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Although research on the metabolism related to gastric cancer (GC) is gradually gaining
increasing interest, there are few studies regarding metabolism-related genes in GC.
Understanding the characteristic changes of metabolism-related genes at the transcriptional
and protein levels in GC will help us to identify new biomarkers and novel therapeutic targets.
We harvested six pairs of samples from GC patients and evaluated the differentially expressed
proteins using mass spectrometry-based proteomics. RNA sequencing was conducted
simultaneously to detect the corresponding expression of mRNAs, and bioinformatics
analysis was used to reveal the correlation of significant differentially expressed genes. A
total of 57 genes were observed to be dysregulated both in proteomics and transcriptomics.
Bioinformatics analysis showed that these differentially expressed genes were significantly
associated with regulating metabolic activity. Further, 14 metabolic genes were identified as
potential targets forGCpatients andwere related to immune cell infiltration.Moreover, we found
that dysregulation of branched-chain amino acid transaminase 2 (BCAT2), one of the 14
differentially expressed metabolism-related genes, was associated with the overall survival time
in GC patients. We believe that this study provides comprehensive information to better
understand the mechanism underlying the progression of GC metastasis and explores the
potential therapeutic and prognostic metabolism-related targets for GC.
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INTRODUCTION

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide; however, the
molecular mechanisms underlying GC remain largely unknown (Allemani et al., 2018). Although the
combination of surgery and chemotherapy has shown great therapeutic progress, the prognosis of
GC has still not significantly improved (Wei et al., 2020). The development of GC is a complex
process in which a variety of molecules and signaling pathways are altered (Tan and Yeoh, 2015).
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Therapeutic strategies involving these molecules and signaling
pathways could be promising for patients with GC. Therefore, it is
necessary to elucidate the molecular mechanisms of GC to
develop new biomarkers and therapeutic targets.

Many recent studies have proven that changes in metabolic
pathways exist in many tumors and affect the malignant
phenotype of tumors (Boroughs and DeBerardinis, 2015). The
dysregulation of some metabolism-related genes has been observed
in GC (Xiao and Zhou, 2017). As a key enzyme in the last step of
glycolysis, pyruvate kinase M2 (PKM2) is highly expressed in GC,
which can promote glycolysis and inhibit mitochondrial oxidative
phosphorylation (Shiroki et al., 2017). PKM2 activates the PI3K/AKT
pathway and inhibits autophagy, leading to the proliferative and
invasive phenotype of GC cells (Wang et al., 2017). The upregulation
of fatty acid synthase (FAS) in GC is closely related to lymph node
metastasis (Ito et al., 2014). Therefore, this key enzyme related to
lipogenesis has been studied as a potential target for anti-tumor
therapy, and it is necessary to identify more differentially expressed
metabolic genes in GC and normal gastric epithelial tissues as the
molecular basis for targeted therapy.

In addition, themetabolites regulated bymetabolic genes will have
a profound impact on the function of immune cells in the tumor
microenvironment (TME) (O’Sullivan et al., 2019). Tumor cells can
deprive the TME of glucose through glycolysis to damage the
function of immune cells such as T cells and NK cells (Ho et al.,
2015; Cong et al., 2018). In addition, the massive consumption of
some amino acids such as glutamine, serine or glycine or branched
chain amino acids by tumor cells can impair the functions of T cells
and NK cells, leading to immunosuppression environment (Ron-
Harel et al., 2016; Swamy et al., 2016; Ma et al., 2017; Ren et al., 2017;
Loftus et al., 2018). Hence, it is obvious that the competition for
nutrients in the TME and the inhibitory effect of the metabolites on
immune cells reshape the immune landscape. Understanding these
processes will help us develop targets for tumor metabolites and
improve the effectiveness of immunotherapy.

The latest advances in omics technology have led to a deep
understanding of the molecular changes in the development and
progression of cancer (Jiang et al., 2017; Dey et al., 2019).
Therefore, multi-omics analysis in genomics, transcriptomics,
epigenomics, proteomics, and metabolomics can help reveal
key mechanisms in cancer development and treatment
resistance to help guide treatment decisions. We believe that
joint transcriptome and proteome profiling may reveal new
biological insights and identify the pathogenic mechanisms or
therapeutic targets for GC therapy.

MATERIALS AND METHODS

Tissue Collection
This study was approved by the Research Ethics Committee of The
First Affiliated Hospital of Sun Yat-senUniversity, and written consent
was obtained from all patients. Six paired GC samples were used for
proteomics analysis. Corresponding whole transcriptomics sequencing
further confirmed the differentially expressed genes. All samples were
collected from The First Affiliated Hospital of Sun Yat-sen University
between January 2019 and December 2020. All tissues were

histologically identified, diagnosed as gastric adenocarcinoma, and
graded according to the guidelines of the modified American Joint
Committee on Cancer (AJCC).

Quantitative Proteomics by Multiplexed
Tandem Mass Tag Mass Spectrometry
Proteins were extracted, digested with lysis buffer, and labelled with
TMT reagents according to an optimized protocol (Pagala et al., 2015;
Bai et al., 2017; Dey et al., 2019). The sample was fractionated using a
C18 column (Waters BEH C18 4.6 × 250mm, 5 μm) on a Rigol
L3000 HPLC system. For transition library construction, shotgun
proteomics analyses were performed using an EASY-nLCTM 1200
UHPLC system (Thermo Fisher, USA) coupled with a Q Exactive
HF-X mass spectrometer (Thermo Fisher) operating in the data-
dependent acquisition (DDA) mode. The identified protein contains
at least one unique peptide with FDR no more than 1.0%. Proteins
containing similar peptides that could not be distinguished by MS/
MS analysis were identified as a same protein group. Reporter
Quantification (TMT 10-plex) was used for TMT quantification.
The protein quantitation results were statistically analyzed by Mann-
Whitney Test, for proteins whose quantitation significantly different
between GC and paired normal samples groups, (p < 0.05 and fold-
change (FC) in expression ≥1.5), were defined as differentially
expressed proteins (DEP). The detailed data processing procedure
was presented in Supplementary Material S1.

RNA-Seq
After total RNA was extracted, mRNA was isolated by Oligo
Magnetic Beads and cut into small fragments for cDNA synthesis.
Libraries were generated using the NEBNext UltraTM RNA Library
Prep Kit (New England Biolabs, Ipswich, MA, USA) for the Illumina
system following the manufacturer’s instructions. Sequencing was
conducted using the Illumina HiSeq XTEN platform. The mRNAs
with p < 0.05 between GC and paired normal samples were identified
to be differentially regulated. The detailed data processing procedure
was presented in Supplementary Material S2.

Bioinformatics Analysis
The bioinformatics analysis was based on the online repositories
including TCGA data portal (https://portal.gdc.cancer.gov/),
TIMER database (https://cistrome.shinyapps.io/timer/),
Kaplan-Meier Plotter database (http://www.kmplot.com/
analysis/index.php?p=background) and GSCA database (http://
bioinfo.life.hust.edu.cn/GSCA/#/immune).

RNA Preparation and Reverse
Transcription-Quantitative Real-Time PCR
All RNAs were isolated by RNA isolation plus (TaKaRa, Japan)
according to themanufacturer’s protocol. cDNAwas generated using
PrimeScript RT Reagent (TaKaRa). The relative expression levels
were measured by quantitative real-time reverse transcription
polymerase chain reaction by using a LightCycler480 II Real-time
PCR System (Roche, USA) with the SYBR green detection system
(Takara). The samples were placed in a 96-well plate and amplified
using the manufacturer’s standard amplification conditions (stage1:
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30 s at 95°C, stage2:40 cycles of 5 s at 95°C and 34 s at 60°C, stage3:
Melt curve). Relative expression was determined by the 2−ΔΔCT

method. Meanwhile, we used GAPDH as an endogenous control
for mRNA. The primer sequences used were as follows: BCAT2
(forward: 5′-GCCCACCGTGTTAGTGCAA-3′, reverse: 5′-GTC
CAGTAGACTCTGTCTGACC-3′); GAPDH (forward: 5′CAA
GGTCATCCATGACAACTTTG-3′, reverse: 5′-GGCCATCCA
CAGTCTTCTGG-3′).

Western Blot
For western blot analysis, total proteins were extracted using the
Whole Cell Protein Extraction Kit (Key GEN, China). BCA Protein
Quantitation Assay (Thermo, USA) was used to measure the protein
concentration. We separated protein samples by using 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels.
The separated protein samples were then transferred onto a
polyvinylidene fluoride (PVDF) membrane (Millipore, USA).
After blocking with 5% non-fat dry milk in Tris-buffered saline
(TBS)/0.1% Tween 20 for 1 h at room temperature, the membranes
were incubated with anti-BCAT2 (1:1,000, ab95976, Abcam, USA)
and anti-GAPDH (1:1,000, 5,174, CST, USA) primary antibodies
overnight at 4°C. The next day, membranes were washed 3 times with
TBST buffer for 15min and incubated with horseradish peroxidase-
conjugated secondary antibody. Finally, the western blot signals were
visualized using Immobilon Western Chemiluminescent HRP
Substrate (Millipore, USA).

Immunohistochemical Staining and
Evaluation
The GC tissues were fixed in 4% paraformaldehyde and embedded in
paraffin. The slides were then deparaffinized and heated in EDTA
buffer for antigen retrieval. After being incubated with anti-BCAT2
(1:1,000, ab95976, Abcam, UK) at 4°C overnight, the slides were
washed in PBS twice and subsequently incubated with HRP-
conjugated secondary antibody (Abcam, UK) at room
temperature. These samples were then visualized using
diaminobenzidine (DAB), and the nucleus was stained with
hematoxylin. The results of IHC were evaluated in a double-blind
manner. We used semi-quantitative methods to determine staining
scores, namely 0 (negative), 1 (weak), 2 (medium), and 3 (strong).
Negative and weak staining confirmed low BCAT2 expression, while
medium and strong staining indicated high BCAT2 expression.

Cell Culture and Transfection
Gastric cancer cell lines, including AGS and HGC-27, were
obtained from Procell Life Science & Technology Co., Ltd.,
Wuhan, China, Zhong Qiao Xin Zhou Biotechnology Co.,Ltd.,
Shanghai, China. All these cells were cultured in DMEM
(Invitrogen, USA) supplemented with 10% fetal bovine serum
(GBICO, USA) and incubated at 37 °C with 5% CO2.

Plasmid Construction and Lentiviral
Transduction
The plasmid pEZ-Lv201-CMV-BCAT2 was designed and
synthesized by GeneCopoeia, Inc. a U.S. AGS and HGC-27

cells were transfected with Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA).

Cell Counting Kit-8 Assay
The Cell Counting Kit-8 (CCK8, Dojindo, Japan) was used
according to the manufacturer’s instructions. Briefly, 1,000
cells were seeded in a 96-well plate, and 10 μL of CCK-8
solution were added to each well every day. Wells were further
incubated for 2 h and measured using an automatic microplate
reader (Tecan Group Ltd., Männedorf, Switzerland).

Colony Formation Assay
GC cell lines (AGS andHGC-27) resuspended to 1 × 103 cells/mL
were seeded in 6-well plates. After incubation at 37 °C for
2 weeks, cells were fixed in 20% methanol for 30 min and
stained with crystal violet for 20 min.

5-Ethynyl-29-Deoxyuridine Assay
An EdU assay kit (RiboBio, Guangzhou, China) was to detect
DNA synthesis and cell proliferation. Cells were seeded in a 96-
well plate after 48 h of transfection and were continuously waited
for 24 h. After incubation with 50 mM EdU for 2 h, the AGS and
HGC-27 cells were fixed in 4% paraformaldehyde and stained
with Apollo Dye Solution. Then, Hoechst 33342 was used to stain
the nucleic acids. Images were obtained with a DMI8 microscope
(Leica, Weztlar, Germany).

Statistical Analysis
SPSS Statistics 20.0 (IBM, USA) and GraphPad Prism 6.0
(GraphPad Software, USA) were used for statistical analysis
and graphing. The numerical data were presented as mean ±
standard deviation (SD) of at least three experiments. Statistical
comparisons between paired GC and normal gastric sample were
performed using paired t-test comparisons. The Kaplan–Meier
method was used to plot the survival curves, and the log-rank test
was used to compare the differences between groups. p < 0.05 was
considered to indicate statistical significance with a 95%
confidence level.

RESULT

Headings
Proteomics Revealed a Special Metabolic Activity
Characteristic in GC
A variety of differentially expressed proteins can be detected in
tissue samples as well as serum by TMT LC-MS/MS-based
proteomics (Pagala et al., 2015; Dey et al., 2019). In this study,
we screened differentially expressed proteins in GC using tandem
mass tag–mass spectrometry (TMT-MS) analysis. The proteins
with fold-change (FC) in expression ≥1.5 and p < 0.05 between
GC and paired normal samples were identified to be differentially
regulated. The 225 differently expressed proteins are listed in
Supplementary Table S1 by FC. Hierarchical clustering and
volcano plot filtering showed differently expressed proteins in
GC (Figures 1A,B). Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
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FIGURE 1 | Identification of genes related to metabolic pathways through proteomics. (A) A cluster heat map presented the significantly dysregulated proteins in GC
tissues related to paired normal tissues. The red and blue strips represented high and low expression, respectively. (B) Volcano plot filtering of differently expressed proteins

(Continued )
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analysis were conducted to evaluate the potential roles of these
differentially expressed proteins (Figures 1C,D). Metabolic
activity pathway was significantly enriched in these related
pathways. Among these differentially expressed metabolic
proteins, we observed a decrease in the level of mitochondrial
oxidative phosphorylation (Figure 1E), which is consistent with
previous studies on GC metabolism (Guaragnella et al., 2014).
Considering that GC prefers glycolysis mode, known as
“Warburg effect,” intervention in glycolysis metabolic mode of
GC may be a promising therapeutic approach (Liberti and
Locasale, 2016). In addition, the levels of lipids and
triglycerides in GC generally rise due to inhibition of lipid
degradation and enhanced lipid synthesis (Tugnoli et al., 2006;
Leal et al., 2012). Our results also showed that the expression of
PLPP2 and GK involved in the regulation of glycerolipid
metabolism were upregulated, while the expression of ACAT1
and ECI2, involved in the fatty acid degradation pathway were
downregulated. More importantly, our research revealed that
amino acid metabolism proteins were widely dysregulated in
GC, which was not the focus of previous studies on GC
proteomics (Supplementary Table S2). Changes in arginine
metabolism proteins were identified, in which ASS1 was
significantly upregulated, while GPT2 and GLUL expression
were downregulated. The high expression level of ASS1 in
gastric cancer has been reported (Tsai et al., 2018), suggesting
the important role of ASS1 in the metabolic process of gastric
cancer. Studies have found that branched-chain amino acids
(BCAAs) metabolic pathways are altered in many solid tumors
such as melanoma, nasopharyngeal carcinoma, and breast cancer
(Sivanand and Vander Heiden, 2020). Systemic metabolic
disorders of BCAAs can affect the occurrence and progression
of cancers such as pancreatic cancer (Falcone and Maddocks,
2020; Li et al., 2020), but it has not been reported in GC. In our
study, proteins related to BCAA metabolism, including BCAT2,
ALDH6A1, MCEE, PCCB, BCKDHB, DBT, and AUH, were all
downregulated, revealing the potential role of BCAA metabolism
in GC.

Identification of Differentially Expressed
Coupled mRNAs Using Transcriptomics
in GC
To complement the proteomic analyses, we performed RNA-seq
(Figure 2A) and conducted correlation analysis of proteomics
and transcriptomics (Supplementary Figure S1A). Heat map
exhibited differentially expressed proteins (mRNAs) in
proteomics and transcriptomics (Figure 2B). Finally, 57
significant differentially expressed proteins (mRNAs) were
identified both in proteomics and transcriptomics
(Supplementary Table S3; Supplementary Figure1B). We
divided the 57 differentially expressed genes into three
clusters. The mRNA and protein levels in cluster 1 and cluster

2 were coupled and the expression trend was the same, while the
mRNA and protein levels in cluster 3 had the opposite trend.
Next, we analyzed the potential function of 57 significant
differentially expressed proteins (mRNAs). The clustering heat
map of GO and KEGG pathway enrichment described the
detailed pathway of every different expressed protein (mRNA)
(Figures 2C,D). GO and KEGG pathway enrichment confirmed
metabolic activity pathway was significant enriched (Figures
2E,F). Furthermore, KEGG pathway bias plot and scatter plot
showed that the metabolic activity pathway was positively
correlated in proteomics and transcriptomics (Supplementary
Figures S1C, D). These 14 metabolic genes include BCAT2,
ALDH1A2, MDH1, PHGDH, CKB, ADH1B, PCCB, NNT,
CKM, DCXR, LIPF, ASS1, ME3, and CS that participate in
various metabolic activities such as arginine, serine, branched
chain amino acid, and tricarboxylic acid cycle, mostly focused on
amino acid metabolism. As shown in Supplementary Figures
S1E, the expression level of ASS1 belonging to cluster 1 was
upregulated, and the expression levels of BCAT2, MDH1, CKB,
ADH1B, PCCB, CKM, DCXR, LIPF, ME3, and CS belonging to
cluster 2 were downregulated at both the mRNA and protein
levels. Genes belonging to cluster 3 such as ALDH1A2, PHGDH
and NNT indicated that the mRNA level was upregulated and the
protein level was downregulated, suggesting that these genes may
be involved in post-transcriptional regulation.

Bioinformatics Analysis of the 14 Metabolic
Genes and the Relationship Between the
Immune Cells
We used the TCGA database to analyze 14 metabolic genes, and
the results showed that ADH1B, CKB, CKM, LIPF, andME3 were
significantly downregulated and ASS1 was significantly
upregulated in GC (Figure 3A). Further survival analysis
showed that ADH1B, ALDH1A2, and PHGDH were associated
with poor Disease Free Survival (DSS), while PCCB was
associated with better DSS (Figure 3B). Considering that
tumors may deprive the microenvironment of nutrients via a
variety of metabolic pathways and damage the function of
immune cells, we analyzed the correlation between 14
metabolic genes and infiltrating immune cells in GC. The
results showed that these metabolic genes are related to a
variety of immune cells (Figure 3C). We grouped 14
metabolic genes into a gene set and found that the gene set
was negatively correlated to Treg, monocytes, Th1, DC, and
macrophages and positively correlated to NKT, CD4+, and
MAIT cells (Figure 3D). Considering that these genes are
generally downregulated in tumors, these genes may be
associated with positive immune regulation. In addition, we
evaluated the sensitivity of these metabolic genes to drug
therapy, and the results showed that most genes are related to
drug therapy sensitivity (Figures 3E,F), suggesting that targeting

FIGURE 1 | between GC and normal gastric samples. High expression level is indicated by “red” and low levels by “green.” (C–D)GO pathway analysis and KEGG analysis
showed the potential functions of differently expressed proteins in GC. The ratio in KEGG represents the protein ratio of pathways. (E) Enrichedmetabolic pathways exhibited
distinct metabolic activities.
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FIGURE 2 | Identification of coupled genes through complementary transcriptomics. (A) Volcano plot filtering of differently expressed mRNAs between GC and
normal gastric samples. High expression level is indicated by “red” and low levels by “green.” (B) Heatmap illustrating the different expression in protein and mRNAs
between GC and normal gastric tissue. The red part represents up-regulated protein (mRNA) and the blue part represents downregulated protein (mRNA). (C–D)
Clustering heat map of GO and KEGG pathway enrichment presents the potential functions of significantly dysregulated proteins (mRNAs) both in proteomics and
transcriptomics. The red and blue strips represent high and low expression, respectively. (E–F) GO and KEGG pathway enrichment present the potential functions of
significantly dysregulated proteins (mRNAs) both in proteomics and transcriptomics. The Fold_Enrichment represents the protein (mRNAs) ratio of pathways.
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FIGURE 3 | Analysis of the correlation between 14 metabolic genes and immunity. (A) Analysis of significantly different genes in unpaired GC (T = 408) and
normal tissues (N = 211) in the GEPIA (p < 0.05). (B) Survival differential genes analysis in STAD from the GSCA database. (C) The correlation between 14
metabolic genes and immune cell infiltration in STAD from the GSCA database. (D) The correlation between a gene set composed of 14 metabolic genes and
immune cell infiltration in STAD from the GSCA database. (E) Correlation analysis of 14 metabolic genes and CTRP drug sensitivity from the GSCA
database. (F) Correlation analysis of 14 metabolic genes and GDSC drug sensitivity from the GSCA database. T, GC tissues; N, matched adjacent normal
samples.
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FIGURE 4 | Analysis of the correlation between 14 metabolic genes and PD-1/CTLA4. (A–B) Correlation analysis of 14 metabolic genes and PD-1/CTLA4 in the
TIMER database. (C) PPI network constructed by 14 metabolic genes in STRING.
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these genes can achieve anti-tumor effects through drug
synergistic therapy.

Correlation Analysis Between 14 Metabolic
Genes and Programmed Cell Death Ligand
1/Cytotoxic T Lymphocyte-Associated
Protein 4
Studies have shown that the metabolic interaction between tumor
cells and immune cells may be related to poor response to
immunotherapy. Therefore, targeting tumor metabolic activity
including glucose or glutamine activity combined with PD-1/PD-
L1 ICIs may provide new treatment opportunities for gastric
cancer patients (Ma et al., 2021). We analyzed the co-expression
relationship between 14 metabolic genes and PD-1/CTLA4 to
help us understand whether these genes can be used as synergistic
targets for immunotherapy. The results showed that ADH1B,
PHGDH, BCAT2, ME3, PCCB, and CS were positively correlated

with PD-1 (Figure 4A), and ADH1B, PHGDH, BCAT2, CKB,
PCCB, and CS were positively correlated with CTLA4
(Figure 4B). Next, we constructed differentially expressed
mRNA-mediated protein-protein interaction networks in GC
to reveal their complex interactions among each other using
the STRING system (Figure 4C).

Identifying the Differential Expression and
Prognostic Characteristics of BCAT2 in GC
The mRNA level of BCAT2 were detected in 32 pairs of GC
tissues and adjacent normal gastric mucosa by RT-qPCR
(Figure 5A). BCAT2 was significantly decreased in GC
compared to normal gastric epithelial tissue. By using the
Kaplan-Meier Plotter database to compare the overall survival
(OS) curve of BCAT2 expression (Figure 5B), the low level of
BCAT2 is a signal of poor prognosis for GC patients. To further
verify the difference in the expression of BCAT2 at the protein

FIGURE 5 | Low BCAT2 expression in GC. (A) Relative expression of BCAT2 in 32 paired GC tissues and matched adjacent normal samples via qRT-PCR. (p <
0.05). (B) The survival curve of BCAT2 in GC patients from the Kaplan–Meier plot (p < 0.05). (C) IHC staining of the BCAT2 protein in GC tissues. (D) The survival curve of
BCAT2 in GC patients using the IHC staining score (p < 0.05). (E) The protein expression of BCAT2 in 12 paired GC tissues and matched normal adjacent mucosa,
analyzed by western blotting. T, GC tissues; N, matched adjacent normal samples. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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level, we performed western blotting on 12 pairs of matched GC
and adjacent normal tissues (Figure 5E). We found that
compared with adjacent normal gastric tissues, the levels of
BCAT2 protein in GC tissues were significantly reduced. Thus,
to explore the relationship between the expression of BCAT2 and
the clinicopathological characteristics of GC, we performed IHC
to detect the expression of BCAT2 in 89 GC tissues (Figure 5C).
Negative and weak staining were classified as low BCAT2
expression (46.1%, 41/89), while moderate and strong staining
were defined as high BCAT2 expression (53.9%, 48/89). As shown
in Table1, low BCAT2 expression was associated with lymphatic
invasion (p < 0.05). Further analysis showed that the 5-year
overall survival rate of GC patients with high BCAT2 expression
was significantly higher than that of GC patients with low BCAT2
expression (46.1% vs. 53.9%; p < 0.01, Figure 5D). To identify the
functional effects of BCAT2 in gastric cancer cell lines, we
transfected the BCAT2 overexpression plasmid into AGS and
HGC-27 cells (Figures 6A,B). In the following steps, CCK8, Edu
and colony formation assays were performed to determine the
proliferative capacity of GC cells. We observed that the
overexpression of BCAT2 inhibited cell proliferation rate, such
as CCK8 assay (Figures 6C,D), DNA synthesis as measured by
Edu assay (Figure 6E), and colony forming ability of AGS and
HGC -27 (Figure 6F) cells. Therefore, our research shows that
BCAT2 is a potential therapeutic target for GC.

DISCUSSION

The importance of metabolism in tumors is gradually being
recognized, and metabolic activities are now understood to
affect the malignant phenotype and immunosuppressive
properties of tumors (Hanahan and Weinberg, 2011; Chang
et al., 2015; Ho et al., 2015). Recently, Natalya N. Pavlova and
Craig B. Thompson organized known cancer-associated
metabolic changes into six hallmarks: 1) deregulated uptake of

glucose and amino acids, 2) use of opportunistic modes of
nutrient acquisition, 3) use of glycolysis/TCA cycle
intermediates for biosynthesis and NADPH production, 4)
increased demand for nitrogen, 5) alterations in metabolite-
driven gene regulation, and 6) metabolic interactions with the
microenvironment (Pavlova and Thompson, 2016). Compared to
normal tissues, tumors exhibit enhanced nutrient absorption
given the activation of oncogenes and the loss of tumor
suppressor factors (Ying et al., 2012). However, nutritional
limitations in solid tumors may require malignant cells to
undergo metabolic reprogramming to provide sufficient energy
and biosynthetic pathways (Gaglio et al., 2011; Son et al., 2013). In
addition, the metabolic flexibility of tumor cells allows them to
adapt to the diverse TME and achieve immunosuppressive effects
by depriving glucose and by other methods to damage the
functions of T cells, NK cells, macrophages, and DCs (Keating
et al., 2016; O’Neill and Pearce, 2016; Badur and Metallo, 2018;
Cong et al., 2018).

In our study, the results of combined proteomics and
transcriptomics showed that genes related to metabolic
pathways were significantly enriched, proving that metabolic
genes play an important role in GC. The metabolic genes
identified by our research are currently not comprehensive
and specific to GC, and they can become promising targets for
GC metabolism.

The metabolic regulation of GC includes four major
categories—carbohydrates, amino acids, lipids, and nucleic
acids—which are interconnected by intermediate products (Xiao
and Zhou, 2017). GC exhibits the Warburg effect, which involves
high glucose uptake, enhanced glycolysis, and accumulation of large
amounts of lactic acid. Tumor-derived lactic acid impairs the
function of cytotoxic T cells/NK cells (Fischer et al., 2007) and
prevents the differentiation of monocytes into DCs (Gottfried et al.,
2006), ultimately leading to tumor immune escape. In addition to
glycolysis, the effects of amino acid metabolic reprogramming on
oncogenesis and immune evasion in GC have been gradually
revealed. The kynurenine pathway catalyzed by indoleamine-2, 3-
dioxygenase (IDO) plays a key role in regulating the TME to
promote cancer progression. Higher expression of IDO is
associated with increased activity of immunosuppressive T
regulatory cells (Bauer et al., 2005). Regulating amino acid levels
in TME may be an effective way for tumors to regulate immune cell
function. For example, tumor expression of tryptophan depleting
enzyme IDO and subsequent production of kynurenine can lead to
the inhibition of T-cell proliferation and effector function and
damage to DCs.

Using proteomics and transcriptomics, we identified 14metabolic
genes that are involved in multiple metabolic pathways. As the six
hallmarks of tumors mentioned above, PHGDH was proven to be
involved in use of glycolysis/TCA cycle intermediates for biosynthesis
and NADPH production, and ASS1 was proven to be involved in
increased demand for nitrogen (Pavlova and Thompson, 2016). We
also demonstrated that these metabolic genes are related to a variety
of immune cells. A gene set including 14 metabolic genes was
negatively related to Treg, monocytes, Th1, DCs, and
macrophages, and was positively correlated to NKT, CD4+, and
MAIT cells. For example, PHGDH supports the rapid growth and

TABLE 1 | Relationships between BCAT2 expression and clinical-pathological
parameters in gastric cancer.

Parameters Group BCAT2 expression

Cases Low High p value

Gender Male 61 29 32 0.6806
Female 28 12 16

Age <55 25 9 16 0.2337
≥55 64 32 32

Tumor size ≤4 cm 32 15 17 0.9088
>4 cm 57 26 31

Histology grade Well-moderately 34 12 22 0.1089
Poorly 55 29 26

Tumor site Cardiac 24 7 17 0.0519
Non-cardiac 65 34 31

Depth of invasion T1+T2 16 4 12 0.0619
T3+ T4 73 37 36

Lymphatic invasion N0 26 6 20 *0.0052
N1-N3 63 35 28

TNM stage I + II 26 9 17 0.1638
III + IV 63 32 31

*p < 0.05.
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uncontrolled spread of a variety of cancers by catalyzing the first step
reaction of serine biosynthesis (Zhao et al., 2021). However, serine is
also a key immune metabolite that directly regulates immune activity
by controlling the proliferation of T cells. The lack of serine in the
TME caused by the upregulation of PHGDH can impair the function
of immune T cells. The expression of PHGDH was negatively
correlated with the 5-year survival rate of GC patients, and
multivariate analysis shows that it was an independent prognostic
factor for the prognosis of GC (Xian et al., 2016). However, the effect
of high expression of PHGDHon theGCTME and immune cells has
not yet been studied. In addition, ASS1 plays a dual role in tumor
cells. ASS1-low tumor cells become very dependent on external
arginine, forming the basis of arginine deprivation therapy (Jahani
et al., 2018). In ASS1-high tumor cells, such as prostate cancer
(Gannon et al., 2010), breast cancer (Cavdar et al., 2003) and

renal cell carcinoma (Tate et al., 2008), the presence of arginase in
the TME can cause adverse effects, especially regarding the immune
response to cancer cells. ASS1-expressing tumors recruit certain cells
such as tumor-associated macrophages (TAM) and bone marrow-
derived suppressor cells (BMDSCs), which can promote immune
evasion (Adams et al., 2015). ASS1 is related to the production of
polyamines and inhibition of NO production by macrophages
involved in inflammation, which ultimately leads to the
consumption of arginine in the TME (Chang et al., 2001). It is
well known that arginine can enhance the immune response by
promoting the survival and proliferation of T cells, and arginine
deprivationmay lead to immunosuppression (Cao et al., 2016; Geiger
et al., 2016). ASS1 was highly expressed in GC and could promote
invasion andmetastasis, which proved that GC has uniquemetabolic
characteristics (Tsai et al., 2018). However, the specific mechanism of

FIGURE 6 | BCAT2 suppresses the proliferative ability of GC cells. (A–B) qRT-PCR analysis of BCAT2 mRNA expression after treatment with an overexpression
plasmid in AGS and HGC-27 cells. (C–D) Assessment of the proliferation of AGS and HGC-27 cells transfected with control vector or BCAT2 plasmid by a CCK-8 assay.
(E–F) Assessment of AGS cell proliferation by EdU and colony formation assays. Quantitative data from three independent experiments are shown as the mean ± SD
(error bars). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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ASS1’s role in GC microenvironment needs further exploration. We
believe that the 14 identified metabolic genes by multiomics will help
strengthen the understanding of GC.

We also found that some metabolic genes such as ADH1B,
PHGDH, BCAT2, ME3, PCCB, and CS were positively correlated
with PD-1. PD-1 inhibitors such as pembrolizumab have been
used as a third-line drug for the treatment of GC, revealing the
important role of immunotherapy in GC (Zhu and Ma, 2021).
Research has shown that the combined use of PD-1 with small
molecule drugs targeting metabolic pathways including amino
acid metabolism may contribute to the effectiveness of PD-1
therapy. For patients with PD1 targeted drugs showing sustained
response to treatment, the tumor mainly has a T cell-inflamed
TME (Lanitis et al., 2017). The metabolic-related pathway such as
tryptophan-kynurenine-arene receptor (Trp-Kyn-AhR) in T cell-
inflamed tumors mediates a variety of immunosuppressive
mechanisms including the consumption of tryptophan, direct
immunosuppression of Kyn, and the activity of AhR bound to
Kyn (Labadie et al., 2019). Small molecule inhibitors of this
pathway are making progress in preclinical development and
are expected to be used in combination with PD-1 checkpoint
inhibitors to enhance the effect of PD-1. Therefore, these
metabolic pathway genes including ADH1B, PHGDH, BCAT2,
ME3, PCCB, and CS may become effective targets for synergistic
therapy with PD-1.

In this study, based on the results of proteomics and
transcriptomics, we found that BCAT2 was downregulated in
tissues from GC patients and was significantly associated with a
poor prognosis. As a type of branched-chain amino acid transferase,
BCAT2 reversibly converts branched-chain amino acids into the
corresponding branched-chain α-keto acid to generate glutamate
(Neinast et al., 2019). Recently, BCAA metabolism has attracted
widespread attention. The way different tumors utilize BCAAs
exhibits tissue-of-origin dependence. Despite that, KRAS and
TP53 mutations are both important genetic events in non-small
cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma
(PDAC); NSCLC tumors exhibited enhanced BCAA uptake, while
PDAC tumors showed decreased BCAA uptake (Mayers et al.,
2016). However, they further found that PDAC BCAT null cells
formed smaller tumors in the pancreas than control cells,
demonstrating that the growth of PDAC tumors may be aided
by BCAT activity in certain tissue environments. As a solid tumor,
the complicated TME of GC affects the changes of metabolic
pathways. Therefore, it is necessary to understand the
metabolism of BCAA via BCAT2 in different contexts in GC.

A study by Li et al. also confirmed that BCAT2 promoted the
growth of pancreatic tumors by mediating BCAA catabolism and
mitochondrial respiration (Li et al., 2020). I In addition, Wang
et al. found that sorafenib and sulfasalazine could downregulate
the expression of BCAT2 to induce iron death, thus identifying
BCAT2 as a novel inhibitor of iron death (Wang et al., 2021).
BCAT2 plays different roles in a variety of tumors, and its specific
mechanism of action in GC has not yet been elucidated. Changes
in metabolic genes and products can be used to promote the
malignant phenotype and proliferation of tumors. Recent studies
have shown that leucine is an activator of the mTOR pathway
(Wolfson et al., 2016), indicating that GC may reduce the

expression of BCAT2 to accumulate more leucine and activate
mTOR to promote the growth of GC.

In conclusion, our research provided insights that reveal the
characteristics of genetic alterations in GC metabolism. Despite
the lack of large-scale sample verification and consideration of
intra-tumor and inter-tumor differences, we believe that
metabolic genes play an important role in GC adaptation to
TME and immune resistance, which will be verified in more
large-scale studies in the future.
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Supplementary Figure S1 | (A) Plot of correlation analysis of proteomics and
transcriptomics between GC and normal gastric samples. The green point
represents a protein (mRNA) with significant difference in expression, and the
blue point represents a protein (mRNA) without significant difference in
expression. Log 2 (FC) was used for calculation of protein (mRNA) expression.
(B) Venn plot of the transcriptome and proteome between the GC and normal
gastric samples. all_Tran represents all genes from the transcriptome, diff_Tran
represents differentially expressed mRNAs identified by the transcriptome, all_Prot
represents all proteins identified by the proteome, and diff_Prot represents the

differentially expressed protein identified by the proteome. Fifty-seven differentially
expressed proteins (mRNAs) were identified both in the proteomics and
transcriptomics. (C) The KEGG pathway bias plot shows the detailed pathway of
dysregulated proteins (mRNAs) both in proteomics and transcriptomics. The
biased-ratio represents the ratio of dysregulated proteins (mRNAs) with positive/
negative correlation in the total dysregulated proteins (mRNAs). (D) The scatter plot
shows the metabolic activity pathway exhibited a positive correlation in proteomics
and transcriptomics. (E) Heat map of 14 metabolic gene expression in proteomics
and transcriptomics.
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