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Abstract: We investigated the effect of modified aluminosilicates, including bentonite from Armenia
(BA) modified with quaternary ammonium salts (BAQAS) and phosphonium salts (BAQPS), on the
mechanical properties and morphology of Kevlar/epoxy composites. The Kevlar/epoxy composites
containing 1.0 or 3.0 wt.% modified bentonites were fabricated using the hand lay-up technique.
The mechanical properties, including the tensile, flexural, and in-plane shear strength, were tested.
Based on the obtained results, we found that the mechanical properties increased with modified
bentonite loading. The best results were obtained for composites containing 3 wt.% BAQAS, as most
of the mechanical properties were significantly improved (tensile strength 302.9 MPa (+30%), Young’s
modulus 16.3 GPa (+17%), flexural modulus 23.4 GPa (+12.5%), in-plane shear strength 22.8 MPa
(+24.5%), and in-plane shear modulus 677.2 MPa (+42%)). The obtained improvements in the
mechanical properties are attributed to the uniform dispersion of the filler, which was confirmed by
the highest increase in the intergallery spacing, from 28.3 Å for BAQAS to 45.1 Å for the composite
with 3 wt.% BAQAS. Scanning electron microscopy (SEM) analysis of the brittle fracture surface
indicated that the addition of modified bentonite to the epoxy matrix changed the morphology of the
Kevlar/epoxy/organoclay composites and improved the fiber–matrix interfacial adhesion.

Keywords: organoclay; epoxy composites; aramid fiber; mechanical properties; morphology;
quaternary ammonium and phosphonium salts

1. Introduction

Among the composites with a polymer matrix, fiber reinforced composites have been widely used
in the construction industry, and their applications are increasing. A continuous fiber polymer matrix
composite offers high strength to weight, high toughness to weight, and design flexibility to match
the material with the structural demands. The fibers are usually glass, carbon, or aramid, which do
not break by brittle cracking. Kevlar fiber reinforced composites (KFCs) have been widely used as
impact-resistant structures, such as in anti-ballistic applications, due to their high degree of toughness,
associated with the failure mechanism, damage tolerance, and good impact performance [1–4]. Despite
the excellent properties of KFCs, there are some disadvantages, such as low stiffness and compression
strength, limiting their application in the aviation industry, shipbuilding, or sport goods. To increase
the application capabilities of KFCs, many studies have investigated methods for improving the
damage tolerance properties of aramid fiber/polymer composites. Extensive research has been devoted
to the surface treatment of Kevlar fibers. Among the applied techniques, chemical grafting exhibits
promising potential [5–9].

In order to obtain composites with better impact resistance, several researchers applied natural [10,11]
and synthetic fibers [12,13] to prepared Kevlar hybrid composites. Yahaya and others [11] fabricated
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kenaf/Kevlar hybrid composites with different ratios of kenaf/Kevlar fibers. They showed that the
maximum force to initiate penetration was higher in hybrid composites compared to kenaf/epoxy and
Kevlar/epoxy composites. Hybridization of kenaf–Kevlar resulted in a positive effect in terms of the
energy absorbed (penetration) and maximum load. Valença et al. [14] showed that glass/Kevlar hybrid
composites were characterized by the highest mechanical properties, such as tensile and bending
strength, tensile modulus, and impact strength. Zangana et al. have also applied, among others,
glass and Kevlar fiber to create a hybrid trapezoidal corrugated composite core [15]. The result
showed that the hybridization provides structures with better impact behaviour, without increasing
structural weight.

Another way to enhance the interfacial interactions and mechanical properties of fiber reinforced
composites is to improve the properties of the matrix by incorporating nanofillers into the polymer.
Inorganic nanoparticles have gained use as potential reinforcing materials due to their low cost and
ease of fabrication [16–20]. One of the methods of manufacturing flexible composite armor is the use of
shear thickening fluid (STF) to impregnate Kevlar fibers [16,21]. Khodadadi et al. [22] used a mixture
of polyethylene glycol (PEG) and silica nanoparticles to produce STF. They observed that the specific
absorption energy (SEA) of Kevlar composites with 35 wt.% nanosilica was 2.3-times larger than those
of neat fabrics. This source of improvement was traced to the formation of siloxane bonds between
silica and PEG and the superior coating of Kevlar filaments with particles, which was confirmed by the
pull-out test and SEM analysis.

Taraghi et al., [23] showed that the addition of 0.3 and 0.5 wt.% multi-walled carbon nanotubes
(MWCNTs) to Kevlar/epoxy composites resulted in an increase in the absorbed energy capability
by approximately 35% and 34% at ambient and low temperature, respectively. The Kevlar/epoxy
composites with 0.5 wt.% MWCNTs exhibited improvements of 6%, 20%, 27%, and 48% in the
tensile strength, Young’s modulus, flexural strength, and flexural modulus, respectively [24]. In turn,
the authors of [25] modified the epoxy matrix in a seven-layer composite reinforced with weave aramid
fabric using non-functionalized MWCNTs and -COOH functionalized MWCNTs. The described results
showed that the addition of 0.32 wt.% MWCNTs with -COOH groups caused the highest increase of
the thermal stability, tensile strength, and Young’s modulus of composites.

On the other hand, Reis and others [26–28] applied the cork powder or nanoclays Cloisite 30B to
improve the impact resistance of Kevlar/epoxy composites. The filler content employed was 3 wt.% of
the epoxy resin–hardener mixture. They observed that the maximum load increase was approximately
4.5% for laminates filled by cork, 10.4% for laminates filled by cork/clays, and 16.1% for laminates filled
by clays. The elastic recuperation of nanoclay filled composites was approximately 40.1% higher than
the control material. The cited publications indicated an increase in the energy absorption capacity of
aramid composites containing nanoparticles including modified aluminosilicates.

Nanoclay has been explored worldwide as a cost-effective and potential filler for enhancing the
mechanical properties of fiber reinforced polymer composites [29,30]. However, there is still a lack
of information regarding the influence of nanoclay on the mechanical properties, such as the tensile
strength, flexural strength, and shear strength, of aramid fiber reinforced composites. In our previous
study, we observed an enhancement of the mechanical and thermal properties in epoxy composites [31]
and unidirectional glass fabric reinforced epoxy composites [32]. The objective of the present paper was
to use modified bentonites in aramid fibre reinforced composite technology, to extend their application
as structural materials, by improving the stiffness and mechanical strength. For this purpose, 1.0 or
3.0 wt.% of bentonites modified with quaternary ammonium and phosphonium salts were added to
the epoxy matrix. The influence of the type and content of modified bentonite on the mechanical
properties and structure of obtained Kevlar fabric reinforced epoxy composites were investigated.
The results of this publication will help to determine whether commonly known organoclays can
be successfully used to modify Kevlar fibre-reinforced composites to obtain materials with higher
mechanical parameters.
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2. Experimental Part

2.1. Materials

The epoxy resin and the curing agent used in this work were Epidian® 624 (EP), containing
mostly diglycidyl ether of bisphenol A and triethylenetetramine (Z1), respectively, both commercial
grade products of Ciech-Sarzyna Plant, Nowa Sarzyna, Poland. Bentonite from Armenia (BA) was
modified with phosphonium salts (BAQPS) using ethyltriphenylphosphonium bromide (Xiamen
Pioneer Technology Inc., Xiamen, China) and modified with quaternary ammonium salts (BAQAS)
using benzyl-C10-12-alkyldimethylammonium chloride (produced by Lonza, Basel, Switzerland).
Kevlar fabric (plain, 173 g/m2) was purchased from Havel Composites, Svésedlice, Czech Republic.

2.2. Modification of Bentonite with Quaternary Ammonium and Phosphonium Salts

The procedure of modifying layered silicates with quaternary ammonium and phosphonium salts
had been previously patented [33,34] and described in detail in a previous paper [32]. The procedure
consists of introducing 30–40% aqueous solution of quaternary ammonium and phosphonium salts
to a 10% suspension of bentonite in water heated to 60–90 ◦C, vigorous mixing for 1–3 h, removal of
the supernatant liquid, and drying, grinding, and sieving to obtain modified bentonites of grain size
below 63 µm.

2.3. Preparation of Epoxy Compositions

Epoxy compositions containing 1 and 3 wt.% modified bentonites were obtained. The modified
bentonite was dispersed in the epoxy matrix using a four-step homogenization procedure [32],
consisting of: premixing at room temperature by using a slow-running mechanical stirrer at velocity
of 1500 rpm for 10 min, ultrasonic application at 50 ◦C for 10 min, mixing (at 50 ◦C, for 20 min) in
a high-speed mixer (Dispermat CN40 produced by VMA-Getzmann, Gmbh, Reichshof, Germany)
equipped with a turbine-like mixing blade, and final homogenization for 10 min in a high-speed shear
rotating grinder at the rate of ca. 1000 s−1.

2.4. Preparation of Kevlar Fabric/Epoxy/Organoclay Composites

The epoxy compositions containing modified smectic clay were used for the preparation of
four-ply Kevlar/epoxy/organoclay composites using the hand lay-up technique (Figure 1). We added
12 wt.% hardener to the mixture, according to the resin manufacturer’s instructions. The epoxy
compositions containing amine curing agent were poured on a Teflon film and one dry Kevlar fabric
layer was impregnated using a hand roller. Then, another portion of the epoxy composition and dry
fabric layer was stacked on it. The stacking procedures were repeated until the desired number of
Kevlar fabric plies was laid. The uncured KFCs, after removing the excess of resin, was subsequently
degassed for 5 min at room temperature in a laboratory vacuum chamber Vakuum UHG 400, (Schuechl,
Bavaria, Germany). Then, the last layer was covered with another Teflon film before the sample was
placed between two steel plates of dimensions 200 × 300 mm, which acted as a mold. To control the
thickness of the KFCs, four steel plates with the required diameter were placed in the corners between
the mold. The laminates (0F4) were left to cure at room temperature for 24 h and then post-cured
in an oven with hot air circulation at 100 ◦C for 6 h. The resulting laminates contained ca. 38% of
Kevlar fabric by weight. The samples were cut from the laminates with an oscillating cutting disk.
The samples were used to measure the mechanical properties and microscopy analysis.
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Figure 1. A schematic diagram of KFCs fabrication procedure.

2.5. Morphology and Structure Analysis of Kevlar/Epoxy/Organoclay Composites

The brittle fracture morphology of the laminates was analyzed using scanning electron microscopy
(Phenom ProX desktop SEM, Utrecht, The Netherlands). The fracture profiles were obtained after
cooling in liquid nitrogen and an impact-break. The fractured profiles were copper sputter-coated
before observation. The observations were conducted at 10 kV accelerating voltage of electrons with a
2500 and 7000×magnifications.

In order to determine the distance between the plates (d001) of modified bentonites and reinforced
and non-reinforced epoxy composites with their addition, wide-angle X-ray scattering (WAXS) was
used. The measurements were performed using a diffractometer Bruker Nanostar type (Bruker AXS,
Inc. Madison, WI, USA) with a Cu lamp for the band width Kα. The samples were in the form of plates
10 mm in width and 1.9 mm in thickness from the tested composites. The bentonite samples were
tested in powder form.

The fiber surfaces from brittle fractures of composites were examined using an atomic force
microscope (AFM) (Bruker Nano Surfaces Division, Santa Barbara, CA, USA) in Tapping mode.
The influence of the modified bentonite for topography was investigated. The tests were performed
using a Nanoscope V microscope (Bruker Nano Surfaces Division, Santa Barbara, CA, USA).
The scanning speed was 1 kHz, and the resolution was 512 lines.

2.6. Study of Mechanical Properties

Plate specimens (250 mm × 25 mm × 1.9 mm) were employed for the tension test. As shown in
Figure 2, an Instron 5967 machine equipped with a videoextensometer was used to perform the tensile
tests according to PN-EN ISO 527-4:2000 [35]. All specimens were tested at a speed of 2 mm/min.

The bending tests were performed according to PN-EN ISO 14125:2001 [36], using the same tensile
machine equipped with a three-point bending rig. The vertical displacement speed of the rig was
1 mm/min during the test. The specimens were 60 mm long, 15 mm wide, and 1.9 mm thick, and the
span was 40 mm, as shown in Figure 3.
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Figure 3. Flexural test setup (a) and schematic diagram of bending test fixture with specimen size
(in mm), orientation (warp, weft) and applied force (F) (b).

The in-plane shear strength of the KFCs was also characterized from a tensile test in the ±45◦

direction of the fiber according to PN-EN ISO 14129:2000 [37]. The specimens (250 mm × 25 mm
× 1.9 mm) were tensioned at a cross-head speed of 5 mm/min using the Instron 5967 machine equipped
with a digital image correlation system (Aramis, GOM, Braunschweig, Germany) to determine the
longitudinal and transverse deformation. Due to the limited number of recorded frames during the
test, the recording with the camera was carried out in the shear deformation range 0–5%. The Aramis
system was equipped with two cameras with 35 mm lenses. Before the measurement, a characteristic
pattern was applied to the sample surfaces using graphite in the spray. This random grey scale pattern
was recognizable by the program and divided into small rectangles called facets, which can overlap.
Each facet has one unique structure and coordinates assigned to it, so that when the sample is loaded,
they are recognized in the following pictures. In this study, 15 × 15 pixels facets and a 5-pixel step size
were used. The calibration showed a pixel scale deviation equal to 0.027. The experimental setup for
±45◦ off-axis tension test with digital image correlation system and compact in-plane shear specimen
are shown in the Figure 4.
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y), applied force (F) and measured strains (εx, εy) (c).

The in-plane shear stress was calculated according to PN-EN ISO 14129:2000 [37] by the following
Equation (1):

τ12 =
F

2·a·b
(1)

where F is the shear force, N, a is the thickness, mm, and b is the width of the specimen, mm.
The shear modulus of the composites was determined from the shear strain curve for the shear

strain range of 0.002–0.005, using the Equation (2) as per PN-EN ISO 14129:2000:

G12 =
τ′′12 − τ

′

12

γ′′12 − γ
′

12

(2)

where τ1
12 denotes shear stress at shear strain γ1

12 = 0.002 and τ2
12 is the shear stress at shear strain

γ2
12 = 0.005.

The shear strain was calculated by the relationship (Equations (3) and (4))

γ1
12 = ε1

x − ε
1
y (3)

γ2
12 = ε2

x − ε
2
y (4)

where εx and εy are the longitudinal and transverse strain, respectively.
The longitudinal and transverse normal strains were determined from the digital images correlation

recorded with high-speed cameras during the test (Section 3.1.3).

3. Results

3.1. Mechanical Properties of Kevlar/Epoxy/Organoclay Composites

3.1.1. Tensile Strength

The results, i.e., the arithmetic means from ten tests of tensile strength for each aramid
fabric–reinforced epoxy composites with modified bentonites are collected in Table 1. Figure 5
show a representative curve for each replicate test. The presented curves indicate non-linear tensile
behavior of the composites with a clear point of specimen rupture after reaching the maximum
stress. Furthermore, the elastic limit of the unmodified resin matrix composite is discrete and
less visible than in other studies [11,38]. This may be due to the lower number of layers and the
fibre content of the composite. A similar elastic deformation behaviour is presented by composites
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with 1 wt.% organoclays content, while composites with a matrix containing 3 wt.% of modified
bentonites are characterized by a clear point of deviation from linearity. Moreover, curves indicate that
composites containing modified bentonites characterized by higher deformation at break. Such tensile
behavior of composites has affected the obtained results. It was found that the presence of modified
aluminosilicates significantly improved the tensile strength of the Kevlar fabric reinforced hybrid
composites. The highest, approximately 30%, increase of tensile stress was found for the laminates
with matrices containing bentonites modified with quaternary ammonium salt. Surprisingly, the three
times higher content of this organoclay in the epoxy matrix did not affects the change of this parameter.
In comparison with the results of other authors concerning nanoclay [20,39] and other nanofillers [25],
the obtained change was very pronounced, which may be related to the significant interlayer distance
(d-spacing) of organoclay after modification and their proper dispersion in the epoxy matrix, particularly
3 wt.%, confirmed by the SEM analysis of the brittle fracture morphology of the composite.

Table 1. The tensile properties of Kevlar reinforced composites 1. Epidian® 624 (EP), bentonite from
Armenia (BA) modified with phosphonium salts (BAQPS) and modified with quaternary ammonium
salts (BAQAS).

Material Ultimate Tensile Strength, MPa Young’s Modulus, GPa Elongation at Break, %

EP/Kevlar 233.9 ± 12.5 13.9 ± 1.2 1.6 ± 0.2
EP+1%BAQAS/Kevlar 303.1 ± 11.8 13.1 ± 0.9 1.9 ± 0.4
EP+3%BAQAS/Kevlar 302.9 ± 17.7 16.3 ± 3.0 1.6 ± 0.5
EP+1%BAQPS/Kevlar 260.3 ± 9.0 12.8 ± 1.0 1.8 ± 0.3
EP+3%BAQPS/Kevlar 285.7 ± 19.6 15.5 ± 0.2 1.7 ± 0.3

1
± the standard deviation.
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In the case of composites with the addition of bentonites modified with quaternary phosphonium
salt, the increase in the content resulted in an increase in the tensile stress, as a result of which,
the composites with 1 and 3 wt.% of BAQPS were characterized by a higher tensile stress of
approximately 11% and 22%, respectively, in comparison to the unmodified one. The obtained
results were again consistent with the results of WAXS analysis. The composites containing BAQAS
were characterized by higher values of the spacing between the organoclay platelets, which indicates
that the epoxy chains have more easily penetrated between the silicate galleries, which results in
an increase in the aspect ratio of bentonite layers. Better dispersion of this bentonite in the epoxy
matrix leads to the absorption of polymer layers in the entire volume of the composite on the silicate
particles [40,41]. As a result, the mobility of the polymer chains bound to the high aspect ratio platelets
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as well as those in intragallery is restricted during the load in the interfacial layer between the fibre and
the matrix, leading to a better stress transfer to the fibres [42]. Therefore, a greater interlayer distance
of BAQAS and a higher content of bentonite causes a local change in the polymer properties around
individual bentonite platelets in a larger volume of the composite.

In turn, the Young’s modulus of composites containing 1 wt.% of modified bentonites was slightly
decreased, compared to the reference sample, which may be associated with a slight dispersion,
which may be related to the presence of areas with different clay levels (SEM analysis). While,
the increase in content to 3 wt.% of BAQAS and BAQPS resulted in increases of the Young’s
modulus values by approximately 17% and 10% respectively, compared to the EP/Kevlar sample.
This enhancement could be attributed to the improvement of matrix stiffness [39], and change of
properties by reducing residual stresses and improving the cohesive strength of the matrix [20], which is
in accordance with our previous work related to organoclay/epoxy composites. This also confirms
the stress–strain relationship curve in the elastic deformation range. The elastic limit of composites
containing 3 wt.% is longer and is characterised by significantly higher stresses.

3.1.2. Flexural Strength

The results, i.e., arithmetic means from ten tests of flexural strength for each aramid
fabric–reinforced epoxy composites with modified bentonites are collected in Table 2. Figure 6
show the tensile stress-strain relationship of Kevlar-reinforced composites. As in the case of the curves
obtained during the tensile test, the curves presented in Figure 6 show differences in the performance
compared to the relationships presented in other papers [11,38,43]. This time they concern the final part
of the bending stress vs. deformation curves. Namely, our composites do not show high values of yield
displacement and are characterized by failure in brittle manner, regardless of the type of matrix used.
The results presented in Table 2. indicate that the addition of 1% wt. of modified bentonites to epoxy
matrices did not significantly affect the bending stress and elastic modulus of laminates. This could be
related to the fact that the longitudinal flexural strength is determined by the fiber properties. During
the bending of continuous fiber reinforced composites, the composite is compressed and tensioned.
Polymer composites, in particular aramid fiber composites, are characterized by the weak transverse
properties [44,45] and significantly lower compression compared to tension strength [46]. As a result,
the bending strength depends primarily on the compressive strength, as the damage usually starts on
the compressive side [30]. In turn, scientific studies indicate that the addition of 1 wt.% of organoclay
does not significantly affect the change in compression properties of epoxy nanocomposites [47–50].
As a result, the obtained composites with 1 wt.% of organoclay characterized by the bending properties
at the level of unfilled composite. This is also visible in Figure 6, as the curves are similar to EP/Kevlar
sample, with maximum stress, elastic and plastic limit and failure manner. In turn, the addition
of 3 wt.% bentonite causes a slight change in failure manner, with highest yield displacement and
maximum load. Furthermore, the slope of the curve is greater, which indicates greater rigidity. As a
result of composites containing 3 wt.% modified BA, slight increases in the ultimate flexural strength
and elastic modulus were observed.

Table 2. The flexural properties of Kevlar reinforced composites 1.

Material Ultimate Flexural Strength, MPa Flexural Modulus, GPa Elongation at Break, %

EP/Kevlar 389.9 ± 22.0 20.8 ± 0.8 6.3 ± 0.3
EP+1%BAQAS/Kevlar 381.0 ± 19.3 20.3 ± 0.6 6.1 ± 0.4
EP+3%BAQAS/Kevlar 401.5 ± 20.6 23.4 ± 0.9 6.6 ± 0.5
EP+1%BAQPS/Kevlar 379.8 ± 19.9 20.2 ± 1.0 6.0 ± 0.6
EP+3%BAQPS/Kevlar 394.9 ± 23.3 21.7 ± 0.9 6.6 ± 0.5

1
± the standard deviation.
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Figure 6. Representative stress-strain curves from the flexural test for the tested Kevlar-reinforced composites.

The exception was the laminates with 3 wt.% BAQAS. The elastic modulus of this sample increased
by 12.5% compared to reference sample, which coincides with the conclusions reached in the analysis
of the Young’s modulus. Again, such reinforcing effects of the organoclay can be attributed to an
appropriate dispersion and probably full intercalation of the high aspect ratio platelets which results in,
that the interfacial interaction between aramid fibers and epoxy matrix can be improved. The obtained
results showed that the aluminosilicates modified with quaternary ammonium and phosphonium salts
did not affect the phenomenon of delamination, which is indicated as a major failure mechanism of
continuous fiber reinforced composites, resulting in a deterioration in their strength [39]. This may be
due to the appropriate modification and mixing process of the clay with the matrix to ensure a uniform
dispersion. In addition, aramid composites tend to destroy the fiber surface skin [51,52], in contrast to
carbon or glass reinforced composites where debonding of the fiber/matrix interface occurs [53,54].
This difference in aramid fibre structure described by Cheng and others in combination with the
addition of organoclay may affect the phenomenon of delamination of obtained composites [55].

3.1.3. In-Plane Shear Strength

The in-plane shear strength of hybrid aramid/epoxy composites was also investigated from tensile
tests on (±45) laminate, which allows a uniform stress field over a large area of the sample [56].
The in-plane shear modulus in the range of shear strain of 0.002–0.005 and the shear strength at the
point of shear strain of 0.05 according to the standard were also determined. The maximum shear
strength and maximum shear displacement at the maximum shear load were determined. On the basis
of the obtained results as summarized in Table 3, the addition of modified aluminosilicates significantly
improved the behavior of the composite during tension at an angle of 45 degrees. In addition, an upward
trend was observed as the clay content increased. As in the case of tensile and bending, higher values
of the in-plane shear strength and in-plane shear modulus were obtained for the composites containing
bentonite modified with quaternary ammonium salt. The composites containing 1 and 3 wt.% BAQPS
showed 10.4% and 19.7% shear strength improvement, compared to the reference sample. In turn,
for the composites containing 1 and 3 wt.% of BAQAS, an increase was recorded at the level of
12.6% and 24.6%, respectively, in relation to the composite with an unmodified epoxy resin (Figure 7).
The obtained relationships confirmed that a larger d-spacing of BAQAS and appropriate dispersion
provided better mechanical parameters.
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Table 3. Results of the in-plane shear test on (±45) laminates 1.

Material
Shear Strength

at 5% Shear
Strain, MPa

Shear Displacement
at 5% Shear Strain,

mm

Shear
Modulus,

MPa

Max Shear
Strength,

MPa

Max Shear
Displacement,

mm

EP/Kevlar 18.3 ± 1.0 3.53 474.7 ± 24.0 23.3 ± 1.1 12.5 ± 2.1
EP+1%BAQAS/Kevlar 20.6 ± 0.9 4.10 609.1 ± 26.6 30.7 ± 4.4 23.1 ± 2.4
EP+3%BAQAS/Kevlar 22.8 ± 0.8 4.18 674.0 ± 27.1 34.7 ± 3.1 25.9 ± 2.6
EP+1%BAQPS/Kevlar 20.2 ± 1.2 4.13 591.0 ± 19.6 28.1 ± 2.1 19.5 ± 2.3
EP+3%BAQPS/Kevlar 21.9 ± 0.6 4.23 677.0 ± 17.3 29.4 ± 3.3 17.4 ± 3.5

1
± the standard deviation.
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The influence of the content of modified layered aluminosilicates in the epoxy matrix on the
shear stress-shear displacement was even more visible after exceeding 0.05 for the shear strain value
(shown in Figure 8). As a result, the maximum shear stresses of composites containing 1 and 3 wt.%
BAQAS increased by 31.8% and 48.9%, respectively, compared to the unmodified composite. In turn,
for laminates with 1 and 3 wt.% BAQPS content, improvements of the maximum shear strength by 20.6%
and 26.2% were achieved compared to the reference sample, respectively. This improvement is attributed
to the dispersion of clay in the matrix and the change in its properties, as the properties obtained
under ±45 off-axis tension were dominated by the matrix properties and interface interaction [9,57].
On the recorded in-plane shear load–displacement curves of the composites, the slope of the curve
decreased as the shear load increased, which indicates a reduction in the matrix stiffness due to local
cracks (Figure 8) [58].

However, for composites containing modified bentonites, no plateau region of the shear curves
and subsequent slow decrease of stress with an increase in the shear load, which is characteristic for
aramid [9,59] as well as carbon [60] and glass [61] composites, was observed. In contrast, for composites
with a modified matrix, the stress slightly increased as the deformation increased, until it ruptured.
This effect was intensified by the fact that Kevlar fibers do not fail by brittle cracking, as opposed to
glass and carbon fibers [26]. This was confirmed by the elongation values at the moment of specimen
failure, which were significantly higher compared to the deformations obtained under on-axis tension.
This non-linear behavior under the ±45 off-axis tension of composites reinforced with woven fabrics,
which is related to the orientation of the fiber strands toward the loading direction, is very characteristic
for these materials [61].
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containing modified bentonite matrices.

This indicates that, despite a significant increase in the stiffness of the matrix and the fact that there
was no plateau, the addition of modified bentonites did not result in the rapid and brittle cracking of
composites. Aramid composites containing modified bentonites were characterized by increased shear
deformation at the break. The deformation of composites from BAQAS increased twofold, while that
of BAQPS increased by half compared to the reference sample. This is worth noting, in particular
since a significant change in the stiffness and behavior of the composites was observed even at lower
strains, as shown by the values of the in-plane shear modulus. From the point of view of using aramid
composites as energy-absorbing materials, for example, in car construction or in bulletproof vests,
this is a beneficial effect [61–63].

The longitudinal εx and transverse εy normal strain values obtained from the analysis of images
recorded during the study were used to calculate the shear strain (Figure 9). Examples of diagrams of
longitudinal and transverse deformation fields for points 1 and 2 are shown in Figure 10. Then, on the
basis of the data from the points 1 and 2 marked in Figure 11, the in-plane shear modulus from the
shear stress–strain curve at the proportional limit was determined.
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As demonstrated in Table 3, the shear modulus of the EP/Kevlar composite was 474 MPa,
while, for composites containing 1% and 3% modified bentonites, the shear modulus values were
approximately 25% and 42% higher, respectively, than those of the unfilled EP/Kevlar composite.
The obtained results of the shear modulus confirm that the addition of aluminosilicates and their
appropriate dispersion in matrices resulted in changes in the stiffness of the matrix and composites.
As in the case of the Young’s and bending moduli, a more pronounced change was achieved with the
addition of 3 wt.% bentonite.

3.2. Morphology and Structure of Kevlar/Epoxy/Organoclay Composites

3.2.1. Analysis of Wide-Angle X-ray Diffraction

To assess the effectiveness of the modification of bentonites with QAS and QPS, the products
were tested using X-ray scattering. Figure 12 shows the X-ray diffraction (XRD) patterns with the
characteristic peaks of umodified clays, organoclays, and composites with 3 wt.% modified clays.
As can be seen, the interlayer distance (d-spacing) of BA after modification increased by 11.6 Å
and 8.2 Å, respectively. The larger distance between the layers of aluminosilicates modified with
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quaternary ammonium salt may be associated with the presence of the long alkyl chains. Phosphorus
is characterized by lower electronegativity in relation to nitrogen, whereby the ion exchange capacity of
quaternary phosphonium salts with intergallery ions is lower compared to quaternary ammonium salts.
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and BAQPS, and cured epoxy compositions containing 3 wt.% BAQAS and BAQPS.

This effect is also compounded due to a perceived shielding effect of the long alkyl chains,
which affects the binding energy of the anionic components. As a consequence, quaternary ammonium
salts penetrate better into galleries of aluminosilicates. This was confirmed by the curves recorded
for composites EP containing 3 wt.% modified aluminosilicates, whose maximum peaks were shifted
toward the lower diffraction angles. Among these composites, a much larger intergallery spacing,
above 35 Å, was observed for the samples containing BAQAS. On the other hand, EP+3%BAQPS had a
much smaller distance between the layers of 22 Å. Such a large difference may result from the presence
of aromatic rings in the structure of phosphonic salt, which hinders the migration of epoxy resin chains
to the inter-package spaces. Such a large difference is the effect of the smaller d-spacing of BAQPS
plates in comparison to BAQAS, which makes the migration of polymer chains between clay packages
more difficult.

In the case of aramid fiber composites, the d-spacing of modified clays were lower than those
for non-reinforced composites (Figure 13). This applies to materials with matrices containing 3 wt.%
BAQAS and BAQPS, for which d001 were lower by approximately 5.9 Å and 2.6 Å, respectively.
This may be due to the limited mobility of the clay platelets due to the presence of fabric. In addition,
external pressure increased this effect, which contributed to the orientation of the clay platelets [64].
Differences may be due to the lower fiber content of the composite and the use of fabrics instead of mats.
Lower fiber contents result in longer distances between the layers, which facilitates any arrangement
of the clay platelets [65].
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3.2.2. SEM Analysis of Brittle Fracture Surface of Kevlar/Epoxy/Organoclays Composites

Figure 14 show representative microphotographs of brittle fracture surfaces of Kevlar/epoxy
composites and the Kevlar/epoxy/organoclay composites. Figure 14a,b shows topographies with
features typical of a brittle mechanism of epoxy matrix/fiber composite cracking. Smooth surfaces are
visible in the places where the fibers are pulled out, which indicates that there was easy interfacial
debonding [66]. The interfacial debonding is likely promoted by the smooth cohesive matrix breakages.
This suggests that the resistance for crack propagation is low, which results in weak mechanical
properties. The SEM microphotographs of Kevlar/epoxy/organoclay composites exhibited changes in
the morphology of these materials. In the case of composites containing 1 wt.% modified bentonite,
a slight distribution of organoclay was observed, as evidenced by the increase in roughness and the
created wrinkles (Figure 14c–e). In addition, fibrillas detached from the bulk of the fiber were identified
(Figure 14c), which indicates that the failure mechanism of Kevlar/epoxy/organoclay composites was
also related with so-called fibrillation [51,52].

This situation may occur when the shear strength between aramid chains is less or comparable to
the shear strength between the matrix and fiber. Based on SEM images of composites containing 1%
organoclay, we concluded that bentonite modified with quaternary ammonium salt exhibited better
dispersion than when modified with phosphonium salt (Figure 14f). An observation at magnification
indicated that BAQPS tended to agglomerate, which is likely due to the smaller d-spacing compared to
BAQAS. On the other hand, increasing the amount of these bentonites to 3 wt.% caused a significant
change in the structure and the formation of morphology with a structure characteristic for composites
containing modified aluminosilicates (Figure 14g–j) [67,68].

The surfaces formed after brittle fracture of composites containing 3 wt.% modified aluminosilicates
were more expanded and rougher. This extent of resin morphology may prevent crack propagation,
by creating tortuous paths. As in the case of the reference sample, a debonding interface and cracking
matrix in the SEM images of counterpart surfaces of Kevlar/EP+3%BAQAS and Kevlar/EP+3%BAQPS
was identified. However, observation of the magnified images indicated that in fiber pull-out places,
irregularly shaped craters were visible (Figure 14h,j). These small pieces of attached resin were visible
at some points on the fiber surface, indicating good adhesion between the organoclay filled epoxy
matrix and the fiber (Figure 14k,l). Improving the matrix–fiber interaction combined with the creation
of tortuous crack propagation paths resulted in the improvement of the mechanical properties of
these composites.
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3.2.3. Atomic Force Microscopy Analysis of Fiber Surface

A more detailed analysis of the topography of fibers pulled out after brittle fracture of composite
samples performed with an AFM microscope confirmed the presence of resin fragments on the fiber
surface. According to the literature data of AFM analysis, the surface of a Kevlar fiber is quite smooth
with a small roughness to a maximum of several dozen nanometers [69,70]. In the case of fibers pulled
from a composite with an unmodified resin matrix, small layers of resin are visible on its surface,
with a maximum height and cross-section of 90 nm and 0.5 um, respectively (Figure 15a). On the
other hand, the topography pictures of fibers from Kevlar/EP+3%BAQAS and Kevlar/EP+3%BAQPS
composites show that the size of the adhered matrix pieces increased (Figure 15b,c). The analysis
indicated that the heights were 0.5 µm and 1.2 µm and the cross-sections were 1 um and 1.5 µm,
respectively. This confirms that the use of modified aluminosilicates changed the nature of the
composite breakthrough as well as increased the interactions of the fibers with the polymer matrix,
which resulted in the improvement of the mechanical parameters of aramid composites.
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4. Conclusions

In this work, we obtained Kevlar-reinforced epoxy composites containing modified bentonites.
The bentonites were modified with quaternary ammonium and phosphonium salts. The influence of
the type and content of modified bentonites on the mechanical properties and structure of the obtained
composites were investigated. On the basis of the obtained results, we found that both the amount
and type of modified bentonites affected the mechanical properties of the composites. The mechanical
properties improved with the loading of modified bentonites. On the other hand, the type of salts
used to modify the bentonite had a more significant influence on the results obtained. The use of
quaternary ammonium salt led to a distance between the plates of up to 28.3 Å, while bentonite
modified with phosphonium salt had a d-spacing of 23 Å. This small difference affected the structure
of the composites, as the addition of bentonites modified in this way to the epoxy matrix and their
dispersion led to the spacing of BAQAS and BAQPS tiles at 40 Å and 25 Å, respectively. Such a
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large difference may result from the presence of aromatic rings in the structure of phosphonium salt,
which hinders the migration of epoxy resin chains to the inter-package spaces. The larger inter-package
spaces of BAQAS facilitates their dispersion in the polymer matrix, confirmed by SEM, which leads to
an increase in the organoclay aspect ratio and direct absorption and binding to the polymer. As a result,
the mobility of the polymer chains is limited, also in the interfacial layer fiber-polymer, which leads to
a better stress transfer to the fibres in the composite. Higher clay content caused bigger changes in the
whole volume of the composite. As a result, a significant improvement of mechanical properties of
composites containing 3 wt.% of bentonite modified with ammonium salt was achieved. The obtained
results of mechanical properties of composites reinforced with aramid fabric indicate that modified
bentonites, which are commonly known as cheap and available polymer modifiers, are an important
and interesting alternative in the context of improving the interaction between the polymer matrix
and Kevlar fiber, which results in the improvement of functional properties of aramid-reinforced
composites. Moreover, the addition of bentonites resulted in an improvement in the stiffness of
composites and increase elongation at break, without causing a change in the manner of failure. Thus,
aramid composites with epoxy resin matrix containing modified bentonites can be used not only as
energy-absorbing materials but also as hybrid construction materials for example in aircraft body
plating, airplane luggage compartments, ship hulls, kayaks etc.
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