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Abstract

Background Excessive skeletal muscle loss during neoadjuvant concurrent chemoradiotherapy (NACRT) is signifi-
cantly related to survival outcomes of oesophageal cancer. However, the conventional method for measuring skeletal
muscle mass requires computed tomography (CT) images, and the calculation process is labour-intensive. In this study,
we built machine-learning models to predict excessive skeletal muscle loss, using only body mass index data and blood
laboratory test results.
Methods We randomly split the data of 232 male patients treated with NACRT for oesophageal cancer into the
training (70%) and test (30%) sets for 1000 iterations. The naive random over sampling method was applied to each
training set to adjust for class imbalance, and we used seven different machine-learning algorithms to predict excessive
skeletal muscle loss. We used five input variables, namely, relative change percentage in body mass index, albumin,
prognostic nutritional index, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio over 50 days. According
to our previous study results, which used the maximal χ2 method, 10.0% decrease of skeletal muscle index over 50 days
was determined as the cut-off value to define the excessive skeletal muscle loss.
Results The five input variables were significantly different between the excessive and the non-excessive muscle loss
group (all P < 0.001). None of the clinicopathologic variables differed significantly between the two groups. The
ensemble model of logistic regression and support vector classifier showed the highest area under the curve value
among all the other models [area under the curve = 0.808, 95% confidence interval (CI): 0.708–0.894]. The sensitivity
and specificity of the ensemble model were 73.7% (95% CI: 52.6%–89.5%) and 74.5% (95% CI: 62.7%–86.3%),
respectively.
Conclusions Machine learning model using the ensemble of logistic regression and support vector classifier most effec-
tively predicted the excessive muscle loss following NACRT in patients with oesophageal cancer. This model can easily
screen the patients with excessive muscle loss who need an active intervention or timely care following NACRT.
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Introduction

Recent studies investigating the interactions between
tumours, nutrition, and inflammation have revealed that
the skeletal muscle can affect anti-tumour immunity and
treatment response in cancer therapy.1 Molecules such as
myokines, which are cytokines produced and released by
skeletal muscle, can mediate anti-inflammatory reactions
and anti-tumour mechanisms.2–4 Accordingly, researchers
have recently focused on the correlation between skeletal
muscle degradation and prognosis of patients with cancer.
Through a series of studies, it was found that excessive
skeletal muscle wasting may lead to poor survival outcomes
in many types of cancer.5–10 Skeletal muscle loss and cancer
cachexia are also known to be relevant to several medical
issues such as prolonged hospitalization, disability, postoper-
ative infections, and other treatment-related toxicities.11–13

Our previous study investigated the relationship between
the amount of skeletal muscle loss and the survival outcomes
of patients with oesophageal cancer, who received neoadju-
vant chemoradiotherapy (NACRT) followed by surgery.14 We
calculated skeletal muscle index (SMI) through computed
tomography (CT)-based analysis, one of the most common
methods for skeletal muscle mass evaluation. We found that
an SMI change of ≤�10.0%/50 days during NACRT (‘excessive
skeletal muscle loss’) was significantly related to the overall
survival as well as recurrence-free survival of the patients.
Excessive skeletal muscle loss was also associated with the
decrease in nutritional markers such as albumin and prognos-
tic nutritional index (PNI), and with the increase in inflamma-
tory markers such as neutrophil-to-lymphocyte ratio (NLR)
and platelet-to-lymphocyte ratio (PLR) during NACRT.

But one of the limitations of most studies on skeletal mus-
cle mass, including our previous study, was that CT images
were necessary to calculate the skeletal muscle amount. Also,
the quantitative measurement of skeletal muscle mass using
CT images is a labour-intensive and time-consuming process.
The axial images at the reference level (e.g. L3 vertebra) are
required to be transferred to certain software, and reference
points are manually designated on the images to discriminate
fat and muscle tissues and, finally, to calculate the skeletal
mass. These complicated processes impair the clinical
applicability of the above-mentioned study results to the
evaluation and management of skeletal muscle loss in cancer
patients. Appropriate management of the body composition
of cancer patients is also quite challenging, mainly because
it is difficult for physicians to perform monitoring and
evaluation of the patients adequately and regularly.

To overcome these limitations, we designed several
machine learning models to predict excessive skeletal muscle
loss using only body mass index (BMI) data and blood labora-
tory test results. The purpose of this study was to evaluate
the performances of the machine learning models and to find
the best and robust model to predict excessive skeletal

muscle loss. Because we did not know the characteristics of
our data distribution and the appropriate model for it, we
generated multiple models to find the best model that fits
well. Through the study, we aimed to explore whether the
machine learning models have the clinical potential to be
used as convenient nutritional screening and monitoring
tools in real-world clinics.

Materials and methods

Study design and data collection

We retrospectively reviewed the medical records of patients
with oesophageal cancer who underwent NACRT followed by
surgery. Sixteen of the 248 male patients included in the pre-
vious study were excluded because post-radiotherapy (RT)
blood tests were not performed prior to the surgery. The final
analysis using the machine learning models was performed
with 232 patients. All the included patients received NACRT
according to our institutional protocol.14 Along with 5 weeks
of RT, two cycles of the same doses of 5-fluorouracil and
cisplatin were delivered to the patients 3 weeks apart. This
study was approved by our institutional review board (IRB #
2020-12-044) and was performed in accordance with the
guidelines of the Declaration of Helsinki.

We obtained pre-RT and post-RT BMI data and the
laboratory test results of albumin, PNI, NLR, and PLR. PNI
was calculated as [10 × albumin (g/dL) + 0.005 × absolute
lymphocyte count (/μL)].15 Pre- and post-RT values were
measured on the day nearest to the pre- and post-RT
18F-fluorodeoxyglucose positron emission tomography-CT
(PET-CT) scan dates (Supporting information, Figure S1). We
then calculated the relative ratio of the change amount during
RT to the pre-RT value. This value was further divided by the
number of interval days (days) and multiplied by 50, which
represents the relative change percentage over 50 days
[ΔBMI (%/50 days), Δalbumin (%/50 days), ΔPNI (%/50 days),
ΔNLR (%/50 days), and ΔPLR (%/50 days)].

Skeletal muscle mass assessment

For the assessment of skeletal muscle mass, we used the CT
images of two consecutive PET-CT scans captured before and
after RT. Using the in-house software based on MATLAB
(version R2014a, MathWorks Inc., Natick, MA, USA), we
measured the cross-sectional area (cm2) of the skeletal
muscle on the axial images at the L3 vertebra level. The
Hounsfield unit (HU) range to calculate the skeletal muscle
cross-sectional area was set as �29 to 150 HU.16,17 The
obtained skeletal muscle area was divided by the height
squared (m2), and this was defined as the SMI. The SMI
change during NACRT was then expressed as a percentage
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relative to pre-RT SMI [ΔSMI (%)]. Considering the variation
in the time interval between pre-RT and post-RT PET-CT
scans among patients, we divided ΔSMI (%) by the number
of scan interval days (days) and multiplied the result by 50
[ΔSMI (%/50 days)]. According to our previous study results,
which used Maxstat, a maximal χ2 method in R version 3.5.3
(R Development Core Team, Vienna, Austria, http://www.
r-project.org), ΔSMI (%/50 days) ≤ �10.0%/50 days was
defined as ‘excessive’ skeletal muscle loss.14

Building process and statistical analysis of the
machine-learning models

All procedures for building the machine learning-based
models were performed using the Python Scikit-learn library
(version 0.23.1), LightGBM library (version 2.3.1),
imbalanced-learn library (version 0.8.0), and umap-learn
library (version 0.4.6). The following five variables were deter-
mined as the candidates for the input parameters: ΔBMI
(%/50 days), Δalbumin (%/50 days), ΔPNI (%/50 days), ΔNLR
(%/50 days), and ΔPLR (%/50 days). Candidate variables with
a P value <0.1 in the independent t test on the whole data
set were selected as the input features of our prediction
models. All the selected variables were then standard-scaled
through the ‘StandardScaler’ function in the Scikit-learn
library. Seven machine learning models—k-nearest neighbour,
naive Bayes, random forest (RF), light gradient boosting,
logistic regression (LR), support vector classifier (SVC), and
an ensemble model of LR and SVC using the soft-voting
method—were used to predict excessive skeletal muscle loss.
In the soft voting method, the probability values of several
models are averaged, and the class with the highest
probability value is predicted as the answer.18 The models
were built using ‘KNeighborsClassifier’, ‘BernoulliNB’,
‘RandomForestClassifier’, ‘LogisticRegression’, and ‘SVC’ func-
tion in the Scikit-learn library,19 and ‘LGBMClassifier’ function
in the LightGBM library. L2 regularization was applied to the
LR and SVC models, and radial basis function kernel was used
in the SVC. ‘VotingClassifier’ function in the Scikit-learn library
was used to perform soft-voting method.

To compensate for the data distribution bias according to a
single partition of the training and test sets, we adopted
the concept similar to the ‘bootstrap bias-corrected cross-
validation (BBC-CV)’.20,21 This is a kind of internal validation
method that enables to estimate more unbiased perfor-
mance of models trained with a given data set. After the
performance estimation, the final model hyperparameters
are determined by the cross-validation of the whole given
data set, which can be used in testing the future external
data sets. The processes are as follows. (i) Randomly split
the data into the training (70%) and hold-out test (30%) sets,
using the ‘train_test_split’ function in the Scikit-learn library
(In the BBC-CV method, the training set is generated by

bootstrapping, which is different from the method of this
study). During this process, the proportion of patients with
excessive skeletal muscle loss in both sets was maintained
at a constant value. (ii) Perform hyperparameter tuning with
the training set, using 10-fold cross-validation and grid search
methods.22 The candidate hyperparameters of the models
are listed in Table S1. Among the candidate hyperparameters,
those that maximized area under the curve (AUC) of the re-
ceiver operating characteristic (ROC) curve were selected.
(iii) A naive random oversampling technique was applied to
the training set to adjust for class imbalance, using the
‘RandomOverSampler’ function in the ‘imbalanced-learn’
Python package.23 (iv) Train the models with the selected
configurations and estimate their performance on the test
set. (v) Repeat the (i)–(iv) for 1000 times. In each iteration,
the random seed number was set by subtracting 1 from the
number of iterations (e.g. random seed value = 999 in the
1000th iteration). With the 1,000 pairs of training and test
sets created, an ‘empirical distribution’ of the statistics of in-
terest was formulated (Figure 1). In the distribution, the
lower 2.5% and upper 2.5% values were set as the boundary
values of the 95% confidence interval (CI) of each statistic,
respectively. Through this process, we calculated the 95% CI
of accuracy, AUC of the ROC curve, sensitivity, and specificity
for all the machine learning models. Difference of the two
distributions of statistics was considered significant if the
95% interval of the difference did not include a zero.

For a comparison of variables between the two groups, the
χ2 test or Fisher’s exact test was employed for categorical
variables, whereas the independent t test was used for con-
tinuous variables. Before performing the independent t test
for each continuous variable, we examined the normality of
the variables using the Shapiro–Wilk test. All statistical analy-
ses in this study were conducted using the SPSS software
package (version 27.0, IBM Corporation, Armonk, NY, USA).

Results

Patient characteristics

The clinicopathologic characteristics of all patients are sum-
marized in Table 1. The age of the excessive muscle loss
group tended to be higher, although this was not statistically
significant (62.26 ± 7.46 vs. 64.45 ± 8.18, P = 0.052). None of
the other clinicopathologic variables differed significantly
between the two groups. The histology of all patients was
squamous cell carcinoma. Table 2 demonstrates the body
components and laboratory test results of the excessive and
non-excessive muscle loss groups. There was no significant
difference in the pre-RT laboratory test results between the
two groups, and the baseline pre-RT SMI and BMI were
rather higher in the excessive muscle loss group. Conversely,
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significant differences were observed in the post-RT values.
Patients with excessive muscle loss had a lower post-RT SMI
(46.21 ± 7.40 vs. 42.23 ± 7.51, P < 0.001), albumin
(3.92 ± 0.35 vs. 3.66 ± 0.36, P < 0.001), and PNI
(45.02 ± 4.81 vs. 42.15 ± 5.86, P < 0.001), and a higher NLR
(3.07 ± 3.86 vs. 5.85 ± 10.02, P = 0.002) and PLR

(201.09 ± 154.01 vs. 254.19 ± 195.33, P = 0.031). Further-
more, the relative change percentage of the variables over
50 days was significantly different between the two groups:
ΔBMI (%/50 days) (�4.75 ± 4.95 vs. �10.04 ± 6.00,
P < 0.001), Δalbumin (%/50 days) (�6.90 ± 8.41 vs.
�13.01 ± 9.32, P < 0.001), ΔPNI (%/50 days)
(�13.45 ± 10.26 vs. �19.77 ± 12.88, P < 0.001), ΔNLR
(%/50 days) (48.38 ± 215.72 vs. 259.98 ± 915.26, P = 0.005),
and ΔPLR (%/50 days) (64.38 ± 118.34 vs. 140.75 ± 204.11,
P < 0.001).

Figure 1 Process of calculating the 95% confidence interval of statistics.

Table 1 Comparison of clinicopathologic characteristics between the
excessive muscle loss group and the non-excessive muscle loss group

Non-excessive
muscle loss group

(n = 168)

Excessive
muscle loss group

(n = 64) P value

Age (years) 62.26 ± 7.46 64.45 ± 8.18 0.052
ECOG performance status 0.578b

0–1 164 (97.6%) 64 (100.0%)
2 4 (2.4%) 0 (0.0%)

Current smoking 0.150
No 69 (41.1%) 33 (51.6%)
Yes 99 (58.9%) 31 (48.4%)

Location 0.415
Upper 44 (26.2%) 16 (25.0%)
Middle 83 (49.4%) 27 (42.2%)
Lower 41 (24.4%) 21 (32.8%)

cT stage 0.353
cT1–2 44 (26.2%) 13 (20.3%)
cT3–4 124 (73.8%) 51 (79.7%)

cN stage 0.787
cN0–1 103 (61.3%) 38 (59.4%)
cN2–3 65 (38.7%) 26 (40.6%)

ypT stage 0.570
ypT0/Tis 77 (45.8%) 32 (50.0%)
ypT1–4 91 (54.2%) 32 (50.0%)

ypN stage 0.557
ypN0 86 (51.2%) 30 (46.9%)
ypN+ 82 (48.8%) 34 (53.1%)

ypCR 0.570
No 117 (69.6%) 47 (73.4%)
Yes 51 (30.4%) 17 (26.6%)

Resection margin 1.000b

R0 161 (95.8%) 61 (95.3%)
R1–2 7 (4.2%) 3 (4.7%)

CR, complete response; ECOG, Eastern Cooperative Oncology
Group.
aExcessive muscle group was defined as ΔSMI (%/50 days) < �10
(%/50 days).

bCalculated by Fisher’s exact test.

Table 2 Comparison of body components and laboratory test results
between the excessive muscle loss group and the non-excessive muscle
loss group

Non-excessive
muscle loss groupa

(n = 168)

Excessive
muscle loss groupa

(n = 64) P value

SMI
Pre-RT 48.87 ± 7.77 51.62 ± 8.03 0.017
Post-RT 46.21 ± 7.40 42.23 ± 7.51 <0.001
ΔRT (%/50 days) �3.67 ± 4.36 �13.39 ± 3.82 <0.001

BMI
Pre-RT 22.65 ± 2.81 23.53 ± 2.96 0.037
Post-RT 21.72 ± 2.87 21.31 ± 3.05 0.341
ΔRT (%/50 days) �4.75 ± 4.95 �10.04 ± 6.00 <0.001

Albumin (g/dL)
Pre-RT 4.27 ± 0.37 4.29 ± 0.41 0.727
Post-RT 3.92 ± 0.35 3.66 ± 0.36 <0.001
ΔRT (%/50 days) �6.90 ± 8.41 �13.01 ± 9.32 <0.001

PNI
Pre-RT 53.16 ± 5.47 53.63 ± 5.10 0.552
Post-RT 45.02 ± 4.81 42.15 ± 5.86 <0.001
ΔRT (%/50 days) �13.45 ± 10.26 �19.77 ± 12.88 <0.001

NLR
Pre-RT 2.43 ± 1.23 2.60 ± 1.29 0.374
Post-RT 3.07 ± 3.86 5.85 ± 10.02 0.002
ΔRT (%/50 days) 48.38 ± 215.72 259.98 ± 915.26 0.005

PLR
Pre-RT 125.56 ± 43.28 125.66 ± 71.32 0.990
Post-RT 201.09 ± 154.01 254.19 ± 195.33 0.031
ΔRT (%/50 days) 64.38 ± 118.34 140.75 ± 204.11 <0.001

BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; PLR,
platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; RT,
radiation therapy; SMI, skeletal muscle index.
aAll variables are described as mean ± standard deviation.
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Visualization of the data distribution and
performance of the different models

According to our selection criteria, ΔBMI (%/50 days),
Δalbumin (%/50 days), ΔPNI (%/50 days), ΔNLR (%/50 days),
and ΔPLR (%/50 days) were all selected as the input parame-
ters. Because our data space was a five-dimensional space
composed of the five variables, its visualization was impossi-
ble. Therefore, we visualized the data distribution using a
dimension reduction technique called the uniform manifold
approximation and projection (UMAP) algorithm.24 We
reduced the spatial distribution of data from five to three
dimensions using the UMAP algorithm, and the reduced data
space was visualized as shown in Figure 2, wherein, it can be
observed that the samples of the excessive and non-excessive
muscle loss groups are clustered to some extent. It can be
assumed that the two groups may be well distinguished by
finding a specific boundary plane.

Table 3 summarizes the predictive performances of the
different machine learning models. The ensemble model of
LR and SVC showed the highest AUC of 0.808 (95% CI:
0.708–0.894), accuracy of 74.3% (95% CI: 64.3%–82.9%),
and sensitivity of 73.7% (95% CI: 52.6%–89.5%) among
the seven prediction models, with a specificity of 74.5%

(95% CI: 62.7%–86.3%). Following the ensemble model,
the LR (AUC = 0.804, 95% CI: 0.701–0.896) and SVC
(AUC = 0.797, 95% CI: 0.692–0.889) models showed the
second and third highest AUC values, respectively. The AUC
difference between the ensemble model and the LR model
was not statistically significant (median = 0.003, 95% CI:
�0.030 to 0.043). For specificity, the RF (specificity = 80.4%,
95% CI: 68.6%–90.2%) and light gradient boosting
(specificity = 78.4%, 95% CI: 66.7%–88.2%) models
represented the highest and second highest values,
respectively. However, the AUCs of the two models were
relatively low, at 0.728 (95% CI: 0.621–0.821) and 0.681
(95% CI: 0.563–0.781), respectively. Each model’s distribu-
tions of the statistics are shown as boxplots in the Figure S2.

Figure 3 shows the change in sensitivity and specificity ac-
cording to the probability threshold for excessive skeletal
muscle loss. The results are based on the ensemble model
of LR and SVC, and the cut-off probability is changed from
0.05 to 0.95 at 0.05 intervals. Among the threshold values
included, the threshold value of 0.50 showed the most
balanced results in terms of the sensitivity–specificity trade-
off relationship. Sensitivity greater than 80% and 90% was
achieved when the probability threshold was set to less than
0.40 (sensitivity = 84.2%, 95% CI: 63.2%–100.0%) and 0.30

Figure 2 Visualization of the data distribution using the uniform manifold approximation and projection algorithm. The number of neighbours and
random state value were set to 15 and 0, respectively.
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(sensitivity = 94.7%, 95% CI: 73.7%–100.0%), respectively. In
contrast, specificity greater than 80% and 90% was achieved
when the probability threshold was set to more than 0.60
(specificity = 82.4%, 95% CI: 68.6%–92.2%) and 0.70
(specificity = 90.2%, 95% CI: 78.4%–98.0%), respectively.

Discussion

This study investigated the performances of the machine
learning models that were designed for the prediction of
excessive skeletal muscle loss in patients with oesophageal
cancer. Among the prediction models, the ensemble model
of LR and SVC showed the highest AUC, accuracy, and sensitiv-
ity. The ensemble model represented an AUC over 0.8 and
sensitivity/specificity over 70%. By adjusting the threshold
value of the probability for excessive skeletal muscle loss to
0.4 or 0.3, sensitivity of more than 80% or 90% was achieved,
respectively.

To the best of our knowledge, this is the first study to eval-
uate the severity of muscle loss with machine learning

models that only used BMI data and blood test results. Eisner
et al. designed machine learning models to predict the skele-
tal muscle loss < �0.75%/100 days with urine metabolites in
93 colon and lung cancer, and the highest accuracy obtained
was 82.2%.25 However, the study was performed with urine
samples, and 1H nuclear magnetic resonance spectroscopy
results were required to obtain the input features of the
prediction models. Although very few studies have predicted
the amount of muscle loss using machine learning, several
studies have attempted to predict the presence of
sarcopenia, a condition characterized by the loss of muscle
mass and strength,26 using machine learning models. Cui
et al. used the SVC and RF models for the prediction of
sarcopenia in patients with type 2 diabetes mellitus and
achieved the highest AUC of 0.87 ± 0.07.27 Another study
by Kang et al. investigated the performance of several
machine learning-based sarcopenia prediction models in
4020 post-menopausal women from the Korea National
Health and Nutrition Examination Surveys, and the highest
AUC among the included models was 0.82 ± 0.06.28

Skeletal muscle wasting remains to be one of the critical
issues in cancer patients, leading to poor survival outcomes,

Table 3 Predictive performance of the machine learning models

Model AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

k-nearest neighbour 0.781 (0.679–0.878) 0.729 (0.629–0.814) 0.684 (0.421–0.895) 0.745 (0.608–0.863)
Bernoulli naive-Bayes 0.754 (0.636–0.852) 0.686 (0.571–0.786) 0.684 (0.474–0.842) 0.686 (0.549–0.824)
Random forest 0.728 (0.621–0.821) 0.714 (0.614–0.800) 0.474 (0.263–0.684) 0.804 (0.686–0.902)
Light gradient boosting 0.684 (0.563–0.781) 0.686 (0.586–0.757) 0.421 (0.211–0.632) 0.784 (0.667–0.882)
Logistic regression 0.804 (0.701–0.896) 0.729 (0.643–0.829) 0.737 (0.526–0.895) 0.745 (0.627–0.863)
Support vector classifier 0.797 (0.692–0.889) 0.729 (0.629–0.814) 0.737 (0.526–0.947) 0.725 (0.569–0.843)
Ensemble (LR + SVC) 0.808 (0.708–0.894) 0.743 (0.643–0.829) 0.737 (0.526–0.895) 0.745 (0.627–0.863)

AUC, area under the curve; CI, confidence interval; LR, logistic regression; SVC, support vector classifier.

Figure 3 Sensitivity and specificity according to the probability threshold for excessive skeletal muscle loss.
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treatment response, and multiple medical issues.1,5–13

Furthermore, several tumour-related and treatment-related
factors can aggravate skeletal muscle degeneration. The
tumour itself releases molecules and pro-inflammatory cyto-
kines that can impair the protein synthesis and muscle regen-
eration mechanisms.29 Neoadjuvant treatment can further
exacerbate muscle wasting,30,31 reduce muscle strength,32,33

and cause adverse effects such as esophagitis, dysphagia, nau-
sea, vomiting, and anorexia.34,35 Our previous study has
shown that excessive skeletal muscle loss after treatment is
a significant factor for prognosis and recurrence rather than
the presence of sarcopenia itself prior to treatment.14

Adequate support and intervention for nutrition and physical
activity during treatment may be beneficial to improve their
prognosis and quality of life.36–38 Indeed, in one randomized
controlled pilot study, patients who received a walk-and-eat
intervention during NACRT showed less decrease in the dis-
tance on the 6 min walk test handgrip strength and body
weight and showed lower rates of intravenous nutritional sup-
port and wheelchair use than those of the control group.36

Appropriate management of the body composition of can-
cer patients is quite challenging, mainly because it is difficult
for physicians to performmonitoring and evaluation of the pa-
tients adequately and regularly. Moreover, conventional
CT-based methods that evaluate skeletal muscle mass are in-
evitably subject to a labour-intensive and time-consuming pro-
cess. The machine learning models in our study can easily
assess the change in skeletal muscle mass of cancer patients
after treatment and screen patients who require amore active
intervention or nutritional support before surgery. Using our
machine learning models as cost-effective and convenient
monitoring tools, physicians will be able to automatically as-
sess the nutritional status of cancer patients and help them re-
ceive more timely care. Additionally, a model that can predict
significant excessive skeletal muscle loss, with the data ob-
tained during the treatment rather than after the treatment,
could be clinically more useful for managing the patients.
Future research should consider early prediction of excessive
skeletal muscle loss using algorithms for time-series data anal-
ysis such as recurrent neural networks.39

This study has several limitations. First, the patient data
used in this study were retrospectively collected from a single
institution. Second, variables that are potentially associated
with excessive skeletal muscle loss were not included in this
study. Third, we conducted the bootstrapping process similar
to BBC-CV with our internal data and performed statistical
analysis for feature selection using the whole given data
set, which may have biased the outcomes. Even though we
estimated the bias-corrected performance of our models
through the 1000 iterations of random split, further analyses
with external validation sets and multi-centre design are nec-
essary to verify whether the selected features and trained
models are appropriate. The hyperparameters selected by
10-fold cross-validation on our entire data set are shown in

Table S2, which can be used in future external validation.
Fourth, the baseline pre-RT SMI and BMI were rather higher
in the excessive muscle loss group, and there is a possibility
that this may have influenced the study results. Fifth, al-
though the ensemble model showed the highest AUC, it
was not significantly different from that of the LR model. This
might suggest that the samples of the two classes are
grouped to some extent with each other and tended to be
linearly separated, which are generally known as conditions
that the LR model can operate effectively.40,41 Considering
these points, it is also possible to consider using the LR model
alone. The coefficient of LR model obtained from the 10-fold
cross-validation of the whole given data set and 95% CIs of
the coefficients acquired by the 1000 random splits are sum-
marized in Table S3. Finally, the patients included in this study
were all male patients diagnosed with squamous cell carci-
noma. Although most patients with oesophageal cancer in
Korea are male with squamous carcinoma,42 future studies
that include female patients and various histologic types are
needed to assess the robustness of our prediction models.

Despite these limitations, the machine learning models of
the present study effectively predicted the excessive muscle
loss following NACRT in oesophageal cancer. These models
can be used to screen patients requiring an active interven-
tion after NACRT. More research is needed to address the
clinical usefulness of machine learning models that detect se-
vere skeletal muscle loss in large populations of patients
afflicted with different cancer types.
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