there
are fewer observations within particularly young (starting at 45 years)
and particularly old (up to 80 years) participants, quantile bins for the
youngest and oldest participants are wider, and thus have a median age
around 50 and 75 years, respectively. Additional moving average
smoothing with a gaussian kernel of 20 resulted in percentiles plotted
across ages 51 years to 72 years (52 years to 73 years for males).

The nomograms are provided separately for females and males as
the previous analyses have shown differential sex by age trajectories.
Additional nomograms split by hemisphere and sex for total grey
matter, as well as plots with volumes corrected for head scaling, and
plots for hippocampus-to-total grey matter ratio can be found in the
Supplementary Material (Suppl. Figs. S1–12). A comparison of the
sliding-window method to the GAMLSS method is shown in
Supplementary Fig. S13.

Table 1
Demographics of sample.

Age (Mean± std) Total grey matter in mm3 (Mean± std) Average hippocampus in mm3 (Mean± std) N

Female 62.31±7.34 years 594,250± 48,028mm3 3,765.18± 366.75mm3 10,463
Male 63.67±7.58 years 641,307± 51,379mm3 3,972.97± 431.03mm3 9330
Total 62.95±7.48 years 616,484± 54,917mm3 3,863.94± 411.56mm3 19,793

Mean age was 62.95 years (std=7.48 years), with males slightly older than females (p< .001, Hedges' g=0.18). Mean total grey matter volume (uncorrected for
head size) was significantly larger in males than females (p< .001, Hedges' g=0.95), as was the case for uncorrected average hippocampal volume (p< .001,
Hedges' g=0.52).

Fig. 1. Bland-Altman plot for differences in average hippocampal volume by
estimation method.
Mean average hippocampal volume of FSL-FIRST and FSL-FAST + atlas esti-
mates on the x-axis is plotted against the difference between the two methods
on the y-axis. The blue line represents the mean of the difference, red lines
represent 1.96SD above and below the mean.

Table 2
Head size correction parameters.

Left hippocampus Right hippocampus Total grey matter

b −1,340.89 −1,532.24 −354,545.84

Volumecorrected=Volumeuncorrected− [(Head Scaling− 1.29874) ∗ b]
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Head-size corrected percentiles can be used by applying the fol-
lowing formula to the corresponding uncorrected brain volume, using
the ‘Head Scaling’ variable calculated from the automated pipeline, and
given slopes for either left hippocampus, right hippocampus, or total
grey matter. The formula is based on a general linear model and cal-
culates head-size corrected volumes of left, right, or grey matter volume
by subtracting the product of demeaned head scaling and the corre-
sponding slope from the uncorrected volume.

The provided nomogram webtool (www.win.ox.ac.uk/open-
neuroimaging/analyse-your-data/hippocampal-volume-tool) enables
clinicians to quickly calculate a patient's percentile by entering the
volume estimation from the automated analysis pipeline. The tool then
automatically applies head size correction, if the option is selected. For
example, a female aged 64 years with a left hippocampal volume of
3.15 cm3 (corrected for head size) would score within the 5th percen-
tile. This means that 95% of the women closest to her age in the current
sample had a larger volume, highlighting potentially pathological
atrophy and providing additional information for the diagnosing clin-
ician.

3.4. Brain volume characteristics

3.4.1. Temporal lobe volumes differed between hemispheres
A paired t-test resulted in a significant difference between right and

left hippocampal volume (uncorrected for head size) with right larger

than left volume asymmetry (see Fig. 6 for percent difference, p< .001,
Hedges' G=0.24). The same effect was found in the superior temporal
gyrus (p< .001, Hedges' G=0.80) and inferior temporal gyrus
(p< .001, Hedges' G=0.12). On the other hand, there was a significant
left larger than right volume asymmetry for the fusiform gyrus (p< .001,
Hedges' G=1.30) and parahippocampal gyrus (p< .001, Hedges'
G=0.48). Asymmetry effects of the same direction in the temporal
pole were also significant, however with a very small effect size (Hedges'
G=0.04). There was no significant difference between left and right
hemisphere for middle temporal gyrus (p= .61). See Supplementary
Table S4 for means, standard deviations, and significance tests for all
temporal lobe volumes.

Head size was not corrected for as left/right differences are within-
subject, and will be largely unaffected by head size. There was no
correlation between handedness and asymmetry for any of the tested
volumes (calculated by asymmetry= left volume - right volume; all
p> α/7= 0.007).

3.4.2. Temporal lobe volumes by sex
Means, standard deviations, and significance tests for all brain vo-

lumes by sex, corrected for head size and age, can be found in
Supplementary Table S5. There was no significant difference of mean
(average) hippocampal volume between males and females (p> .05).
Sex differences for the remaining temporal lobe volumes, and for total
grey matter volume were significant in different directions, though

Fig. 2. Nomogram of left hippocampal volume for females, corrected for head
size.
Figures show the quantiles of hippocampal volume for the group of individuals
in each age window. The x-axis indicates the median age of the window. The
mid line indicates the median. For someone with a given age and volume, a
percentile can be read off the chart, indicating the proportion of the Biobank
cohort who have a hippocampal volume below that of the person.

Fig. 3. Nomogram of left hippocampal volume for males, corrected for head
size.
Figures show the quantiles of hippocampal volume for the group of individuals
in each age window. The x-axis indicates the median age of the window. The
mid line indicates the median. For someone with a given age and volume, a
percentile can be read off the chart, indicating the proportion of the Biobank
cohort who have a hippocampal volume below that of the person.
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effect sizes were mostly very small (See Fig. 7 for percent differences).
Small-to-medium effect sizes were seen in total grey matter volume
(females larger than males), parahippocampal gyrus (males larger than
females), and temporal pole (males larger than females).

3.4.3. Trajectory of mean hippocampal volume with age demonstrate an
inflection

We plot mean hippocampal volume, total grey matter volume (both
corrected for head size), and hippocampal volume as a percentage of
grey matter volume as a function of age. To plot this, we used a sliding-
window method, using windows of 10% of the population (Fig. 8). The
x-axis displays the median age of participants within the overlapping
quantile windows. Because there are fewer observations within parti-
cularly young and particularly old participants, the median ages of the
quantile bins for the youngest and oldest participants are around 50 and
75 years, respectively. Plots for left and right hippocampal volumes,
bilateral hippocampal volume uncorrected for head size, as well as plots
for fixed 5-year age-bins rather than fixed quantiles for bilateral hip-
pocampal volume, are provided in the Supplementary Material (Suppl.
Figs. S14–15, S21).

Whereas whole brain volume appears to decline linearly as a func-
tion of age for both men and women (Fig. 8B), in women the rate of
hippocampal volume loss increases at ~60 years (Fig. 8A). This in-
flection point (i.e. maximum slope), can be calculated by numerical
differentiation, as shown in Supplementary Fig. S16 (females: bin(max

slope)= 58.67–61.28 years, max slope=−0.27; males: bin(max
slope)= 44.56–52.73 years, max slope=−2.52).

To compare hippocampal volume more directly to the rest of the
grey matter, the ratio between these two volumes was calculated. In
females, the ratio of hippocampal volume to the rest of grey matter
(Fig. 8C) peaks around age 67 years (bin(max
ratio)= 66.33 years− 68.44 years), suggesting that the rate of volume
loss in the hippocampus is smaller relative to the rest of grey matter. As
age increases further, this pattern is then reversed. In males the ratio of
hippocampal volume relative to the rest of grey matter peaks around
age 63 years (bin(max ratio)= 61.69 years – 64.32 years), before de-
clining thereafter. These sex differences in the age of transition (max-
imum ratio) were significant. Males reached peak hippocampal ratio at
a significantly younger age than females, calculated by permuting
matched age bins of the male and female groups to compute the null
distribution of the difference in the peak (n(permutations)= 5000,
p< .001). This p-value represents the proportion of permuted datasets
that produced a mean difference between the peaks of the curves at
least as extreme as the one observed from the actual data. These results
were replicated using no smoothing (Suppl. Fig. S17), a smoothing
kernel of 10 rather than 20 (Suppl. Fig. S18), as well as quantile bins
with 20% (Suppl. Fig. S19-S20) instead of 10% of participants (range of
median age at ratio maxima for females: 67.37–68.21 years; for males:
62.48–63.32 years).

In order to confirm the position of a change in slope for the

Fig. 4. Nomogram of right hippocampal volume for females, corrected for head
size.
Figures show the quantiles of hippocampal volume for the group of individuals
in each age window. The x-axis indicates the median age of the window. The
mid line indicates the median. For someone with a given age and volume, a
percentile can be read off the chart, indicating the proportion of the Biobank
cohort who have a hippocampal volume below that of the person.

Fig. 5. Nomogram of right hippocampal volume for males, corrected for head
size.
Figures show the quantiles of hippocampal volume for the group of individuals
in each age window. The x-axis indicates the median age of the window. The
mid line indicates the median. For someone with a given age and volume, a
percentile can be read off the chart, indicating the proportion of the Biobank
cohort who have a hippocampal volume below that of the person.

L. Nobis, et al. NeuroImage: Clinical 23 (2019) 101904

6



trajectory of hippocampal volume, joinpoint regression (Kim et al.,
2000) was applied. This method tests statistically for the presence of
zero, or up to four inflection points (joinpoints) in the slope of mean
hippocampal volume across age. The maximum number of joinpoints

tested for is selected based on the number of observations. There was
one inflection point for both males and females (Fig. 9A–B). In females,
there was a significant change in slope at age-group 64–65 years
(change of slope Δm=−32.44mm3; age 95% CI [61–62 years,
67–68 years], p< .0001). In males, the change in slope was significant
at age-group 63–64 years (change of slope Δm=−26.45m 95% CI
[58–59 years, 66–67 years], p< .0001; see Table 3 for Model esti-
mates).

For the rest of the grey matter, there was one joinpoint in the slope
(total grey matter – bilateral hippocampus) across age for females
(Fig. 9C), with a significant change in slope of Δm=−1273.98mm3 at
age-group 56–57 years (t(21)=−2.98, 95% CI [53–54 years,
58–59 years], p= .007). By contrast, there was also a small, but sig-
nificant change in slope for the rest of grey matter across age in males at
age-group 62–63 years (Δm=−754.14mm3, t(21)=−4.87, 95% CI
[57–58 years, 66–67 years], p< .0001) (Fig. 9D).

3.4.4. Trajectories of other temporal lobe volumes with age
Next, we aimed to demonstrate that these inflections were specific

to the hippocampus. Mean volumes (corrected for head size) were
plotted for the remaining brain areas within the temporal lobe available
from UK Biobank, namely parahippocampal gyrus, fusiform gyrus, su-
perior temporal gyrus, middle temporal gyrus, inferior temporal gyrus,
and temporal pole (Fig. 10). The same sliding-window and joinpoint
regression methods were used. All these temporal lobe regions show a
largely linear negative relationship with age. In keeping with this, and
in contrast to the findings for the hippocampus, there were no sig-
nificant joinpoints or changes in slope for either males or females in
superior temporal gyrus, middle temporal gyrus, inferior temporal
gyrus and fusiform gyrus (p> .05). However, there was a significant
joinpoint for both males and females in parahippocampal gyrus volume,
similar to the joinpoints found for the hippocampus (females:
Δm=−26.97mm3 at age-group 66–67 years, t(21)=−5.40, 95% CI
[62–63 years, 70–71 years], p< .0001; males: Δm=−30.81mm3 at
age-group 59–60 years, t(21)=−3.77, 95% CI [56–57 years,
64–65 years], p= .001) (Fig. 9D). There was also a significant joinpoint
in volume of temporal pole in males, at age-group 55–56 years
(Δm=−76.97mm3, t(21)=−2.57, 95% CI [53–54 years,
57–58 years], p= .02).

In addition, the ages of the peak ratios with respect to the rest of
grey matter differs between regions. For example, the ratios of superior
(female: bin(max ratio)= 52.73 years− 55.85 years; male: bin(max
ratio)= 44.45 years – 52.73 years) and middle temporal gyrus volume
(female: bin(max ratio)= 49.30 years – 53.11 years; male: bin(max
ratio)= 48.30 years – 53.11 years) to rest of grey matter peak in the
youngest age groups of the sample. By contrast, ratios for inferior
temporal gyrus (female: bin(max ratio)= 71.92 years – 80.65 years;
male: bin(max ratio)= 73.41 years – 80.27 years), temporal pole (fe-
male: bin(max ratio)= 70.22 years – 73.45 years; male: bin(max
ratio)= 72.25 years – 75.56 years) and parahippocampal volume (fe-
male: bin(max ratio)= 71.92 years – 80.65 years; male: bin(max
ratio)= 73.41 years – 80.27 years) to the rest of the grey matter peak at
the oldest age groups. The ratio of fusiform gyrus volume to the rest of
grey matter volume does not show pronounced change over age. There
were no significant differences in the age of peak ratio between males
and females for any of these temporal lobe regions, calculated by per-
mutation testing (n(permutations)= 5000, all p> .05), except for fusi-
form gyrus (p= .004).

3.5. Effects of hypertension, smoking, higher BMI and lower education on
brain volume

Before further analysing the demographic information, brain vo-
lumes were corrected for head size and scanning date as described
above. As effects of hypertension status, Body-Mass-Index (BMI), edu-
cation, and smoking status on brain volumes may also be confounded

Fig. 6. Percent differences between left and right volumes.
Bars represent the differences between left and right volumes, expressed as
percentages of the average size of the regions, calculated by

+100 100left volume right volume
left volume right volume

left volume right volume
left volume right volume

| |

2

| |

2

. Negative percentage differ-

ences correspond to larger right volumes, positive percent differences corre-
spond to larger left volumes.
Black bars indicate a significant corresponding t-test for absolute volume dif-
ferences, at p< .001 (Bonferroni-corrected α= 0.05/7= 0.007).

Fig. 7. Percent differences between males and females.
Bars represent the differences between volumes for men and women, expressed
as percentages of the average size of the regions, calculated by

+100 100male female
male female

volume male volume female
volume male volume female

| |

2

| |

2

. Negative percentage differences

correspond to larger right volumes, positive percent differences correspond to
larger left volumes.
Black bars indicate a significant corresponding t-test for absolute volume dif-
ferences at p< .001 (Bonferroni-corrected α= 0.05/8= 0.006).
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by age, variance introduced by age in addition to head size and scan-
ning date was regressed out for the following results on effects of hy-
pertension, BMI and education only.

Participants with self-reported hypertension had significantly lower
hippocampal (p< .001, Hedges' g=0.06) and total grey matter vo-
lumes (p< .001, Hedges' g=0.17), than participants without self-re-
ported hypertension, though with small effect sizes (Suppl. Fig. S22).
There was a significant, but very small negative correlation between
BMI and hippocampal volume (r=− 0.03, p< .001, n=18,653), as
well as between BMI and total grey matter volume (r=− 0.11,
p< .001, n=18,653), with larger BMI being weakly associated with
smaller volumes. There was also a small significant positive effect of
level of education on average hippocampal volume (p< .001, Hedges'
g=0.07, n= 19,646). Higher education levels were associated with
larger volumes than lower level education levels. There was no sig-
nificant effect of education on total grey matter volume (p= .77,
n=19,646, Suppl. Fig. S23).

Hippocampal volume was significantly smaller for current smokers
than for people who have never smoked (p= .001, Hedges' g=0.15),
and people who have previously smoked (p= .006, Hedges' g=0.05).
Similarly, total grey matter volume was significantly reduced in cur-
rent smokers compared to people who have never smoked (p< .0001,
Hedges' g=0.33), and people who have previously smoked
(p< .0001, Hedges' g=0.17). Current smoking was associated with
lower volumes compared to previous smokers for total grey matter
(p= .0001, Hedges' g=0.15), but not hippocampal volume (p> .008,
Suppl. Fig. S24). P-values were corrected using the Bonferroni method
with α= 0.05/6 multiple comparisons= 0.008. Results from the
ANOVA also indicate a significant difference between hippocampal
volumes of previous smokers and current smokers (F=8.26,
p< .001, n= 19,646).

Supplementary Tables S1–3 present data for means, standard de-
viations, and significance tests of hypertension, BMI, education level,
and smoking status for all temporal lobe volumes as well as total grey
matter volume. Percent differences for all temporal lobe volumes are
shown in Supplementary Figs. S22–24.

4. Discussion

Data from the UK Biobank Imaging were analysed to provide nor-
mative information on hippocampal volume as a function of age using
the largest sample size published to date (N=19,793). We used a
model-free sliding window approach to examine absolute and relative
hippocampal volume, as well as neighbouring temporal lobe volumes,
as a function of age. This approach was deemed most appropriate as it
makes few assumptions, and does not impose a linear relationship be-
tween brain volume and age. The analysis resulted in normative re-
ference percentiles – or nomograms – for total grey matter and hippo-
campal volume along the age distribution, facilitating assessment of an
individual's hippocampal volume in relation to their age-group (see our
online tool at www.win.ox.ac.uk/open-neuroimaging/analyse-your-
data/hippocampal-volume-tool).

For comparison, it is noteworthy that estimated hippocampal vo-
lumes from previous studies on patients with MCI or AD fall far below
the 50th percentile in the healthy population presented here. For ex-
ample, mean uncorrected hippocampal volume (bilateral) was 5.55 cm3

in an amnestic MCI group with an average age of 70.7 years (Vos et al.,
2013). This would fall below the 2.5th percentile in our sample. In a
sample of controls and patients with MCI and AD of similar mean age as
in our sample (67 years, 71 years, and 67 years, respectively), controls
would score between our 50th and 75th percentiles, while patients
score below the 5th percentile (Henneman et al., 2009). Volumes

Fig. 8. Trajectory of hippocampal volume with age.
Dashed lines indicate points of maximum ratio. A.
Mean bilateral hippocampal volume including stan-
dard errors as a function of age, corrected for head
size. B. Mean total grey matter volume including
standard errors as a function of age, corrected for
head size. C. Mean hippocampal volume to rest of
grey matter ratio including standard errors as a
function of age.
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compatible with our current results for healthy controls (3.57 cm3;
mean age 75 years), but with far less dramatic reductions for MCI
(3.26 cm3; mean age 73 years) and AD (2.97 cm3; mean age 72.6 years),
were reported using data from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (Mulder et al., 2014). These would likely
correspond to healthy controls scoring around our 50th percentile, but
with patients scoring between the 5th and 25th percentiles.

It is likely that different methods, including sample selection as well
as image acquisition, image processing, and hippocampal segmentation
tool used, underlie these discrepancies. For example, we found on
average smaller estimates of hippocampal volume with FSL-FIRST than
with FSL-FAST using atlas-based ROI selection. Another study also re-
ported significant differences between FSL-FIRST, FreeSurfer, and
manual segmentation (Mulder et al., 2014). However, it is less clear
how more severe deviations from acquisition and analysis protocols
may affect volume estimations. These issues highlight the importance of
large datasets and unified analysis pipelines. Thus, before efforts to
harmonize analysis across MRI datasets solve some of these concerns,
the nomograms presented here provide a robust comparator, when used
with estimates obtained using the same, or similar, acquisition proto-
cols, hardware and pre-processing pipeline.

It can also currently not easily be disambiguated whether a low
percentile on the nomogram is due to pathological atrophy or is simply
constitutional, e.g., due to an unusually small volume from birth.
However, future research with longitudinal data from the UK Biobank
may facilitate the resolution of some of these constraints.

Associations of hippocampal volume with education, smoking, and
hypertension were significant, but effect sizes were small, and decon-
founding for these variables did not effectively change any of the

Fig. 9. Joinpoint analysis for hippocampal and total grey matter volume.
A. Joinpoint (change of slope) in bilateral hippocampal volume over age in females B. Joinpoint bilateral hippocampus in males. C. Joinpoint in rest of grey matter
volume (total grey matter – bilateral hippocampus) in females D. Joinpoint in rest of grey matter for males.

Table 3
Model estimates from joinpoint regression of hippocampal volume.

Female Male

Degrees of freedom 21 21
Joinpoint 64–65 years 63–64 years
Joinpoint 95% Lower confidence level 61–62 years 58–59 years
Joinpoint 95% Upper confidence level 67–68 years 66–67 years
Slope change estimate −32.44mm3 −26.45mm3

Slope change std error 4.04mm3 4.94mm3

Slope change test statistica −8.03 −5.35
Slope change p-value <0.0001 < 0.0001

a The slope change test statistic is the parameter estimate divided by the
standard error that follows a t distribution with 21 degrees of freedom.
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reported results. Since significant findings with small effect sizes are not
necessarily practically relevant with big data, we decided not to correct
for these factors in the calculations of percentiles in favour of gen-
eralisability. However, it should be noted that participants in UK
Biobank appear to smoke less, have lower BMIs, and are generally
healthier than would be expected in the general population of the
United Kingdom (Fry et al., 2017).

The results of two different types of analysis revealed a slight ac-
celeration of hippocampal volume loss around age 60–65 years for

females, whereas for males the rate of hippocampal volume loss may
increase earlier around 50 years (Figs. 7 and 8). In addition, for both
women and men, there was an increase in rate of hippocampal volume
loss relative to the rest of the grey matter from around ages 67 and
63 years, respectively. Thus, hippocampal volume declined slower than
the rest of grey matter until around age 67 in women, and age 63 in
men, after which hippocampal volume declined faster than the rest of
grey matter. This may indicate a particular vulnerability of the hippo-
campus in ageing, as this effect was specific to the hippocampus and

Fig. 10. Trajectory of temporal lobe volumes with age, corrected for head-size.
Dashed lines indicate points of maximum ratio. A. Bilateral superior temporal gyrus volume. AA. Bilateral superior temporal gyrus ratio to rest of grey matter. B.
Bilateral middle temporal gyrus volume. BB. Bilateral middle temporal gyrus ratio to rest of grey matter. C. Bilateral inferior temporal gyrus volume. CC. Bilateral
inferior temporal gyrus ratio to rest of grey matter. D. Bilateral fusiform gyrus volume. DD. Bilateral fusiform gyrus ratio to rest of grey matter. E. Bilateral
parahippocampal gyrus volume. EE. Bilateral parahippocampal gyrus ratio to rest of grey matter. F. Bilateral temporal pole volume. FF. Bilateral temporal pole ratio
to rest of grey matter.
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was not found to this extent in neighbouring brain areas such as
parahippocampal gyrus or temporal gyrus (Fig. 9). While our method
does not allow for precise age estimations, we show a robust age-range
for the ratio peak with different window bins and smoothing kernels.

A previous cross-sectional study with results from 1100 participants
reported a similar acceleration of rate of hippocampal volume loss (Fjell
et al., 2013). Relationships of age and several brain volumes were
analysed using a nonparametric smoothing spline approach. The au-
thors reported an acceleration of rate of hippocampal volume loss
starting around 50 years of age, with a marked increase in rate of
hippocampal volume loss around 60 years. In agreement with our
findings, no such acceleration point was found in grey matter. However,
in this study no sex differences in these curves were calculated. In
contrast, other cross-sectional studies using linear regression to

estimate associations of age with hippocampal volume found an ac-
celeration of volume loss at a slightly later age of 72 years (Zhang et al.,
2010), or no acceleration point (Knoops et al., 2012).

Based on the trajectory of hippocampal volume across age presented
here however, we argue that a linear fit is not the most appropriate
approach to measure this association. Importantly, the trajectories of
other temporal lobe volumes, as well as the rest of grey matter across
age do not show the same acceleration of volume loss as observed in
hippocampal volume. This may underlie the specific vulnerability of
hippocampal volume loss in older age. Yet, the findings presented here
vary slightly depending on method used (e.g. sliding window or join-
point), and need to be validated with longitudinal rather than cross-
sectional data. For example, results of the joinpoint regression indicate
that if there were a change in slope for hippocampal volume across age,

Fig. 10. (continued)
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then it would occur at 64–65 years, and would be significant. However,
joinpoint regression cannot be applied to establish whether a change in
slope is present or absent, as the method tends to identify a join point
even if there is a continuous transition. In addition, the current data do
not allow for conclusions of whether those with the fastest decline, or
those with the lowest baseline volume, are at more risk of developing
dementia. With the availability of longitudinal health outcomes, future
studies may also explore the role of the dementia-associated APOE ε4
allele on hippocampal volume across age.

In the absence of differential age-effects on grey matter volume
between males and females, we found significantly larger mean total
grey matter, and middle temporal gyrus volumes in females after cor-
recting for head size and age. However, effect sizes were small. On the
other hand, males had moderately larger parahippocampal and tem-
poral pole volumes. The data presented here also indicate hemispheric
asymmetry of the tested brain volumes. The right hippocampus was
slightly, but significantly, larger than the left hippocampus for both
men and women. Right-larger-than-left asymmetry was also found in
the superior and inferior temporal gyri. In contrast, there was con-
siderable left-larger-than-right asymmetry for both the para-
hippocampal and fusiform gyrus. The observed asymmetries, and the
differences in asymmetry direction, may be the result of noise in the
MRI signals and imperfections of the automated volume segmentation
and quality control tools used here. For example, the algorithm that the
segmentation uses to determine which voxel is classified as ‘para-
hippocampal’ versus ‘hippocampal’ may be the reason for the differ-
ences in asymmetry direction between the two volumes. Thus, while
these results suggest some structural differences between hemispheres,
such as asymmetry of convolutions, it is unclear what these differences
entail precisely. However, the right-larger-than-left asymmetry of the
hippocampus has been reported previously in smaller cohorts of
younger and older adults (Zhang et al., 2010; Wellington et al., 2013;
Pedraza et al., 2018), as well as in patients with AD and MCI (Shi et al.,
2009). A recent study reporting on 400 participants from the ADNI
dataset also found increasing right-larger-than-left hippocampus
asymmetry going from healthy controls, to patients with MCI, to pa-
tients with AD (Sarica et al., 2018). As the left hippocampus is smaller
even in healthy ageing, the increasing asymmetry in the course of AD
may be explained by greater vulnerability to pathology of the left
compared to the right hippocampus. What is less clear is how the left-
larger-than-right asymmetries of the parahippocampal and fusiform
gyri may be affected by ageing and AD pathology.

Functional lateralisation has been shown for a number of brain
processes, such as language (Vigneau et al., 2006), face perception
(Zhen et al., 2015), or visual processing (Zhen et al., 2017), which may
explain the asymmetries observed here in other areas such as the in-
ferior and superior temporal gyri. However, the precise nature of the
relationship between brain structural lateralisation and function re-
mains unclear (Bishop, 2013; Batista-García-Ramó and Fernández-
Verdecia, 2018), highlighting the importance of considering con-
founding factors for the analysis of norm values. We therefore provide
separate nomograms for left and right hippocampus, as well as for
males and females.

5. Conclusion

Analysis of 19,793 generally healthy participants in the UK Biobank
revealed effects of age, sex, and hemisphere on selected temporal lobe
volumes. The data provide normative values for hippocampal and total
grey matter volume as a function of age for reference in research and
clinical settings, based on an unprecedented sample size. These norm
values may be used together with automated percentile estimation tools
such as the one described here to provide a rapid, but objective, eva-
luation of the patient's hippocampal volume status. While the current
findings are based on cross-sectional data, the longitudinal health
outcomes that will become available in UK Biobank over the next years

will add invaluable information to the role of hippocampal atrophy in
ageing.
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