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Abstract: During the last decade, genetic testing has emerged as an important etiological diagnostic
tool for Mendelian diseases, including pediatric neurological conditions. A genetic diagnosis has
a considerable impact on disease management and treatment; however, many cases remain undi-
agnosed after applying standard diagnostic sequencing techniques. This review discusses various
methods to improve the molecular diagnostic rates in these genomic cold cases. We discuss ex-
tended analysis methods to consider, non-Mendelian inheritance models, mosaicism, dual/multiple
diagnoses, periodic re-analysis, artificial intelligence tools, and deep phenotyping, in addition to
integrating various omics methods to improve variant prioritization. Last, novel genomic technolo-
gies, including long-read sequencing, artificial long-read sequencing, and optical genome mapping
are discussed. In conclusion, a more comprehensive molecular analysis and a timely re-analysis of
unsolved cases are imperative to improve diagnostic rates. In addition, our current understanding of
the human genome is still limited due to restrictions in technologies. Novel technologies are now
available that improve upon some of these limitations and can capture all human genomic variation
more accurately. Last, we recommend a more routine implementation of high molecular weight DNA
extraction methods that is coherent with the ability to use and/or optimally benefit from these novel
genomic methods.

Keywords: neurology; diagnosis; unsolved cases; exome sequencing; genome sequencing; long-read
sequencing; optical genome mapping; integrative omics; non-Mendelian inheritance; mosaicism

1. Introduction

Etiological diagnosis in pediatric neurological disorders (NDs) and neurodevelop-
mental disorders (NDDs) is imperative for disease management, counseling, prognosis,
treatment, prevention, and quality of life. Due to the lack of powerful diagnostic tools,
several parents of children with severe NDs/NDDs often endure years-long diagnostic
odysseys of trial-and-error testing with inconclusive results and misdirected treatments.
Over the past decade, targeted next-generation gene panels and exome sequencing have
emerged as cost-effective ways of identifying the disease-associated variants in Mendelian
disorders, including pediatric NDs [1]. Parent-offspring trio sequencing has been proven
to be especially effective. It allows for a more efficient variant filtering (based on fitting
inheritance models), and it is particularly useful in the context of de novo variant discovery.
Although targeted next-generation sequencing, exome sequencing, and genome sequenc-
ing can be effective in identifying causal genetic variation in NDs, many cases remain
unsolved [2,3]. A recent meta-analysis of clinical gene panel and exome sequencing in
epilepsy, autism spectrum disorder, and intellectual disability across 32,331 individuals
revealed the diagnostic yields were 17.1%, 24%, and 28.2% respectively (23.7% overall) [4].
Genome sequencing may improve this diagnostic yield up to ~60% [5,6].

The large number of remaining unsolved cases can be attributed to several factors, such
as undiscovered genes, non-genetic causes, an insufficient understanding of the functional
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consequence of variants, and complex inheritance patterns. In addition, a fraction of the
unsolved cases can be due to the sequencing techniques used in current diagnostic settings.
Although DNA next-generation sequencing (NGS) technology has dramatically improved
over the past decades, large parts of the human genome are not interrogated by the current
short-read NGS methods used in both diagnostics and novel gene discovery.

This review discusses various methods to increase the diagnostic findings in genomic
cold cases with a pediatric neurological condition, i.e., cases which remain unsolved after
standard short-read sequencing methods.

2. Maximizing the Use of Information in Existing Sequence Data
2.1. Extended Analysis of Existing Data

In addition to standard single nucleotide variant (SNV) and insertion/deletion (InDel)
detection, additional types of analysis, based on standard short-read massive parallel
sequencing data, can lead to a meaningful increase in the diagnostic yield. One effective
additional analysis type is copy-number variant (CNV) detection. CNV analysis is esti-
mated by some studies to yield a molecular diagnosis for about 2% of all genetic disorder
patients [7]. However, it can be even more essential for patients with NDDs, for whom
microarray-based CNV analysis shows that 10–20% carry clinically relevant CNVs [8,9].
This is, thus, particularly useful if no microarray analysis has been conducted. A plethora of
computational CNV analysis software is freely available, both for GS (e.g., CNVnator [10]
or LUMPY [11]) as well as ES or gene panel data (CoNIFER [12], ExomeDepth [13], and
XHMM [14], among many others). Although the lack of a uniform coverage characteristic
for ES and gene panels presents a challenge for computational CNV detection, necessitating
a critical examination of the software calls and the validation of results by other methods,
countless examples of cases solved with CNV detection software have been published
(see, for example [9,15]). Some chromosomes and regions appear to be more CNV-rich
and are implicated in developmental disorders more than others [16–18]. Last, due to
the limitations of short reads, orientation and genomic positional information (e.g., is the
duplication tandem) for CNV gains is more challenging [19], and nearly impossible to defer
from exome data.

In addition to CNVs, other structural variants (SVs; e.g., inversions, translocations,
and insertions) can be assessed with NGS data, and breakpoints can be defined [11,20].
Specific algorithms have also been developed to assess mobile element insertions, such as
Alu and L1 elements [21]. However, difficulties exist to detect some of these SVs, due to
the limitation of short-reads, such as limited mappability and a low ability to span SVs.
Although the integration of multiple methods (e.g., split-read, read-depth, paired-end,
and assembly-based) has improved the identification of SVs in short-read data [22], copy
neutral events remain difficult to detect. In addition, many SV breakpoints are flanked by
repetitive elements, limiting their detection [23], and more complex SVs, including various
rearrangements, may only be partially detected with these methods. Last, it is important to
note that these types of SV analyses are mainly restricted to GS data, as exome data and
gene panels are limited to their captured region and will miss the majority of breakpoints.

NGS data can also be used to search for runs of homozygosity (ROH) to locate regions
of interest, especially when additional family members are available and/or consanguinity
is present. Homozygosity mapping is useful to filter down candidate variants to those
located in ROH regions. In larger families, the consideration of genetic heterogeneity,
including locus and allelic heterogeneity can also be assessed, especially if multiple genes
are known to underly the phenotype seen in the family.

Last, a more detailed interrogation of splicing variants other than the canonical
±1 or 2 splice sites can also be helpful [7]. For example, closely located splice region
variants, exonic variants, or branch point variants can disrupt wild-type splicing. In addi-
tion, splice enhancers, silencers, or the creation/activation of cryptic splice sites may occur
far from the canonical splice sites and influence splicing. To improve the identification of
some of these variants, the inclusion of genome-wide precalculated splice region variant
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predictions, such as dbscSNV [24], RegSNPs-intron [25], Combined Annotation Dependent
Depletion (CADD)-Splice [26], or spliceAI [27], into the standard bioinformatic pipelines
is highly recommended, as they may easily facilitate the identification of important non-
canonical splice region variants.

2.2. Non-Mendelian Inheritance Models

Although several non-Mendelian inheritance models, such as X/Y-linked, de novo
occurrences, and mitochondrial inheritance, are often considered in the analysis of pediatric
NDs, some non-Mendelian inheritance patterns may be more difficult to detect and/or
evaluate. Mitochondrial (Mt) DNA NGS sequencing, for example, can be added to ES/GS
in the case of suspected mitochondrial inheritance (based on pedigree analysis) or for a
suspected mitochondrial disease. Here, we describe a variety of additional and, perhaps
more challenging to detect, non-Mendelian inheritance models (Figure 1).

In cases when no single pathogenic/likely pathogenic variant can be identified,
more complex disease models can be considered, such as digenic or oligogenic mod-
els (Figure 1A,B). Some examples of digenic NDDs include Roifman–Chitayat syndrome
(MIM# 613328), AMED syndrome (MIM# 619151), and Joubert syndrome (MIM# 612285,
614464) [28]. In addition, retinitis pigmentosa (MIM# 608133), Usher syndrome (MIM# 605472,
601067), nonsyndromic deafness (MIM# 600791), and short-rib thoracic dysplasia (MIM#
613091, 263520) can also have digenic roots [28]. Due to the difficulty in confirming these
types of inheritance in (especially rare) disease, it is anticipated that more oligogenic NDDs
exist than there are currently known. Fortunately, computational tools for predicting oli-
gogenic interactions have been developed, which allow the user to submit a variant list
or a VCF file to an online interface [29,30] and produce a oligogenic interaction network
graph, gene pair ranking, and a classification of variant combinations. Another noteworthy
resource is STRING [31,32], a downloadable database of protein interactions.

Genetic modifiers consist of genetic variation outside of the disease-associated genes
influencing the expression of disease or altering its phenotype (Figure 1C). Some genetic
modifiers can have a protective function and lead to incomplete penetrance. These are
known as suppressors. Otherwise, they can lead to a more severe disease manifestation
or alter the disease presentation [33]. For example, deafness caused by homozygous
pathogenic variants in GAB1 appears to be suppressed by the presence of a heterozygous
variant in METT13 [34,35]. Alternatively, genetic modifiers may increase phenotype severity,
which may increase further with the presence of multiple rare variants, also often referred
to as a higher “mutational burden”. It has been suggested that females are more resilient
to a higher mutational burden than males in NDDs (unlinked to chrX) [36]. While the
awareness of and interest in genetic modifiers is increasing, it is important to keep in mind
the difficulty of studying this phenomenon in rare disease. The small number of patients (in
some cases conclusions are drawn from a single family) limits researchers’ ability to draw
statistically sound conclusions. Staying abreast with the latest research and, when possible,
considering variant segregation within a proband’s family are recommended when the
possibility of modifier involvement arises in a diagnostic setting.

Similar to genetic modifiers, incomplete penetrance or altered disease phenotypes may
also be due to environmental modifiers (Figure 1D). This is not unexpected in neurode-
velopmental disease, as environmental factors, such as dietary intake during pregnancy,
have been shown to affect fetal development [37]. Infections and drug treatment can also
significantly impact child development and the development of disease [38]. In addition,
both environmental and genetic modifiers and the interaction between them may alter
disease course and manifestation in a complex setting. For example, variants in SCN1A are
often reported to have incomplete penetrance and broad phenotypic variability [39], which
may be due to both genetic and environmental modifiers [40].
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Figure 1. Complex inheritance models to consider in genetically undiagnosed cases, including
non-Mendelian inheritance models and dual/multiple diagnoses. (A,B) Digenic inheritance models,
the simplest form of multigenic inheritance. In digenic inheritance, variants at two genomic loci
are needed for the manifestation of disease. Digenic inheritance, as classified according to OMIM,
can be: (A) Recessive, with a biallelic mutant locus 1 together with a variant at a second locus
(monoallelic or biallelic at locus 2); (B) Dominant, where monoallelic variants at two distinct loci
are needed for expression of a disease. (C) Genetic modifiers can change the expression of a child’s
phenotype and even lead to no observable phenotype (incomplete penetrance). An example of
Autosomal Recessive (AR) inheritance is displayed, but modifiers can influence all inheritance
models. Genetic modifiers may be rare or common. The presence of multiple rare variants (higher
mutational burden) may be associated with a more severe phenotype. (D) Environmental modifiers
can change the expression of a child’s phenotype and lead to no observable phenotype, i.e., incomplete
penetrance (Disease A). In some cases, an environmental trigger is necessary for a phenotype to
express (Disease B). (E) Imprinting at a certain locus, exemplified here by the silencing of the paternal
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allele, can alter or can alter or lead to the expression of a phenotype. In this example, we assume both
parents carry the same variant. If this variant is inherited from the mother, the child will be affected,
as the paternal allele is silenced (i.e., both alleles are not functional). If the variant is inherited from
the father, this dysfunctional allele will be silenced, and the child will not be affected. In some cases,
such as Angelman (MIM# 105830) and Prader Willi syndrome (MIM# 176270), the same variant may
lead to different phenotypes, depending on the parent from which it is inherited. Note: variants
may also occur de novo. (F) Uniparental disomy and AR disease. AR disease may manifest when
a child receives two copies of the same copy of a mutant allele, which will occur in some cases of
UPD. In this example, uniparental isodisomy (UPiD) of the full chromosome is shown, in which both
homologues of a pair of chromosomes from one parent are inherited. Note: UPD may be segmental
as well. (G) A combination of UPD and imprinting may also lead to disease without the presence
of a variant. In this example, the paternal allele is silenced with imprinting. If paternal UPiD or
uniparental heterodisomy (UPhD) occurs, both alleles will be silenced, and disease is expressed.
Segmental UPD is also possible. (H) Repeat expansions can expand over generations, and expanded
repeats may lead to the expression of a phenotype or a more severe phenotype (with a longer repeat).
(I) Non-random X chromosome inactivation (XCI) can alter the expression of disease in female carriers
of an X chromosome variant. Expression can be biased towards an increased expression of the mutant
allele in a percentage of cells (leading to a more severe phenotype or expression of a phenotype)
or wild-type allele (leading to no expression or a milder phenotype). (J) Some affected individuals
may display a blended phenotype of several disorders. An example here is shown of a child with
both an AR variant and a de novo variant. This figure was created with BioRender.com (accessed
on 5 February 2022). Abbreviations: AR, Autosomal Recessive; UPD, uniparental disomy; UPhD,
uniparental heterodisomy; UPiD, uniparental isodisomy; XCI, X-chromosome inactivation.

Imprinting may also contribute to non-Mendelian disease manifestation (Figure 1E,G).
For example, a pathogenic variant may only be expressed and cause disease when mater-
nally inherited, due to imprinting at this locus. When the same variant is inherited from
the father, the mutant allele is silenced, and no disease is manifested.

Uniparental disomy (UPD) is another mechanism of non-Mendelian inheritance
(Figure 1F,G) [41] that can lead to disease in autosomal recessive disorders (Figure 1F)
or through imprinting (Figure 1G). The most recent estimate of the occurrence rate of UPD
in the general population is 1 in 2000 [42], although individuals with severe phenotypes
were likely underrepresented in this estimate [43]. There are two types of UPD: isodisomy
(UPiD), where two identical copies of a chromosome/part of chromosome inherited from
one parent replace the allele from the other parent, and heterodisomy (UPhD), where two
non-identical chromatids are inherited from one parent and none from the other. Isodisomy
can be relatively easily detected by searching for ROHs; when discovered, it suggests an
increased likelihood of an autosomal recessive disorder. Heterodisomy is more common,
but individual ES data is insufficient to diagnose it. However, this can be detected easily
via parental DNA sequencing.

Maternal or paternal UPD can have clinical consequences through imprinting, without
the presence of a pathogenic genomic variant (Figure 1G) [41]. Examples of syndromes
that can be caused via UPD and imprinting include Temple (MIM# 616222), Kagami-Ogata
(MIM# 608149), Silver–Russell (MIM# 180860), Prader–Willi (MIM# 176270) and Angelman
syndromes (MIM# 105830). The establishment of maternal or paternal UPD can, therefore,
be important in disease etiology. Alternatively, an analysis of the methylation status of the
chromosomal regions containing imprinted genes [41] is one possible testing strategy. If
heterodisomy of chromosomes or differentially methylated parts of chromosomes 6, 7, 11,
14, 15, or 20 are diagnosed, the possibility of an imprinting disorder should be interrogated.
Heterodisomy of other areas may be harmless [41]. A mixture of isodisomy and heterodis-
omy (created as a result of recombination) is often observed [44], and advanced parental
age appears to be a risk factor [43]. UPD can arise via a variety of mechanisms, some of
which (such as trisomy or monosomy rescue) can lead to mosaicism. For this reason, the
discovery of UPD should prompt a search for mosaicism.
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Last, in disorders of repeat expansion (most famously, fragile X syndrome (MIM# 300624),
but over fifty such disorders are known, some linked to loci outside the exome) the phe-
notype can emerge earlier or become more severe if the number of repeats grows from
one generation to the next (anticipation) (Figure 1H) [45,46]. Phenomena such as non-
random X inactivation in females can also alter the phenotype seen in females in X-linked
disease, ranging from severe to no phenotype (incomplete penetrance) (Figure 1I). Fi-
nally, some exceptional dominant variants, such as in glaucoma-associated MYOC and
cognitive impairment due to PCDH19, have been found to be heterozygote-specific, with
homozygous/hemizygous individuals remaining asymptomatic or less severely affected, a
phenomenon aptly described as paradoxical inheritance [47–49].

2.3. Dual/Multiple Diagnoses

In a situation where a variant fully matching the patient’s phenotype cannot be identi-
fied, a blended phenotype may be considered (Figure 1J). It is estimated that, on average,
multiple (two or more) diagnoses apply to about 4% of cases solved by ES [50]. While
investigating the incidence of multilocus variation in a cohort of 108 neurodevelopmental
patients, Karaca et al. established that multiple diagnoses applied to 12% of the families. Of
note, this included 6 of 19 families previously deemed to show a phenotypic expansion [51].
Posey et al. described a large cohort of 7374 patients and found a multiple diagnosis
in 4.9% of those with a molecular diagnosis. In total, 44.7% of all multiple diagnoses
patients had 2 de novo causative variants [52]. Although co-occurrence of rare disease
appears intuitively unlikely, Lal et al. show that the probability of a single individual
carrying pathogenic variants in more than one rare disease gene goes up significantly
when consanguinity is involved [53]. This being said, a blended phenotype should also be
considered when one of the family members shows a markedly more severe phenotype [51].
Seemingly syndromic cases that were eventually explained by variants in multiple different
genes have been described [54–56]. In a rare scenario, Li et al. report on a case of siblings
with congenital hypothyroidism, hypomagnesemia, and hypercholesterolemia that were
suspected to suffer from a new disorder but were eventually diagnosed with three different
autosomal recessive disorders [55].

2.4. Mosaicism

Mosaicism is known to be a factor in a range of pediatric NDs (Figure 2), including
autism (estimated to contribute 3–5% of simplex ASD risk), Cornelia de Lange syndrome
(MIM# 122470), Proteus syndrome (MIM# 176920), Sturge–Weber syndrome (MIM# 185300),
MCAP syndrome (MIM# 602501), and some epilepsies [28,57–62]. It is also likely respon-
sible for up to 30% of cases in disorders of neuronal migration [63]. In addition, mosaic
aneuploidy (present in neuronal and other tissues) has been shown to occur in some pa-
tients with Down syndrome (MIM# 190685), Seckel syndrome (MIM# 210600) [64], and in
several other rare NDDs. It is worth noting, however, that mosaic aneuploidies, CNVs,
and SNVs have also been detected in the normal adult brain, and that hundreds of somatic
SNVs are already present at birth [63,65]. In general, three main types of mosaicism can
be defined: (1) germline mosaicism (variant present in germ cells but not elsewhere in the
body), (2) somatic mosaicism (variant present in some of the somatic cells but not germ
cells), and (3) gonosomal mosaicism (mosaic variant is present in germ cells and some of
the somatic cells) [63]. In practice, it is sometimes difficult to distinguish between these
classifications and when exactly a variant appeared de novo in development in the parents
and/or child (Figure 2). The number of tissues and/or cells affected by mosaicism depends
on the stage of development at which the mutation arose; events occurring later can be
expected to result in a lower variant allele fraction (VAF), to be more localized and to be
harder to detect, while even a VAF of 1% can result in a disease phenotype [66].
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Figure 2. The different levels of mosaicism in Mendelian diseases and how they manifest. (A) An
autosomal dominantly inherited variant that is present in all cells of the parent and child. (B) In
gonosomal mosaicism, the variant is present within both the germline and somatic cells. The parent
here with gonosomal mosaicism of a variant may express a phenotype, depending on the tissues
affected. If the child inherits the variant, it will be present in all cells. Multiple children of this parent
can be affected. (C) Germline mosaicism, also called gonadal mosaicism, only occurs in the germ cells
(gametes). The parent will not be affected with disease (with the exception of, perhaps, infertility).
If the child inherits the variant, it will be present in all cells. Multiple children of this parent can be
affected. (D) With a de novo germline variant, a single germ cell is affected with the variant, and all
cells of the affected child will have the variant. In this case, reoccurrence of this disorder in additional
offspring is unlikely. (E) In cases of very early post-zygotic mutations, all cells of an affected child
can be affected. This is because not all cells in the early development (before the blastocyst stage)
contribute to the embryo. In this case, reoccurrence of this disorder in additional offspring is unlikely.
In practice, it is difficult to distinguish between (C–E), and often also between (B–E) if the parent is
asymptomatic. Most of (C–E) will be referred to as “de novo”, however in B/C, there is a chance of
recurrence in multiple offspring. In (F) a gonosomal mosaic variant is presented, which occurred
de novo later in development. The phenotype of the affected child will depend on the tissues of
presence; however, the variant may be transmitted to the next generation, as it is present in the germ
cells. In (G) a somatic mosaic variant is presented. The phenotype of the affected child will depend
on the tissues of presence; however, the variant will not be transmitted to the next generation, as
it is not present in the germ cells. The same is presented in (H). However, in this case, the variant
arose after left-right determination, affecting only tissue(s) on one side of the body. * Also possible for
gonosomal mosaicism. This figure was created with BioRender.com (accessed on 5 February 2022).
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The accuracy of detecting mosaicism with NGS depends on the NGS coverage depth,
the tissue used, and the presence of controls and/or parental samples. While some ND-
causing somatic mutations can only be found in brain tissues [66], skin biopsies [67],
cultured fibroblasts [67], buccal swabs [67], saliva or even blood can be used, although
with a lower likelihood of detecting mosaic variants [67–69]. Since buccal mucosa cells
also originate from the ectoderm, similar to the nervous system, in contrast to peripheral
blood leucocytes (mesoderm), mosaic variant detection in NDs may be preferred in buccal
swabs [70]. The DNA extracted from saliva is derived from both buccal epithelial cells
and leucocytes. However, direct buccal swabs contain a higher proportion of epithelial
cells [71]. Although more invasive, skin biopsies may also deserve consideration in cases
of suspected mosaicism in NDs, as the epidermis of the skin originates from the ectoderm.
A comparative study showed, however, that non-invasive buccal cells showed a high
diagnostic sensitivity in the detection of mosaic variants for diseases of the brain and
head, with similar rates compared to invasive tissue types, such as skin biopsies [67].
Nevertheless, skin tissue is also important to consider in neurocutaneous disorders, and in
a number of cases, skin abnormalities even show a visible mosaic pattern [72]. Note that
fibroblasts cultured from skin biopsies (dermis) originate from the mesoderm. However,
culturing may increase the allelic fraction of variants that have a growth advantage [67].

In clinical practice, the lower boundary of detecting mosaic variants via ES is ap-
proximately 10–20% with sufficient average coverage (>100×) [73,74]. The difficulty of
detecting somatic mutations with NGS stems primarily from the difficulty of distinguishing
sequencing artefacts from low VAF mutations [75,76]. Moreover, the most commonly used
variant callers have been shown to be ill-suited for calling somatic variants with VAF
<10%, even for 250× GS data [75,76]. Still, computational tools for mosaicism detection are
available and are used (e.g., MrMosaic [77], MosaicHunter [78], and MosaicForecast [79]),
though due to the high rate of false positives, they require careful validation, e.g., by
ultra-deep sequencing or with droplet digital PCR (ddPCR), which can detect VAFs as
low as 0.1% and 0.001% respectively [75]. A comprehensive pipeline for somatic variant
detection from GS data has recently been made available by the Brain Somatic Mosaicism
Network (BSMN) [76]. The pipeline is based on BSMN-defined best practices for somatic
variant detection and implements tools, such as 1000 Genomes Strict Mask (to remove low
mappability regions) and panel of normals (PON) filtering to remove other commonly
occurring technical artifacts, amongst others [76].

If a putative germline de novo variant is suspected to be disease causing, parental
mosaicism may be considered, especially due to its impact on the risk of recurrence and,
hence, genetic counseling [68]. Unlike germline de novo variants, parental mosaicism does
not seem to correlate with parental age [68,80]. It has been shown that paternal sperm
mosaicism assessment can be of value in providing a more accurate recurrence risk [80].

3. Data Re-Analysis
3.1. Periodic Data Re-Analysis

Difficulties in diagnosing cases of suspected genetic disease based on an analysis of
ES/GS data may stem from gaps in current knowledge. Multiple studies reporting on the
diagnostic yields of the re-analysis of sequencing data list the increased understanding of
gene–disease associations and variant pathogenicity as the primary causes of successful
diagnosis upon re-examining patient ES/GS data [81,82]. The recommendation as to the
length of time after initial analysis when re-analysis should be carried out vary from
group to group, but many studies report diagnostic yields up to 30% for cases examined
18–24 months after the initial analysis [81–83]. The American College of Medical Genetics
and Genomics (ACMG) notes that re-analysis might also be warranted if a new resource
(e.g., a new database or new variant interpretation guidelines) or new patient phenotype
information become available [84].

The most common re-analysis approach consists of reannotating the data [82]. How-
ever, the use of a new/different bioinformatics pipeline may increase the likelihood of
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successful diagnosis [85]. In cases where only singleton ES was carried out, extending
the testing to a trio analysis or WGS should also be considered [84,85]. In addition, in
some cases, realigning to a new reference build of the genome can uncover new, potentially
causative variants [86,87].

A recognized obstacle to periodic ES re-analysis is the significant workload involved.
In an attempt to address this challenge, efforts in automating the process and extending the
use of computational tools have been described, with some reported success [88,89]. Such
tools can include, for example, literature and database mining [88] or the use of dedicated
artificial intelligence (AI) diagnosis-support solutions [89].

Last, listing potential candidate genes on platforms such as ModelMatcher and Gene-
Matcher [90] allows researchers to connect to others who may be interested in or are already
studying a particular gene in vitro and/or in vivo, and further follow-up may identify
novel genes implicated in disease.

3.2. Artificial Intelligence (AI) Applications

Medical applications of artificial intelligence (defined broadly as the development of
machines or programs displaying intelligent behavior) and, specifically, machine learning
(a subfield of AI) enjoy an ever-increasing interest, as illustrated by a growing number
of publications [91]. The use of AI in a diagnostic context can be informally divided
into the following categories: (1) variant deleteriousness prediction [92], (2) intelligent
search engines (providing diagnosis suggestions based on user-entered clinical data, e.g.,
FindZebra [93,94] or PubCaseFinder [95]), (3) image-based evaluation (such as Face2Gene,
which uses face recognition technology to provide a list of syndromes matching a patient’s
appearance, or AI tools assisting in the diagnosis of ASD based on MRI images [96]), and
(4) variant ranking based on NGS data and phenotype. The latter comes in two categories:
as freely available tools that may require some minimal amount of bioinformatics skill (e.g.,
Java-based Exomiser [97,98] or R package Xrare [99]) and as user-friendly commercial solu-
tions (e.g., the Genoox, Emedgene, or Moon platforms). In what follows, we briefly describe
some of these tools, referring the reader to cited literature for more detailed information.

Exomiser was first presented in 2014 [97] and has been updated many times since. Re-
ports of successful Exomiser-assisted diagnoses can be found in the literature (e.g., [100,101]),
and a recent benchmarking test of Exomiser version 12.0.1 on a cohort of 134 monogenic
disease cases reports that for 96% of these patients, the true causative variant was listed
within the top 10 selected by the software [98]. Exomiser takes in a VCF file and a Human
Phenotype Ontology (HPO) phenotype description and applies filters and multiple variant
pathogenicity prediction tools to rank the phenotypic fit using a semantic similarity method.
The output is a prioritized list of variants. Another tool from the same class, Xrare, uses a
different similarity scoring system so as to be tolerant of noisy and imprecise phenotype
descriptions [99].

The tools described above are two examples among many diagnosis support programs
available free of charge. Commercial solutions in this field have also emerged, offering
to alleviate the hassle of environment setup, an online graphical user interface backed by
ongoing bioinformatics support, and continuity of updates—things that may be difficult or
impossible to provide for academics developing free software. The increasing popularity
of commercial tools is reflected in the literature (e.g., [102–104]). One of the more com-
monly mentioned platforms is Genoox, which offers a user customized pipeline handling
everything from alignment and variant calling to diagnosis support provided by an AI
engine named Franklin. The tool has been successfully used both for solving new cases and
for periodic re-analysis [89,105–107] and is now introducing an integration with optical
genome mapping data (Bionano, San Diego, CA, USA) to enable the analysis of structural
variants [SVs].
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4. Integrating Omics to Understand Functional Effects and Improve Variant Prioritization

Prioritization of candidate variants remains challenging, mainly due to an insufficient
understanding of the functional consequences of a substantial fraction of variants. The
disease-causing variants might be detected by ES/GS but remain as variants of unknown
significance (VUS) [108], especially when in a non-coding region. The integration of
multiple omics data can be helpful in prioritizing VUS variants.

4.1. Transcriptomics

Simultaneous DNA and RNA sequencing allows the immediate evaluation of in silico
bioinformatic predictions on the effect of genomic variants on gene expression, alternative
splicing, etc. RNA-seq can aid in both the identification of novel variants and genomic
variant prioritization. It can provide evidence of pathogenicity for variants that were not
found or were unsuspected via DNA sequencing (e.g., intronic cryptic splice site variants).
In addition, it can corroborate the effect of suspected variants and provide further insight
into likely pathogenic/pathogenic variants, such as the level of nonsense-mediated decay
caused by loss-of-function variants, and the impact of this loss on other genes within the
same pathway [109].

By supplementing DNA data with RNA data, researchers can (re-) prioritize rare
genomic variants by complementing them with an outlier score or detect novel events
not found in DNA data. These analyses can focus on identifying (a) aberrant splicing;
(b) aberrant expression; and (c) allelic imbalance, including non-random X-inactivation.
Non-random X-inactivation can be evaluated by assessing allelic expression over the entire
X-chromosome in females. Non-random inactivation is commonly implicated in X-linked
neurodevelopmental diseases, and assessing this can be informative in both gene discovery
and in diagnosis [110–112].

Supplementing DNA-sequencing data (either ES/GS) with RNA-seq can substantially
improve molecular diagnosis, which ranges from 10–35% in Mendelian disorders [2,108,113].
Previous studies have successfully used RNA derived from cultured fibroblasts from
patients, muscle tissue, and blood samples in the diagnosis of various Mendelian dis-
orders [2,108,113]. Supplementing DNA-sequencing with blood-derived RNA-seq can
increase the success rate of gene/variant identification by 16.7%, based on previous stud-
ies [113]. This study also showed that for five cases with neurological disorders where
blood is not assumed to be a representative tissue, candidates were identified [113]. On
another note, of the disease genes from the Online Mendelian Inheritance in Man (OMIM)
database, 70.6% were found to be expressed in whole blood samples via RNA-seq. In
addition, of the genes implicated in neurological disorders, 76% were expressed in blood,
and of genes that are intolerant to loss-of-function, 66% were expressed in blood [113].
Last, variants that have more severe consequences occur more often in genes for which
expression is not restricted to one tissue [113]. This all highlights the utility of whole blood
mRNA-seq, even for the evaluation of transcripts primarily expressed in other tissues. The
overall insight gained from mRNA-seq from whole blood is encouraging, as blood samples
have the advantage of being easily accessible in clinical practice; therefore, this can be easily
implemented into standard diagnostic practices.

4.2. Epigenomics

The term epigenomics refers to the analysis of epigenetic modifications (e.g., DNA
methylation, chromatin accessibility, histone modifications, and the three-dimensional (3D)
arrangement of DNA) affecting gene expression. It has been found that a disproportionately
large number of genes linked with NDs code for proteins involved in the regulation of
the epigenetic state [114,115]. Less commonly, variants in genes not directly involved in
epigenetic machinery can have an effect on the epigenetic code and methylation in partic-
ular [116]. Moreover, larger SVs can affect the 3D architecture of the genome, leading to
changes in gene expression. Finally, disease-causing epigenetic changes (e.g., epimutations)
may arise without the presence of pathogenic genomic variants, as is sometimes the case in
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imprinting disorders (Figure 1G) [114]. All this makes epigenomics a suitable complement
for more traditional genetic testing.

The two testing modalities that have been most successful in diagnosing NDs are
methylation analysis (local and global) and high-throughput conformation capture (Hi-
C). DNA methylation, the addition of a methyl group to the carbon 5 of cytosine: 5-mC,
is the best characterized and most stable epigenetic mark. Testing methylation levels
at disorder-specific regions is currently used in clinical practice to confirm a suspected
fragile X or imprinting disorder diagnosis [117]. Rapid developments are being made in
the area of genome-wide methylation analysis, which now allows for the identification
of the “episignatures” (methylation patterns that have been associated with disease) of
over 40 disorders, most of them syndromic NDDs [118]. Work on expanding this list
continues, especially in Canada, where a machine-learning-based method named EpiSign
is undergoing a national trial aimed at evaluating the clinical utility of this test and also at
expanding the list of known episignatures [119]. At present, episignatures can be used to
evaluate VUS detected in genetic testing or to confirm the suspected diagnosis in cases with
a clear phenotype where DNA sequencing failed to detect the causative variant [117,119].

More recently, cytosine hydroxymethylation (5-hydroxymethylcytosine; 5-hmC) has
also gained attention as another relatively stable epigenetic DNA modification [120]. 5hmC
is oxidized from 5mC through the ten-eleven translocation (TET) family of enzymes and
has a remarkably high presence in the brain [121]. For example, MeCP2, implicated in Rett
syndrome (MIM# 312750), is an important 5hmC-binding protein in the brain [121]. It is
important to note that certain techniques, such as sodium bisulfite conversion approaches,
cannot distinguish 5-mC and 5hmC and, therefore, analyze both epigenetic modifications.

Another important epigenetic regulator of gene expression is the 3D folding of chro-
mosomes, which can bring distant regulatory and functional elements into close spatial
proximity. Hi-C is a technique for probing that 3D structure through a process of crosslink-
ing neighboring regions, digesting the DNA with a restriction enzyme, ligating crosslinked
fragments, and then sequencing them. Hi-C can be used to evaluate the impact of larger
SVs, especially ones occurring in noncoding regions or on topologically associating do-
mains [TADs]. Disruption of TADs, such as, for example, a TAD fusion resulting from
a deletion, or the formation of new TADs caused by a duplication, can lead to the gain
or loss of an interaction between enhancers and promoters, which in turn can change
gene expression and potentially lead to disease. A recent study has shown that Hi-C can
help interpret the effect of SVs by the identification of fused-TADs promoting ectopic
enhancer–promoter interactions [122]. Together with dedicated software that allows for the
easy visualization of the resulting data, Hi-C data can not only expose potential changes to
the enhancer–promoter interaction but also help elucidate the structure of more complex
SVs [122,123].

While the applications of episignature analysis and of Hi-C in the field NDs diagnostics
are relatively new, the increasing popularity of both is to be expected. With epigenomics
still being a relatively young field, rapid advances in both technology and knowledge
promise to shed more light on the mechanisms of pediatric NDs.

4.3. Proteomics

Proteomics is commonly defined as the large-scale analysis of the protein content of
biological samples. Over the past two decades, its methods have undergone significant
expansion and improvement, allowing for the study of protein conformation, function,
interactions, and posttranslational modification, among others [124,125]. In the field of ND
research, proteomics has been employed in the quest for biomarker discovery (notably in
autism) and in the study of the molecular mechanisms of disease [126–130]. In diagnostics,
targeted proteomics can assist in assessing the consequences of the genetic variants dis-
covered by NGS [131]. The fact that transcripts from neighboring genes are often found in
similar abundance, while at the level of protein the correlation no longer holds, can serve
as evidence that protein levels cannot always be determined with sufficient accuracy based
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solely on the number of mRNA transcripts present in the cell [132,133]. An interesting
example, and one that underscores the importance of protein degradation in establishing
protein levels, is the fibroblast proteome of trisomy 21, where expression dysregulation
also affects proteins not linked to chromosome 21, and the correlation between steady
state chromosome 21 proteins and transcripts levels is moderate, while the fold change
correlation was found to be weak [134]. In light of this, one can appreciate the potential of
proteomics in assessing the impacts of CNVs, novel variants in untranslated regions, splice
sites, possible nonsense mediated decay, and of VUSs in general [131,135].

4.4. Metabolomics

Metabolomics, the study of the small molecule content of biological samples, is a
relatively young area of research, yet it appears to hold great promise, both in the area
of biomarker discovery and in diagnostics. In the latter domain, it is primarily seen as a
complement to genomics, since it can be used to prioritize rare variants detected by NGS
(untargeted metabolomic) or provide evidence for the pathogenicity of VUSs (targeted or
untargeted metabolomics) [136–140]. Metabolomics tools can also be used to study the
exposome (the sum total of lifetime exposures starting from conception). For example, in
utero exposures to heavy metals and phthalates, which can impact development, have
also been found to leave a mark on the metabolome, in particular the pathways related to
the tricarboxylic acid cycle and oxidative phosphorylation, possibly due to disruption of
mitochondrial respiration [141]. While metabolic abnormalities have been found in patients
with such NDDs as ASD (an increase in lactate and creatine and a decrease in creatinine are
among many suggested changes that have been reported [127,139,142–144]), Rett syndrome
(MIM# 312750; metabolites associated with urea and the Krebs cycle and the metabolism of
certain amino acids [145]) and Down syndrome (MIM# 190685; alterations to methylation
metabolism, carnitine/O-acetylcarnitine, dimethyl sulfone, and myo-inositol [143]), the
group of disorders where metabolomics has the most obvious diagnostic application is
that of inborn errors of metabolism (IEM), affecting 1:1000 to 1:2000 newborns [137,146].
To date, there are 1615 known IEM and over a half of them show neurologic involvement,
including at least 231 presenting with a movement disorder and at least 116 treatable IEMs
causing intellectual disability [147–151]. It has also been suggested that ASD patients, at
least those born outside of high income countries, are underdiagnosed for IEM [148]. An
online tool, Treatable ID App, has been created to assist clinicians in selecting a targeted
metabolic workup. However, there are also advocates of using an untargeted approach to
maximize the scope of diagnosable disorders [137,146].

Although the importance of metabolomics in pediatric ND diagnostics will grow
with the progress of biomarker research, it is important to remember that the metabolome
is sensitive to changes in diet, medication, sex, age, sample handling, and other factors.
Because of this, a negative metabolomic result cannot always be taken as conclusive.

4.5. Public Recourses and Bioinformatic Predictions

In an era of increased data sharing, many datasets are now available to researchers
to help prioritize the variants and genes implicated in NDs. For example, the Genotype-
Tissue Expression (GTEX) project [152], which studies tissue-specific gene expression and
regulation in the context of genomic variants, can be helpful to identify expression in tissues
of interest and to identify functionally relevant genomic regions (e.g., intronic).

In addition, single cell RNA sequencing (scRNA-seq) and/or single nuclei sequencing
have significantly progressed the characterization of the cellular diversity in the human
brain and nervous system. This technology has also helped characterize the trajectories
of progenitor maturation and neurogenesis in the developing brain, which may be critical
in the development of NDDs. Important trajectories related to a gene’s function can be
identified in scRNA-seq data by detecting the timepoints and cell types with increased
gene expression. Many datasets, including the human developing brain [153,154], the
adolescent mouse brain and nervous system [155], and the adult human and mouse cortex
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scRNA-seq datasets from the Allen Brain Atlas [156], are publicly accessible via the UCSC
cell browser [157]. These datasets are particularly helpful in the context of novel gene
discovery in unsolved cases.

Next, the interaction between proteins and biological pathways can be studied using
public datasets, including the BioGRID [158], STRING [31,32], and Reactome databases [159].
In pediatric neurological disorders, the expression of 24–29% of the affected protein’s close
interactors can be affected [109,160], information which may also be useful in gene discovery.

Last, there are several bioinformatic prediction scores that are helpful to evaluate
non-coding variants that integrate various publicly available functional genomic anno-
tations (e.g., ENCODE), such as CADD [161], Genome Wide Annotation of VAriants
(GWAVA) [162], and Eigen [163]. Deep learning–based sequence analyzer (DeepSEA), for
example, utilized public large-scale chromatin-profiling data to train its model and allow
predictions of the effect of variants on various regulatory features, such as transcription
factor binding, DNase I sensitivity, and histone marks [164].

5. Deep Phenotyping

Deep phenotyping can be defined as an exhaustive, precise description of phenotypic
traits, a description that may include the age of onset of each of patient’s symptoms, as
well as patient’s test results in the form of text and/or images [165]. While large databases
of minimally phenotyped data have led to many genetic discoveries, detailed phenotyping
may, in some cases, allow for insight in spite of the limited amount of data characteristic of
rare disease [166]. Deep phenotyping can do more than assist in diagnosis by narrowing
down the list of potential causative variants; when the result of NGS is a previously
undescribed variant or VUS, a close match between the complex phenotype of the patient
and a disease associated with the gene in which the variant is located can serve, to some
degree, as evidence of causality. While the diagnostic value of ES for NDs is great, the
technology is not immune to error. Pena et al. described cases of patients with a compelling
phenotype yet negative ES results for whom the suspected diagnosis was confirmed by
Sanger sequencing and/or multiplex ligation-dependent probe amplification (MLPA). In
some, though not all, cases, such false negative results could be refuted by the manual
inspection of BAM files—a practice only possible when there a strong suspicion of a disease
associated with one or few genes [167].

While the desirability of a detailed, accurate description of patient’s phenotype seems
obvious, its appreciation is not always good enough to outweigh the cost. Imprecision
in health records is not uncommon [99], and dedicated deep phenotyping tools have
been developed to help avoid it going forward (e.g., [168,169]). Deep phenotyping is also
important for successful discovery of new syndromes and new gene–disease associations
with the aid of data sharing platforms, such as Matchmaker Exchange [170].

6. Novel DNA Sequencing and Mapping Technologies

Current short-read NGS technologies fail to give a complete picture of the human
genome. Despite the use of state-of-the-art bioinformatic algorithms, it is often impossible
to accurately map, or even assemble, short reads originating from regions with SVs, highly
homologous regions, repetitive sequences, or regions with high GC content within the
genome [171]. Recently, novel methods have emerged that can better assess regions with
high homology and repetitive regions, which encompass the majority of the human genome
(i.e., the “dark matter”). In addition, these methods can more reliably detect complex vari-
ants, which often go undetected with conventional next-generation sequencing methods.
Some of these technologies include long-read sequencing, artificial long-read sequencing,
and optical genome mapping [172]. Various studies using these newer technologies have
reported that approximately 20 K SVs per human genome exist, most of which could not
be detected using short-read sequencing [172].
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6.1. Long-Read Sequencing (LRS)

Long-read sequencing, often referred to as third-generation sequencing, includes the
assessments of long-reads of DNA (>10 kb), originating from single DNA molecules. These
technologies measure DNA sequences in real-time, and there is no PCR amplification,
which would introduce bias. Due to its ability to retain long-read information, it can be
used to more accurately assess complex variants, assess NGS “dead zone” regions with
high homology, assess repeat expansions, assess regions with high GC content, and phase
the human genomes into haplotypes.

Two main long-read sequencing technologies are available, developed by Pacific
Biosciences and Oxford Nanopore. The first technology, developed by Pacific Biosciences,
is single-molecule real-time (SMRT) sequencing. It is a single molecule DNA sequencing
method based on the real-time recording of changes in light emitted from the nucleotides
incorporated in base elongation. Currently, there are two main sequencing options, CLR
mode (continuous long read) and CCS mode (circular consensus sequencing). CLR mode
allows the sequencing of long reads measuring 25–175 kb. However, the accuracy is
reduced, resulting in an error rate of 8–15% [173]. SMRT Sequencing technology has more
recently evolved to a second type of long read (CCS mode), known as high-fidelity (HiFi)
long reads. These reads have improved single-base accuracy, e.g., an error rate of 1% or
less, similar to Illumina short-reads, but are restricted in size to 10–20 kb [173].

The Oxford Nanopore Technologies platform uses nanopores to measure a nucleic acid
sequence in real-time through changes in the ionic current across a membrane as a single
DNA molecule passes through this protein nanopore [174]. Mainly used for bacterial and
viral genomes, recent changes in throughput have allowed for high enough coverage to
make sequencing of the human genome feasible with this technology. The Oxford Nanopore
technology can generate ultra-long reads, ranging from 500 bp to a record of 2.3 Mb. It is
limited only by the integrity of the DNA extracted, with 10–30 kb genomic libraries being
common [175]. However, it has high error rates (5–20%) [176] that are dominated by false
deletions and, in particular, homopolymer errors [171]. Last, this technology has emerged
as a portable technology, with a pocket-sized MinION device as the portable option.

Since these technologies interrogate long spans of DNA, they require high molecular
weight (HMW) DNA as an input, which may not always be available, especially for
archived samples. Another limitation of these technologies is the current high price point.
Long-read sequencers are, therefore, unable to compete with the sequencing depth of the
short-read approaches. In addition, there is limited single base pair accuracy, with the
exception for HiFi reads, which is coupled with the significant reduction in read size. Other
applications of LRS include high-quality transcriptome information, detecting alternative
splicing isoforms, epigenetic modifications, and more.

In medical genetics, LRS approaches have so far mainly been used in a targeted setting,
e.g., to investigate genetic disorders with previously known, strongly suspected disease
loci, or to reconstruct identified SVs [171]. For example, LRS was able to fully reconstruct
chromothripsis, a chaotic and complex genomic rearrangement, in a patient with Langer–
Giedion syndrome (MIM# 150230) and Cornelia de Lange syndrome (MIM# 614701) [177].
However, some studies have successfully implicated genome-wide long-read sequencing
in the discovery of complex SVs in Mendelian neurological disorders [178–180], including
transposon-mediated events and complex SVs.

6.2. Artificial Long-Read Sequencing (Alrs)

Artificial long-read sequencing methods, also called synthetic long-read sequencing
methods, work on the premise that they barcode long genomic DNA molecules prior to
short-read sequencing, therefore retaining long-read information [181,182]. One such tech-
nology is 10× Genomics linked-read sequencing, which leverages microfluidics to partition
and barcode high molecular weight DNA prior to short-read sequencing [181,182]. The
second relatively newer option is the single tube long fragment reads (stLFR) method [183],
that allows the barcoding of subfragments of long genomic DNA molecules via microbeads.
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It successfully barcodes subfragments in DNA molecules as long as 300 kb in length, with
an average length of 50–70 kb [183]. Artificial long-read sequencing has the advantage
over direct single-molecule long-read technologies in that it utilizes low error rate second-
generation sequencing, which is much more cost-effective as well [181]. Although aLRS
leverages many advantages of true long-read sequencing, some short-read issues still
persist, e.g., PCR-bias and resolving intra-read complexity [171].

Compared to the traditional short-read NGS approaches, aLRS shows improved
genome alignment and SV detection and allows haplotype reconstruction and phasing [184].
This technology also captures the “NGS dead zones” (i.e., highly homologous regions) with
great improvement, including a net gain in read coverage in a total of 423 genes and 51
“dead zone” genes relevant to Mendelian disease [184]. This technology has been able to
detect pathogenic variants in previously unsolved cases with NDs [185] but has also been
useful in confirming and reconstructing complex pathogenic variants [181,184]. Last, it is
also important to note that these aLRS techniques also are dependent upon the quality of
DNA, and HMW DNA will allow the reconstruction of longer DNA fragments.

6.3. Optical Genome Mapping (OGM)

Optical genome mapping is a novel technique that fluorescently tags long linearized
DNA molecules at specific sites to create a detailed map of genomic variation, including
repetitive regions [186]. OGM allows the detection of insertions, deletions, translocations,
balanced events (including inversions and balanced translocations), and more complex
rearrangements and the detection of highly repetitive events, such as transposon-mediated
pathogenic variants [186]. This method can identify SVs > 500 bp and up for both heterozy-
gous and homozygous variants.

This technology requires ultra-high molecular weight (UHMW; molecules >150 kbp),
and is, therefore, able to span, detect, and reconstruct very large and complex SVs. A
limitation of this technology is that there is no sequence data is available; however, this
method is complementary to sequence data and the combination of both can reconstruct
highly complex SVs [172,187]. OGM has been shown to solve several genomic cold cases
with ND/NND disorders [188,189], such as, for example, a mosaic complex of de novo
deletion and inversion [188]. In addition, OGM has already entered the diagnostic space,
including cytogenetics and molecular diagnostics. For example, with Bionano EnFocus™,
they can accurately measure the number of D4Z4 repeats in facioscapulohumeral muscular
dystrophy (FSHD) [190].

6.4. Integrating Different Data Types

All these methods above are capable of de novo genome assembly and scaffolding,
phasing, and the detection of large structural variants. Combining several methods, how-
ever, including short-read sequencing data, will provide an enhanced overview of the
genomic variation in difficult-to-diagnose cases. This will allow researchers, for example, to
identify bi-allelic variants for which both variants were identified using different techniques.
In addition, if needed for variant reconstruction or to improve variant identification [187],
hybrid scaffolding can be performed. The integration of two techniques, such as OGM and
sequence data, has been shown to produce high-quality genomes [172,187].

7. Conclusions and Future Directions

In conclusion, a more comprehensive analysis of genomic cold cases can improve
diagnostic rates, which can range from a more effective use of existing data to further
experiments. In addition, AI applications can aid in both the initial data analysis and a well-
timed re-analysis. However, human expertise will remain crucial in difficult-to-solve cases.

The emergence of novel sequencing and mapping technologies in genetic diagnostics
has the ability to transform the diagnostic field, ranging from complex SVs to repeat
expansion disorders, which are highly important, particularly in the field of neurology [191].
Using these novel techniques, we will be able to: (1) provide a more complete assessment of
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the human genome and genetic variation; (2) phase the genome into haplotypes, enabling
the identification of maternal and paternal genetic variations; (3) assess variation in NGS
“dead zones” (i.e., highly homologous regions); (4) more accurately assess and reconstruct
structural variation; (5) more accurately evaluate repeat expansions; and (6) evaluate
regions with high GC content. Overall, these techniques will improve our understanding
of human variation and their involvement in disease [171].

The move towards LRS and OGM is limited by the quality of DNA, which may be
challenging/impossible in already archived DNA biobanks. Although some size-selection
methods are available to improve high-quality molecules in a DNA sample, it is imperative
that the standard DNA isolation protocols shift towards the improved HMW and UWMW
protocols and improved DNA handling methods to avoid shearing. Higher-quality DNA
allows the identification and reconstruction of longer DNA fragments and the more optimal
use of these technologies.

In conclusion, DNA sequencing and mapping technologies have accelerated at an
unprecedented rate recently, and in the near future genome wide long-read approaches
may become affordable to implement in a diagnostic setting. Improved diagnostic testing,
which is crucial for therapeutic intervention and management, can bring the paradigm of
personalized medicine in NDs one step closer.
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