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epihet for intra‑tumoral 
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Intra-tumoral epigenetic heterogeneity is an indicator of tumor population fitness and is linked to 
the deregulation of transcription. However, there is no published computational tool to automate 
the measurement of intra-tumoral epigenetic allelic heterogeneity. We developed an R/Bioconductor 
package, epihet, to calculate the intra-tumoral epigenetic heterogeneity and to perform differential 
epigenetic heterogeneity analysis. Furthermore, epihet can implement a biological network analysis 
workflow for transforming cancer-specific differential epigenetic heterogeneity loci into cancer-related 
biological function and clinical biomarkers. Finally, we demonstrated epihet utility on acute myeloid 
leukemia. We found statistically significant differential epigenetic heterogeneity (DEH) loci compared 
to normal controls and constructed co-epigenetic heterogeneity network and modules. epihet is 
available at https​://bioco​nduct​or.org/packa​ges/relea​se/bioc/html/epihe​t.html.

DNA methylation is a critical epigenetic modification. Aberrant DNA methylation is a hallmark of cancers and 
plays an important role in the initiation, progression, and manifestation of many cancers1–3. Recently, the avail-
ability of bisulfite sequencing including whole-genome bisulfite sequencing (WGBS) and reduced-representation 
bisulfite sequencing (RRBS), enables the quantification of DNA methylation at a single base-pair resolution4–6. 
Bisulfite sequencing reads covering multiple CpGs can profile the phased methylation states (C, mC) for all CpGs 
in that read. Therefore, bisulfite sequencing provides a powerful tool to assess intra-tumoral cell-to-cell epigenetic 
variability. Many primary cancers feature with high levels of intra-tumor epigenetic heterogeneity, such as acute 
myeloid leukemia (AML)7, chronic lymphocytic leukemias (CLL)8, large diffuse B-cell lymphoma9, and Ewing 
sarcoma tumors10. These studies have shown that epigenetic diversification emerges in cancer cell populations 
and changes during disease progression7,9. Epigenetic variation causes neoplastic transformation and fitness11. 
Although some cancers (such as AML) have fewer genetic mutations than most other cancers12, higher tumor 
epigenetic heterogeneity burden is linked with worse clinical outcome in cancer patients7–9. In addition, epi-
genetic allelic heterogeneity is associated with higher levels of transcriptional heterogeneity7. Lastly, epigenetic 
heterogeneity broadly affects the cancer genome. The epigenetic heterogeneity is lower in gene regulatory region 
(promoters, CGI, exons, enhancers) than intergenic regions, CGI shelves and shores8.

Multiple metrics have been developed to evaluate the intra-tumoral epigenetic heterogeneity and dynam-
ics, including global epiallele shift measured by the tool methclone that we developed13, local disordered reads 
measured by proportion of discordant reads8, epiallele diversity measured by Epipolymorphism14 and Shannon 
entropy15. All these metrics consider the phased DNA methylation pattern spanning multiple adjacent CpGs 
when covered by a single sequencing read as one unit, which is called one locus. Heterogeneous methylation pat-
terns at the given locus range from a complete of un-methylation to full methylation. DNA methylation state at a 
given locus in a cell population can form a mixture of epigenetic patterns (“epialleles”) with different frequencies. 
Using these DNA methylation patterns, all of the metrics evaluate intra-tumoral epigenetic heterogeneity through 
examining epialleles that change their frequencies. To the best of our knowledge, there is no publicly available 
computational tool to automate the measurement of intra-tumoral epigenetic allelic heterogeneity, differential 
heterogeneity, functional evaluation, and visualization. To fill this gap, we developed an R/Bioconductor package 
epihet that can automatically calculate and characterize epigenetic heterogeneity based on methylation pattern 
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information from the tool methclone. Further, epihet can perform differential epigenetic heterogeneity analysis, 
co-epigenetic heterogeneity (co-epihet) network construction, and visualization of results (Fig. 1).

Results
Epihet overview.  We previously developed a C++-based open source methclone, in which epiallele compo-
sitional changes of each locus in the genome covered by bisulfite sequencing at two different groups is computed 
via the combinatorial entropy difference. In this work, we updated methclone (https​://githu​b.com/TheJa​ckson​
Labor​atory​/Methc​lone), and introduced epihet, an R package to compute intra-tumoral epigenetic heterogene-
ity and to perform further downstream analysis, which has been accepted by Bioconductor (https​://bioco​nduct​
or.org/packa​ges/relea​se/bioc/html/epihe​t.html). Firstly, the input of methclone v.02 is the Bam files of bisulfite 
sequencing data from cancer or normal samples (Fig. 1a). With methclone v.02, the users have the flexibility to 
input one sample or two samples. When the Bam file of one sample is provided, methclone v.02 calculates the 
dominant methylation pattern information of one locus in the sample. When the Bam files of two samples are 
provided, methclone v.02 calculates the dominant methylation pattern information of one locus in each sample 
and the epiallele shift between two samples (Fig. 1b). Furthermore, the users can define two parameters in the 
process of methylation pattern calculation. The first parameter is the minimum read coverage at a single base 
of one locus, which is used to filter loci and increase the power of the statistical tests. By default, methclone v.02 
discards loci that have coverage below 60. The selection of this parameter depends on the read depth of the inves-
tigated bisulfite sequencing data. The second parameter is maximum distance between first and forth bases of 
one locus. The default value is 72, which depends on the read length of the investigated bisulfite sequencing data.

Epigenetic heterogeneity analysis.  Based on DNA methylation pattern information obtained from 
methclone v.02, we developed an open-source R package epihet to evaluate intra-tumoral epigenetic heterogene-
ity including proportion of discordant reads (PDR), Epipolymorphism and Shannon entropy (Fig. 1b). Addi-
tionally, epihet is flexible to add the customized metrics the users develop or interest in. The result of all the 
samples in epihet can be summarized as a measurement matrix with a row for each locus and a column for every 
sample. The structure of the matrix can enable epihet to compare epigenetic heterogeneity difference between 
cancer and normal samples, including: (1) visualizing the mean epigenetic heterogeneity of samples by different 
groups using boxplot; (2) performing Principal Component Analysis (PCA); (3) performing hierarchical clus-
tering analysis; (4) performing t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis to understand 
the relative similarity of epigenetic allele variations among different groups. To demonstrate the package, we 
applied epihet to 6 primary AML patients with silenced CEBPA gene expression (CEBPA-sil) from Glass et al.16 
and 14 normal bone marrow (NBM) CD34+ cell samples from Li et al.7. Methylation profiles of these samples 
were measured using eRRBS. Here, mean Epipolymorphism of CEBPA-silenced patients is higher than normal 
samples. Multiple clustering analyses show that cancer and normal samples can form distinct clusters based on 
epiallele heterogeneity (Fig. 1c, see Supplementary Figs. S1a–d and S2a–d for PDR and Shannon entropy).

Differential epigenetic heterogeneity analysis.  epihet is designed to identify differential epigenetic 
heterogeneity (DEH) loci in one cancer by comparing cancer with normal samples. Statistically significant DEH 
loci were selected using the absolute value of mean difference of epigenetic heterogeneity and multiple testing 
adjusted p-values calculated using t-test or permutation test. MA plot is employed to visualize DEH loci (Fig. 1c, 
see Supplementary Figs. S1e and S2e for PDR and Shannon entropy). Based on the identified DEH loci, epihet 
provides the tool for constructing co-epigenetic heterogeneity (co-epihet) network and performing network 
analysis to understand epigenetic mechanisms of cancers. The users can construct locus-level or gene-level co-
epihet network. Here, epihet provides promoter, intron, extron, CpG shores and CpG island annotation files 
for gene annotation. The users can also download customized genome region in BED format from UCSC table 
browser which they are interested to associate genomic loci with genes, and create the GRanges objects epihet 

Figure 1.   Schema of epigenetic heterogeneity calculation and analysis. (a) The Bam files of bisulfite sequencing 
form the input for methclone v.02. (b) When the input of methclone v.02 is one sample’s Bam file, it gives the 
epiallele composition and the percentage of reads support each of compositions at one locus in the sample. 
When the input of methclone v.02 is bam files of two samples, except the above information for both samples, 
it calculates epiallele shift for each locus between two samples. The output format of methclone v.02 is a 
compressed text file. Then, epihet takes the compressed text file as the input file and calculates intra-tumoral 
epigenetic heterogeneity for one sample. Here, four circles on each line represent four adjacent CpG sites, i.e. 
one locus. (black: methylated CpG; white: unmethylated CpG). (c) epihet compares epigenetic heterogeneity 
of different groups and identifies DEH loci using an example from 6 primary AML patients with silenced 
CEBPA gene expression (CEBPA-sil) and 14 normal bone marrow CD34+ cell samples. Upper left: boxplot 
shows mean Epipolymorphism of patients with CEBPA-sil are higher than normal samples. Upper right: a 
two-dimensional principal component analysis. Middle: Heatmap of Epipolymorphism values based on the 
most variant 5% loci across 6 AML patients and 14 normal samples using hierarchical clustering analysis. 
Lower left: t-SNE visualizations of 6 AML patients and 14 normal samples clustered into two groups. Lower 
right: MA plot showing the DEH loci between AML patients and normal samples (absolute value of mean 
epigenetic heterogeneity difference > 0.2, FDR adjusted p-value < 0.05), which are highlighted in red. See 
also Supplementary Figs. S1 and S2 for PDR and Shannon entropy. (d) Co-epihet network construction. A 
range of network analysis functions are included in epihet, including network module identification, module 
visualization, pathway enrichment analysis for each module, module annotation by DEGs.
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Figure 2.   Co-epihet module identification and characterization. (a) Hierarchical clustering of genes with 
DEH loci in promoter regions based on gene co-epigenetic heterogeneity pattern across 6 AML patients. Each 
module is labeled by unique color. (b) In left panel, barplot visualizing the number of genes in each module. 
31 modules were ultimately identified with sizes ranging from 30 to 615 genes. 97 genes were not assigned to 
any of 31 modules, and colored by grey. In right panel, correlation matrix of the module-trait relationship and 
corresponding p-values between the identified modules on the rows and clinical traits (survival time and ages) 
in 6 AML patients on the columns. The module-trait relationships are colored based on their correlation: red 
means a strong positive correlation, blue means a strong negative correlation. The lightgreen module significantly 
correlated with survival time of AML patients including overall survival (OS) time and event-free survival 
(EFS) time (p-value = 0.01). (c) Scatter plot showing the correlation between module sizes in x-axis and the 
corresponding − log10 (FDR adjusted p-values) in y-axis. Modules significantly enriched by DEGs are labeled the 
corresponding colors and the number of DEGs in the modules. Others are labeled grey. Otherwise, percentage of 
DEGs is showed in y-axis of scatter plot. (d) Module visualization of the lightgreen module using the cutoff 0.2 of 
correlation coefficient. (e) Pathway enrichment analysis for the lightgreen module (p-value < 0.05).
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required by GemomicRanges Package17. Next, epihet identifies epigenetic modules for co-epihet network. Mod-
ules are labeled by different colors, here grey color is reserved to loci/genes which are not part of an epigenetic 
module (Fig. 2a). If the network nodes are DEH loci, epihet will return genes mapped by DEH loci in modules. 
Next, the number of genes in each co-epihet module is calculated (Fig. 2b). epihet also outputs the first principle 
component (PC1) of each module, which was calculated using epigenetic heterogeneity levels of all loci/genes 
within a module and represented the average epigenetic heterogeneity level of a module. When the users supply 
the clinical traits of patients, such as age, gender, survival time, epihet can identify clinically significant modules 
through evaluating the correlation between the PC1 of each module and clinical traits (Fig. 2b). Previous work 
has noted that promoter with high epigenetic heterogeneity showed low mean transcript levels, and high inter-
sample transcriptional variation of the corresponding gene in chronic lymphocytic leukemia8. When comparing 
relapse to diagnostic AML samples, differentially expressed genes were significantly associated with promoters 
with a large epigenetic heterogeneity change7. Hence, the presence of epigenetic heterogeneity change at gene 
promoters resulted in greater tendency of the corresponding genes to show deregulated expression. Here, epihet 
allows the users to investigate the association between alterations in gene expression and the presence of DEH 
loci. epihet integrates co-epihet network with differentially expressed genes (DEGs) to determine modules sig-
nificantly enriched by DEGs through hypergeometric test. In Fig. 2c, eight modules were significantly enriched 
by DEGs. The module sizes range from 63 to 461. The numbers of DEGs in modules range from 24 to 145. 95 
genes of the lightgreen module is significantly enriched by 34 DEGs. Furthermore, modules can be visualized 
as networks showing the nodes and the edges between nodes. The user can specify the cutoff of the correlation 
coefficients to select the output of edges in the modules (Fig. 2d). epihet can also return the degree, centrality, 
betweenness and closeness of nodes in the module to help the users to understand the network topology prop-
erty. Finally, epihet investigates the function of each module by performing pathway enrichment analysis using 
hypergeometric test. The users can specify cutoff for p-value to select significantly enriched pathways (Fig. 2e).

Discussion
The new version methclone v.02 enables researchers to easily calculate a sample’s epiallele shift of each locus at two 
different stages and methylation pattern of each locus at each stage. Then, based on methylation pattern informa-
tion from methclone v.02, R package epihet can calculate three types of intra-tumoral epigenetic heterogeneity 
for each locus in a sample. Additionally, epihet has functions to understand epigenetic mechanism in cancers. 
epihet can find the DEH loci by comparing cancer samples versus normal samples. The users can also select to 
compare different cancers or cancer subtypes. Biological networks and modules can show the collective behavior 
of groups of similar items, such as proteins, and their interactions with each other. epihet can further construct the 
co-epigenetic heterogeneity network (module) based on DEH loci or genes annotated by DEH loci. Finally, the 
users can perform all the analyses involved in epihet based on the customized epigenetic heterogeneity metrics. 
In summary, epihet fills a need of intra-tumoral epigenetic heterogeneity calculation tool and is valuable tool for 
intra-tumoral epigenetic heterogeneity study in cancers.

Methods
Epigenetic heterogeneity calculation.  Epigenetic heterogeneity is calculated by considering the meth-
ylation state of a given locus (a group of adjacent four CpG sites). An epiallele is one of a number of alternative 
DNA methylation patterns of the same genetic locus. 4 CpGs on one locus can create 24/16 different epialleles. 
Our tools can implement the four main methods for measuring epigenetic heterogeneity: proportion of dis-
cordant reads (PDR), Epipolymorphism, Shannon entropy and Delta entropy. The first three measures local 
epigenetic heterogeneity at a given locus, which can be calculated by our R package epihet. The difference of 
three methods is how variance of these patterns is calculated. Each method is built on slightly different assump-
tions and uses different equations. Additionally, each method has distinct advantages. The advantage of the 
PDR approach is its simplicity—it divides reads from the same locus into two categories: discordant vs concord-
ant. Thus, it is straightforward to integrate PDR with other biological or genomic features. On the other hand, 
Epipolymorphism and Shannon entropy capture the information on all 16 possible epiallele patterns that can 
display at individual locus. Specifically, Epipolymorphism is a statistical measurement of variance. Epipolymor-
phism measures the probability of selecting two distinct patterns by randomly sampling. Whereas in informa-
tion theory, Shannon entropy examines chaos in organized systems. Shannon entropy is designed to consider 
the proportion of all sixteen possible patterns together. Finally, Delta entropy evaluated the clonal dynamics of 
epialleles between different individuals or different stages within the same individual, which can be calculated 
by our tool methclone v.02.

Measure #1: Proportion of discordant reads.  The proportion of discordant reads (PDR) is a measure of locally 
discordant DNA methylation8. A bisulfite sequencing read at a given locus was classified as a concordant read 
or a discordant read. Here, a concordant read is one that shows unmethylated or methylated state at all CpG 
sites of a given locus. A discordant read is one that shows varying methylated and unmethylated states at a given 
locus, such as one methylated cytosine followed by three unmethylated cytosines. PDR at each locus is defined 
as Discordant read number

Total number of reads  , i.e. the proportion of discordant reads compared to the total number of reads from that 
locus.

Measure #2: Epipolymorphism.  Epipolymorphism of a given locus in the cell population is defined as the prob-
ability that two epialleles randomly sampled from the locus differ from each other14. Epipolymorphism is calcu-
lated as 1−

∑16
i=1 p

2
i  , where pi is the fraction of each DNA methylation pattern i in the cell population.
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Measure #3: Shannon entropy.  Shannon entropy is defined as the chance that two randomly chosen epialleles 
(reads) have different methylated states of a given locus15. Shannon entropy of a given locus is calculated as 
−

∑16
i=1 pi log pi , where pi is the fraction of each DNA methylation pattern i in the cell population.

Measure #4: Delta entropy.  Different from three locally epigenetic heterogeneity measures above, Delta entropy 
(ΔS) considers the clonal dynamics of epialleles between different individuals, or within the same individual at 
different stages13. Briefly, the epiallele patterns of compositional changes between cancer patients and normal 
control samples were examined to calculate the combinatorial entropy change ( �S ) of epialleles at each locus. 
Delta entropy quantifies the changes by using a composition entropy difference calculation. It ranges from no 
change (0) to maximum difference in entropy (− 144).

Clustering analysis.  epihet employed three methods to examine whether samples from one group form a 
biological meaningful cluster. First, epihet is used to cluster samples using hierarchical clustering analysis. The 
tool enables the users to select the distance metric between samples (e.g. “Euclidean”, “Manhattan” and so on) 
and cluster method used in the hierarchical clustering algorithm (e.g. “Ward’s method”, “complete method” 
and so on). epihet returns results as a heatmap with column annotation based on user-defined groups of the 
samples. Second, epihet can also perform Principal Component Analysis (PCA) on epigenetic heterogeneity 
matrix of samples. A scatter plot of the first two principal components could be created to show the highest vari-
ation through the data. Third, epihet allows the users to perform t-Distributed Stochastic Neighbor Embedding 
(t-SNE) analysis to map high-dimensional epigenetic heterogeneity matrix onto two dimensions while conserv-
ing the high-dimensional structure of the data. The users can also visualize the samples in a scatter plot based 
on the pairwise distances in high dimension. The plots can be colored based on user-defined groups of samples. 
Before the cluster analysis is performed, an epigenetic heterogeneity matrix has been formed, containing the 
samples and only those loci shared by at least a certain percentage of the samples. The users can specify epige-
netic heterogeneity measure (PDR, Epipolymorphism, Shannon entropy or the customized metrics) through the 
argument ‘value’. In hierarchical clustering analysis, epihet has the argument to set the top of percentage of loci 
based on standard deviation to be used for analysis.

Differential epigenetic heterogeneity loci identification.  epihet identifies differential epigenetic het-
erogeneity (DEH) loci in the one cancer based on epigenetic heterogeneity mean difference of a locus between 
patients in cancer type and normal samples. To increase the statistical power, a two-stage approach was used that 
first filtered loci by a criterion independent of the statistical test18. epihet has the argument to set the absolute 
value of mean difference of epigenetic heterogeneity values of a given locus between two groups, such as cancer 
and normal control samples to filter some loci for further analysis. For PDR and Epipolymorphism, we designed 
epihet to implement t-test for determining significance of differential epigenetic heterogeneity across all the loci. 
Significantly differential Shannon entropy was assessed using permutation test19. The default number of permu-
tation tests to be implemented is set to 1000. Specifically, given a locus, there are two lists of Shannon entropy for 
n1 cancer samples and n2 normal samples. First, we calculated the difference of Shannon entropy between cancer 
and normal samples. Then, we generated a new list A containing all n1 + n2 Shannon entropy from the two lists. 
Next we randomly permute the elements of A, then recalculate differential Shannon entropy, where the first n1 
elements of A as Shannon entropy of cancer samples, the last n2 elements of A as Shannon entropy of normal 
samples. Finally, p-value was defined as the proportion of the random differential Shannon entropy that are 
larger than or equal to the original differential Shannon entropy. Additionally, the users can select one of t-test 
and permutation test to identify DEH loci for the customized metrics through the argument ‘permutationtest’. 
Statistically significant DEH loci were selected based on multiple testing adjusted p-values and the absolute value 
of mean difference of epigenetic heterogeneity. The users can define increased/decreased DEH loci based on the 
sign of the difference of mean epigenetic heterogeneity between cancer patients and normal control samples.

Co‑epigenetic heterogeneity network construction.  Co‑epigenetic heterogeneity network and mod‑
ule construction.  Biological network has been widely used to describe interactions between biological entities 
of interest. Co-methylation network and epigenetic modules play important roles in understanding epigenetic 
mechanisms of cancers20,21. epihet enables the users to construct co-epigenetic heterogeneity (co-epihet) net-
work based on the DEH loci using the WGCNA R package22. We have two options to be employed to construct 
co-epihet network. The first option is to measure the correlation of epigenetic heterogeneity between any two 
DEH loci and construct locus-level co-epihet network. The second option is to measure the correlation of mean 
epigenetic heterogeneity between any two genes containing DEH loci within genomic region and construct 
gene-level co-epihet network. Allowed correlation methods are Pearson and biweight midcorrelation. Then, 
epihet identified co-epihet modules using hierarchical clustering, in which loci/genes were highly correlated in 
their epigenetic heterogeneity levels.

Module annotation.  Firstly, Reactome pathway enrichment analysis were performed through a hypergeometric 
test. The enrichment analyses were performed using the ‘ReactomePA’ R package23. Then, epihet annotated co-
epihet modules by the differentially expressed genes (DEGs), which the users can provide. epihet uses a hyper-
geometric test to identify the significantly enriched modules by DEGs. If no module is significantly enriched by 
DEGs, epihet returns the modules which contain DEGs. epihet draws scatter plot that visualizes the distribution 
of adjusted p-values for modules significantly enriched by DEGs or the distribution of percentage of DEGs for 
modules annotated by DEGs.
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