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Abstract

Background—Ventilator-associated pneumonia (VAP) is a known complication of mechanically 

ventilated children in the pediatric intensive care unit (PICU). Endotracheal tube (ETT) biofilms 

are often implicated in the development of VAP by providing a conduit for pathogens to the lower 

respiratory tract.

Methods—A prospective cohort study from April 2010–March 2011 of children 4 weeks to 18 

years of age ventilated for greater than 72 hours to determine the microbiota of ETT biofilms and 

tracheal aspirates.
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Results—Thirty-three patients were included with a mean age of 6.1 years (SD ± 5.1 years) and 

average length of intubation of 8.8 days (SD ± 5.0 days). Bacterial communities from tracheal 

aspirates and the proximal and distal ends of ETTs were determined using 16S rRNA gene 

libraries. Statistical analysis utilized two-part statistics and the Wilcoxon signed rank sum test for 

comparison of bacterial communities. Sequencing revealed a predominance of oropharyngeal 

microbiota including Prevotella and Streptococcus spp. Pathogenic bacterial genera including 

Staphylococcus, Burkholderia, Moraxella, and Haemophilus were also represented. Bacterial load 

was greatest at the proximal aspect of the ETT. Duration of intubation did not significantly impact 

bacterial load. Morisita Horn analysis across sites showed similar communities in 24/33 (72%) of 

patients.

Conclusions—ETT biofilms and tracheal aspirates of intubated patients in the PICU primarily 

consisted of oropharyngeal microbiota, but had a significant representation of potentially 

pathogenic genera. While the majority of patients had similar microbiota when comparing their 

ETT biofilms and tracheal aspirates, a subset of patients showed a divergence between 

communities that requires further investigation.

Introduction

Ventilator-associated pneumonia (VAP) is a complication of mechanical ventilation support 

in critically ill children and is the second most common hospital acquired infection among 

patients in the pediatric intensive care unit (PICU) [1]. VAP is associated with a substantial 

increase in resource utility, length of stay, and morbidity [2], yet limited understanding of 

the microbial factors associated with VAP pathogenesis has precluded development of 

effective prevention strategies.

It has been postulated that the presence of an endotracheal tube (ETT) contributes to the 

development of VAP via colonization and formation of biofilms, providing a conduit for 

potential pathogens to the lower respiratory tract. Multiple studies have indicated that ETTs 

are quickly colonized with microorganisms and lower airways are exposed to these 

organisms, increasing risk of VAP or other systemic infection [3]. Biofilms are also 

relatively protected from the host immune defense and from systemically administered 

antibiotics [4,5,6]. Further understanding of the composition of microbial communities in 

ETT biofilms and the timing of colonization could provide insight into mechanisms leading 

to VAP and creation of preventive interventions.

Tracheal aspirates are often utilized for the diagnosis of VAP in lieu of gold standard 

methods, such as culture of lower airway samples or lung biopsy, because of the 

invasiveness of these techniques [7,8,9]. Unfortunately, a recent study by Willison et al. 

demonstrated that, while tracheal aspirates in the pediatric population are fairly sensitive, 

they lack specificity and poorly distinguish between infection and colonization, even when 

stringent requirements for number of colony forming units and polymorphonulcear 

leukocytes are used to define infection [10]. Furthermore, molecular methods of bacterial 

identification have demonstrated enhanced detection of pathogenic bacteria compared to 

traditional culture of bronchoalveolar lavage samples in cystic fibrosis patients [11]. Similar 

results have been found when using 16S ribosomal RNA (16S rRNA) to analyze central 
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venous catheters [12]. These studies, and others, have called into question the accuracy of 

traditional methods to identify the most abundant or, potentially, pathogenic bacteria when 

compared to molecular diagnostics [12,13,14].

There has been limited application of 16S rRNA sequencing to detect bacteria in ETT 

biofilms and tracheal aspirates. Existing studies, performed in adults, suggest that molecular 

diagnostics can characterize a larger proportion of the microbial community and provide 

additional data to better determine whether organisms are more likely to represent infection 

or colonization compared to traditional approaches. These techniques may also provide 

insight into the timing of colonization of the lower airways as well as the transition from 

colonization to infection [9,12,15,16].

The goal of this study was to examine the bacterial composition of ETT biofilms and 

tracheal aspirates of mechanically ventilated children on the day of extubation to determine 

whether pathogenic bacteria are disproportionally represented in the ETT biofilm and how 

the biofilm composition compares to the bacterial communities in the lower airways as 

characterized by the tracheal aspirate. We hypothesized that the bacterial composition of 

ETT biofilms and tracheal aspirates are likely similar and will also contain high levels of 

opportunistic pathogens implicated in lower airway infections.

Materials and methods

Data collection

The data and specimens for this analysis were obtained from a prospective study conducted 

in the Children’s Hospital Colorado PICU between April 2010 and April 2011. The 

Colorado Multiple Institutional Review Board approved the protocol, and parents or 

guardian provided informed consent for patients. Children between the age of 4 weeks and 

18 years of age who required mechanical ventilator support via ETT for at least 72 hours 

were eligible for this study. Exclusion criteria included gestational age less than 37 weeks at 

birth for children less than one year at the time enrollment, indwelling tracheostomy or 

tracheostomy expected to be placed within seven days of PICU admission, an ETT present 

without mechanical ventilator support, and contraindication to deep tracheal suctioning.

All patients were subject to the VAP Event Bundle instituted at Children’s Hospital 

Colorado which includes regular oral care, in-line suctioning, and other infection prevention 

measures defined in ventilator care guidelines.

Tracheal aspirate specimens from eligible subjects were collected with the first routine 

suctioning of the ETT occurring on the planned day of extubation via in-line suction and 

sterile specimen trap. Depth of suctioning was standardized by protocol as 1 cm below the 

ETT. For samples with low volume, up to 1 mL of sterile saline was used to facilitate 

collection. Specimens were aseptically transferred from mucous traps to 2 mL cryovials, 

flash frozen in liquid nitrogen, and stored at −80° C.

ETTs were collected upon extubation of patients, regardless of when extubation occurred. 

Each ETT was placed in a sterile specimen bag and immediately frozen at −80° C until 
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processed. The proximal 5 cm (defined as the end protruding from the mouth) and the distal 

5 cm (defined as the end residing in the trachea) were excised. Two separate standard culture 

swabs were used to sample the proximal lumen and distal lumen. The ends of the swabs 

were placed in 400 microliters of QIAGEN Buffer G2 (Germantown, Maryland). The swabs 

and buffer were then heated to 37° C for 30 minutes and vortexed to help release the biofilm. 

Afterwards, 200 microliters of the fluid were then used for DNA extraction using QIAGEN 

EZ1 Advanced DNA Bacterial DNA purification system per the manufacturer’s instructions 

[17]. The purified DNA was used to determine bacterial load by quantitative PCR (qPCR) 

[18].

High-throughput DNA sequencing for microbiome analysis

16S Amplicon Library Construction—Bacterial profiles were determined by broad-

range amplification and sequence analysis of 16S rRNA genes as previously described 

[19,20].

Analysis of Illumina Paired-end Reads—Illumina MiSeq paired-end reads were 

aligned to human reference genome Hg19 with bowtie2 and matching sequences were 

discarded [21,22]. The remaining non-human paired-end sequences were sorted by sample 

via barcodes in the paired reads with a python script [20]. Sorted paired-end sequence data 

were deposited in the NCBI Sequence Read Archive under accession number SRP063527. 

The sorted paired reads were assembled using phrap, and pairs that did not assemble were 

discarded [23,24]. Assembled sequence ends were trimmed over a moving window of five 

nucleotides until average quality met or exceeded 20. Trimmed sequences with more than 

one ambiguity or shorter than 200 nucleotides were discarded. Potential chimeras identified 

with Uchime (usearch6.0.203_i86linux32) using the Schloss Silva reference sequences were 

removed from subsequent analyses [25,26]. Assembled sequences were aligned and 

classified with SINA (1.2.11) using the 418,497 bacterial sequences in Silva 115NR99 as 

reference configured to yield the Silva taxonomy [27,28]. Operational taxonomic units were 

produced by clustering sequences with identical taxonomic assignments. This process 

generated 6,270,141 sequences for 93 samples (average sequence length: 314 nucleotides; 

average sample size: 67,421 sequences/sample; minimum sample size: 7,059; maximum 

samples size: 182,870). The median Goods coverage score was = 99.6% at the rarefaction 

point of 7,059. The software package Explicet (v2.10.5, www.explicet.org) was used for 

display and statistical analysis [29,30].

Statistical analysis

Sequence counts were analyzed using two-part statistics, calculated as the sum of two Chi 

squared statistics, the McNemar’s test for paired proportions, and the Wilcoxon signed rank 

sum test as described elsewhere [30]. Morisita Horn (MH) indices were calculated to 

determine similarity between sample sites. Values range from 0 to 1, with 1 representing 

complete similarity in the proportion and identity of taxa, and 0 representing no similarity. 

Wilcoxon signed rank sum tests were performed to analyze differences between each 

comparison group for both MH and bacterial load. Further bacterial load analysis was done 

using random coefficients model with random intercept. Additional analyses for sequence 
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(relative abundance of specific taxa), MH, and qPCR were performed using SAS version 

9.4, SAS Institute, Cary, NC. Sequence and MH data were calculated in Explicet [31].

Results

Fifty-seven ETTs were collected. Five ETTs were excluded because the culture swab was 

unable to pass through the lumen of the ETT (ETT diameter <3.5 mm). Fifty-two ETTs were 

subject to qPCR amplification. Fifteen ETTs did not have more bacterial DNA than reagent 

blanks and were eliminated from analysis leaving a total of 37 ETTs for 16S rRNA analysis. 

Four subjects only had one sample site (proximal or distal ETT or tracheal aspirate) with 

sufficient biomass to undergo sequencing, leaving 33 patients for comparative analysis. 

There were 23 paired tracheal aspirate and proximal ETT samples, 30 paired tracheal 

aspirate and distal ETT samples, and 25 paired distal and proximal ETT samples.

The 33 patients ranged in age from 2 months to 17 years of age. Patients were intubated 

between 3 days to 22 days with an average duration of intubation of 8.8 days (SD ± 5.0 

days). Male patients comprised 58% of the study population. The most common diagnoses 

were lower respiratory tract infections, seizures, and sepsis. Eight patients received 

antibiotics 24 hours prior to extubation (Table 1).

Distribution of bacteria identified

Bacterial communities from the proximal and distal ETT and tracheal aspirates were 

determined by 16S rRNA analysis. Prevotella was the most common genus identified in all 

sites comprising 36.8% of the overall sequences. Streptococcus and Staphylococcus were 

the next most common bacterial genera at 21.6% and 10.2%, respectively (Table 2). All sites 

contained Prevotella and Streptococcus. Staphylococcus was absent from two distal biofilms 

and two tracheal aspirates although not from the same patients. Staphylococcus, 
Stenotrophomonas, and Veillonella had a higher abundance in the proximal ETT biofilm 

compared to the distal ETT biofilm (p<0.01; Table 3). There was a significant difference in 

the proportion of Haemophilus in the tracheal aspirate compared to the proximal ETT 

(1.51% vs. <1%, p=0.02). Burkholderia was more abundant in tracheal aspirate samples 

(7.35%) versus proximal and distal ETT biofilm samples (1.85% and 1.95%, respectively). 

However, a significant difference was only observed between the distal ETT and tracheal 

aspirate (p=0.02, Table 3).

Bacterial load

qPCR determined bacterial load at each sample site. There was no significant difference 

between bacterial load of the proximal ETT biofilm and tracheal aspirate. As a group, the 

sampled tracheal aspirates had a significantly higher bacterial load compared to the distal 

ETT biofilms (p<0.04). The proximal end of the ETT had greater bacterial load compared 

the distal end (p<0.01). Random coefficients model with random intercept was used to 

determine that bacterial load was not significantly associated with length of intubation at any 

of the sampled sites. There was not a significant interaction between duration of intubation 

and the comparison of bacterial load across the sampled sites (p=0.35).
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Comparison of diversity

The median index for MH comparison was 0.94 between tracheal aspirates with proximal 

ETT biofilms, 0.94 between tracheal aspirates and distal ETT biofilms, and 0.87 between the 

distal ETT biofilms and proximal ETT biofilms (Figure 1). While a majority of patients had 

relative similarity between the sample sites, there was a subset of patients (n=9, 27.3%) with 

MH index scores less than 0.7, indicating less similarity. These patients were not consistent 

in which sampling site was responsible for the dissimilarity. There were also various 

predominant genera in these dissimilar communities that were not consistent between 

patients (Figure 2). We examined the clinical and demographic data for the subset of patients 

with a MH index score less than 0.7 in attempt to determine factors that contribute to 

divergent bacterial populations. There was no significant difference in type of admission 

diagnosis, age, length of intubation, or total bacterial load between these 9 patients and the 

remaining cohort. Of the nine patients with MH <0.7, only three patients were on antibiotics 

24 hours prior to extubation.

Discussion

We examined the bacterial composition of ETT biofilms and tracheal aspirates collected on 

the day of extubation from mechanically ventilated children to determine the relationship 

between biofilms and lower airway colonization. We found that molecular analysis 

techniques reveal a wide variety of microbial taxa, well beyond that of standard culture 

techniques, and may have implications for future strategies to prevent ventilator-associate 

infections.

This study compared the microbiology of lower airway secretions to that of the ETT biofilm 

and provides new insight into the complex composition of ETT biofilms and airway 

colonization which could impact the risk of ventilator-associated infections. 16S rRNA 

sequencing demonstrated that Prevotella was the most prevalent genus in this pediatric 

population. Prevotella is a known constituent of the oropharyngeal microbiota and likely 

represents a common inoculum within the ETT through contamination with oral secretions 

either during the process of intubation or via aspiration of oral secretions after intubation has 

occurred. Streptococcus and Staphylococcus, other common constituents of the 

oropharyngeal microbiota, were also prominent in the ETT biofilms and tracheal aspirates. 

Yet, all three sample sites contain taxa with species that have pathogenic potential [32]. The 

predominance of Staphylococcus in the proximal section of the ETT was an interesting 

finding and may be a product of external manipulation of the ETT and subsequent 

introduction of bacteria to the endotracheal circuit. In addition, the proximal aspect of the 

ETT is least likely to be affected by immune response or antibiotics [33].

Burkholderia, Neisseria, Moraxella, and Haemophilus sequences are potential pathogens that 

were identified in proximal and distal biofilms as well as tracheal aspirates. While not all of 

these genera demonstrated a statistically significant difference between sample sites, they 

were represented in a higher abundance in the distal ETT biofilms and tracheal aspirates. 

This is not unexpected as these genera are often thought to be potential infectious pathogens 

in the lower airways [9]. While many investigations of VAP discuss the risk of oral 

microbiota being introduced to the lower airways through tracheal intubation, it is also 
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evident that the microbiota of the lower airways impact the distal biofilms as well [9,16]. 

The median MH value on site comparison ranged from 0.87 to 0.94 indicating that the 

bacterial communities of the tracheal aspirate and distal and proximal biofilms were 

consistent with each other. There were, however, nine patients with MH values less than 0.7 

for one or more comparison between sampling sites. Subsequent analyses did not provide an 

explanation for the divergence observed in this subset of patients.

Patients with MH index less than 0.7 were neither more likely to be on antibiotics prior to 

extubation, nor were they noted to have a greater bacterial load at sampled sites than the rest 

of the cohort. While possible contamination could explain some of the differences observed, 

that fact that differences were seen within the ETT itself suggests there may be alternative 

explanations as well. These patients are interesting outliers and further investigation is 

required to identify factors that contribute to this diversity and its clinical impact on patients.

It has been suggested that strategies to reduce ETT biofilm accumulation may decrease the 

risk of VAP [3]. However, total bacterial load was found to be significantly higher in the 

tracheal aspirate compared to the distal ETT. This finding may suggest that the ETT biofilm 

is a reservoir for infection whereas bacterial replication and biomass is more robust in the 

airways where nutritive resources are more abundant. Furthermore, there was increased 

bacterial load at the proximal biofilm when compared to the distal biofilm among patients. 

This is in contrast to previous data that has reported higher bacterial load in the distal ETT 

biofilms [34,35,36]. This discrepancy may represent the effect of exposure to the external 

environment on each section of the ETT or the fact that the proximal ETT is protected from 

delivery of antibiotics or host immune responses. The duration of intubation did not appear 

to affect bacterial load at any of the three sample sites, which is consistent with at least one 

other study [15]. Given that biofilms and tracheal aspirate samples were obtained on the day 

of extubation, it is difficult to determine the effect of time on bacterial load for each 

individual patient. However, increased length of intubation as an independent variable does 

not appear to result in increased bacterial load when assessed in subjects intubated greater 

than 72 hours. It should be noted that ETTs analyzed just 72 hours after intubation had high 

levels of bacteria present, demonstrating how quickly bacterial biofilms are formed.

Our data showed that Streptococcus was the second most prominent genus in this patient 

population. Streptococcus has been described as forming biofilms especially in conjunction 

with other bacteria including Actinomyces species and Veillonella species [37,38]. 

Veillonella species were found in both proximal and distal biofilms whereas Actinomyces 
species were not prominent in our study. Previous studies have isolated Enterobacteriaceae 
species within ETT biofilms though these species were not highly represented in this study 

[39,40]. The internal lumen of the ETT was sampled in this study which is in contrast to 

similar studies which have sampled the external and internal aspects of the ETT [15,16]. The 

internal lumen was selected as it was thought to be least impacted by the host immune 

response and systemic antimicrobial agents and also less likely to be affected by 

communication with the external environment with exposure to the bidirectional movement 

of ventilated gas.
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This study does have several limitations. While this study is relatively large compared to 

similar published work performed utilizing 16S rRNA sequencing of ETT, the study size is 

still insufficient to make generalized conclusions within this patient population. Fifteen of 

the ETT did not have more bacterial DNA compared to reagent blanks after amplification 

with qPCR. Since neither the proximal nor distal portions amplified, the assumption was 

made that there was not significant biomass in the ETT biofilms. Given that a majority of 

samples did produce sufficient biomass, it is unlikely that sampling technique contributed to 

the lack of amplification. It may have been possible to increase yield of sampling using 

flocked swabs instead of standard culture swabs. Another limitation of the methodology 

employed for bacterial molecular identification is the inability to accurately identify 

organisms at the species level. Thus, further investigations are required to determine whether 

genera like Staphylococcus and Streptococcus are comprised of mostly commensal species 

versus potentially pathogenic ones. In addition, the 16S rRNA methodology does not detect 

fungi or viruses which may impact bacterial load and composition as well as host immune 

responses. Furthermore, there are multiple patient variables that could theoretically impact 

the microbiome of the subjects including the total use of antibiotics, nasal versus oral 

placement of ETT, or presence of a cuff. An exhaustive assessment of these variables was 

beyond the scope of this initial study, although several of the most impactful interventions 

such as antibiotics within 24 hours of extubation were evaluated. While data such as 

infection status on admission and antibiotic exposure were analyzed in this study, other 

factors such as suctioning frequency and consistency of technique were not examined, 

although each patient was managed per a standardized VAP bundle. Each of these elements 

could introduce variability in the quantitative assessment of bacterial communities, and a 

more exhaustive analysis of these factors may be warranted. Investigations evaluating the 

entire spectrum of microbiota and host responses are likely to produce further insights into 

lower airway colonization and the risks for transition from colonization to infection in 

mechanically ventilated children.

Conclusions

We found that there is a broad microbiota in tracheal aspirates and ETT biofilms from 

intubated pediatric patients. Oropharyngeal bacteria, which are a main source of inoculation 

of the airways, were most highly represented. However, there were significant numbers of 

potentially pathogenic genera present in variable abundances demonstrating the complex 

interaction between the upper and lower airways and the ETT. While a majority of sample 

sites showed similar microbial communities within patients there were differences between 

sample sites in nine patients that was not related to age, admission diagnosis, total bacterial 

load, or antibiotic administration 24 hours prior to extubation. Further investigations are 

warranted to determine the cause and clinical impact of such differences.

Acknowledgments

Sources of funding: Funding provided by an institutional CCTSI Grant, NIH/NCATS Colorado CTSA Grant UL1 
TR001082 and NIH NHLBI R01 HL 124103.

Leroue et al. Page 8

Adv Pediatr Res. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Foglia E, Meier M, Elward A. Ventilator-Associated pneumonia in neonatal and pediatric intensive 
care patients. Clin Microbiol Rev. 2007 Jul; 20(3):409–25. [PubMed: 17630332] 

2. Fischer JE, Allen P, Fanconi S. Delay of extubation in neonates and children after cardiac surgery: 
impact of ventilator associated pneumonia. Intensive Care Med. 2000 Jul; 26(7):758–64.

3. Scottile FD, Marrie TJ, Prough DS, Hobgood CD, Webb LX, Costerton JW, Gristina AG. 
Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to 
endotracheal tubes. Crit Care Med. 1986 Apr; 14(4):265–70. [PubMed: 3956213] 

4. Augustyn B. Ventilator-associated pneumonia. Crit Care Nurs. 2007 Aug; 27(4):32–40.

5. DiFillppo A, DeGaudio AR. Device-related infections in critically ill patients, Part II, prevention of 
ventilator-associated pneumonia and urinary tract infections. J Chemother. 2013 Dec; 15(6):536–42.

6. Rameriz P, Ferrer M, Torres A. Prevention measures for ventilator-associated pneumonia: a new 
focus on the endotracheal tube. Curr Opin Infect Dis. 2007 Apr; 105(2):709–14.

7. American Thoracic Society, Infectious Diseases Society America. Guidelines for the management of 
adults with hospital-acquired, ventilator-associated and healthcare-associated pneumonia. Am J 
Respir Crit Care Med. 2005 Feb 15; 171(4):388–416. [PubMed: 15699079] 

8. Bahrani-Mougeot FK, Paster BJ, Coleman S, Barbuto S, Brennan MT, Noll J, Kennedy T, Fox PC, 
Lockhart PB. Molecular analysis of oral and respiratory bacterial species associated with ventilator-
associated pneumonia. J Clin Microbiol. 2007 May; 45(5):1588–93. [PubMed: 17301280] 

9. Perkins SD, Woeltje KF, Angenent LT. Endotracheal tube biofilm inoculation of oral flora and 
subsequent colonization of opportunistic pathogens. Int J Med Microbiol. 2010 Nov; 300(7):503–
11. [PubMed: 20510651] 

10. Willson DF, Conaway M, Kelly R, Hendley JO. The lack of specificity of tracheal aspirates in the 
diagnosis of pulmonary infection in intubated children. Ped Crit Care Med. 2014 May; 15(4):299–
305.

11. Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, Kaess H, Deterding 
RR, Accurso FJ, Pace NR. Molecular identification of bacteria in bronchoalveolar lavage fluid 
from children with cystic fibrosis. Proc Natl Acad Sci U S A. 2007; 104:20529–33. [PubMed: 
18077362] 

12. Guembe M, Marín M, Martín-Rabadán P, Echenagusia A, Camúñez F, Rodríguzez-Rosales G, 
Simó G, Echenaguisa M, Bouza E. Use of universal 16S rRNA gene PCR as a diagnostic tool for 
venous access port-related bloodstream infections. J Clin Microbiol. 2013 Mar; 51(3):799–804. 
[PubMed: 23254136] 

13. Rampini SK, Bloemberg GV, Keller PM, Büchler AC, Dollenmaier G, Speck RF, Böttger EC. 
Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture negative 
infections. Clin Infect Dis. 2011 Dec; 53(12):1245–51. [PubMed: 21976460] 

14. Insa R, Marín M, Martín A, Martin-Rabadán P, Alcalá L, Cercenado E, Calatayud L, Liñares J, 
Bouza E. Systemic use of universal 16S rRNA gene polymerase chain reaction (PCR) and 
sequencing for processing pleural effusions improves conventional culture techniques. Medicine. 
2012 Mar; 91(2):103–10. [PubMed: 22391472] 

15. Cairns S, Thomas JG, Hooper SJ, Wise MP, Frost PJ, Wilson MJ, Lewis MA, Williams DW. 
Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS One. 2011 Mar.
6(3):e14759. [PubMed: 21423727] 

16. Vandecandelaere I, Matthijs N, Van Nieuwerburgh F, Deforce D, Vosters P, De Bus L, Nelis HJ, 
Depuydt P, Coenye T. Assessment of microbial diversity in biofilms recovered from endotracheal 
tubes using culture dependent and independent approaches. PLoS One. 2012; 7(6):e38401. 
[PubMed: 22693635] 

17. Mourani PM, Harris JK, Sontag MK, Robertson CE, Abman SH. Molecular identification of 
bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants. PLoS One. 2011; 
6(10):e25959. [PubMed: 22016793] 

18. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time 
PCR using a broad-range (universal) probe and primers set. Microbiology. 2002 Jan; 148(Pt 1):
257–66. [PubMed: 11782518] 

Leroue et al. Page 9

Adv Pediatr Res. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Hara N, Alkanani AK, Ir D, Robertson CE, Wagner BD, Frank DN, Zipris D. Prevention of Virus-
Induced Type 1 Diabetes with Antibiotic Therapy. J Immunol. 2012 Oct 15; 189(8):3805–14. 
[PubMed: 22988033] 

20. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen 
M, McCoy KD, Macpherson AJ, Danska JS. Sex differences in the gut microbiome drive 
hormone-dependent regulation of autoimmunity. Science. 2013 Mar 1; 339(6123):1084–8. 
[PubMed: 23328391] 

21. Illumina [Internet]. Homo Sapiens UCSC Hg19 Human Genome Sequence from iGenome. [cited 
2017 Aug 01]. Available from http://support.illumina.com/sequencing/sequencing_software/
igenome.ilmn

22. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Mar 4; 
9(4):357–9. [PubMed: 22388286] 

23. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. 
Genome Res. 1998 Mar; 8(3):186–194. [PubMed: 9521922] 

24. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. 
I. Accuracy assessment. Genome Res. 1998; 8(3):175–85. [PubMed: 9521921] 

25. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed 
of chimera detection. Bioinformatics. 2011 Aug 15; 27(16):2194–200. [PubMed: 21700674] 

26. Schloss PD, Westcott SL. Assessing and improving methods used in operational taxonomic unit-
based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol. 2011 May; 
77(10):3219–26. [PubMed: 21421784] 

27. Pruesse E, Peplies J, Glockner FO. SINA: accurate high throughput multiple sequence alignment 
of ribosomal RNA genes. Bioinformatics. 2012 Jul 15; 28(14):1823–9. [PubMed: 22556368] 

28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA 
ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic 
Acids Res. 2013 Jan.41:D590–6. [PubMed: 23193283] 

29. Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, Tatem B, Feazel LM, Park K, Pace 
K, Pace NR, Frank DN. Explicet: graphical user interface software for metadata-driven 
management, analysis and visualization of microbiome data. Bioinformatics. 2013 Dec 1; 29(23):
3100–1. [PubMed: 24021386] 

30. Wagner BD, Robertson CE, Harris JK. Application of two-part statistics for comparison of 
sequence variant counts. PLoS One. 2011; 6(5):e20296. [PubMed: 21629788] 

31. Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, Tatem B, Feazel LM, Park K, Pace 
NR, Frank DN. Explicet: Graphical user interface software for metadata-driven management, 
analysis, and visualization of microbiome data. Bioinformatics. 2013; 29( 23):3100–3101. 
[PubMed: 24021386] 

32. Park DR. The microbiology of ventilator-associated pneumonia. Respir Care. 2005 Jul; 50(7):742–
65. [PubMed: 15913466] 

33. Rosenblatt J, Reitzel R, Jiang Y, Hachem R, Raad I. Insights on the role of antimicrobial cuffed 
endotracheal tubes in transtracheal transmission of VAP pathogens from an in vitro model of 
microaspiration and micorbial proliferation. Biomed Res Int. 2014:120468. [PubMed: 24818125] 

34. Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, 
Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR. Implications of endotracheal tube 
biofilm for ventilator associated pneumonia. Intensive Care Med. 1999 Oct; 25(10):1072–6. 
[PubMed: 10551961] 

35. Feldman C, Kassel M, Cantrell J, Kaka S, Morar R, Goolam Mahomed A, Philips JI. The presence 
and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation. Eur 
Respir J. 1999 Mar; 13(3):546–51. [PubMed: 10232424] 

36. Zur KB, Mandell DL, Gordon RE, Holzman I, Rothschild MA. Electron microscopic analysis of 
biofilm on endotracheal tubes removed from intubated neonates. Otolaryngol Head Neck Surg. 
2004 Apr; 130(4):407–14. [PubMed: 15100635] 

37. Cury JA, Koo H. Extraction and purification of total RNA from Streptococcus mutans biofilms. 
Anal Biochem. 2006 Jun 15; 365(2):208–14.

Leroue et al. Page 10

Adv Pediatr Res. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://support.illumina.com/sequencing/sequencing_software/igenome.ilmn
http://support.illumina.com/sequencing/sequencing_software/igenome.ilmn


38. Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE. Coaggregation-mediated interactions of 
streptococci and actinomyces detected in initial human dental plaque. J Bacteriol. 2003 Jun; 
185(11):3400–9. [PubMed: 12754239] 

39. Depuydt P, Myny D, Blot S. Nosocomial pneumonia: aetiology, diagnosis and treatment. Curr Opin 
Pulm Med. 2006 May; 12(3):192–7. [PubMed: 16582674] 

40. Joseph NM, Sistla S, Dutta TK, Badhe AS, Parja SC. Ventilator associated pneumonia: a review. 
Eur J Intern Med. 2010 Oct; 21(5):360–8. [PubMed: 20816584] 

Leroue et al. Page 11

Adv Pediatr Res. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Morisita Horn (MH) analysis comparing bacterial endotracheal tube and tracheal aspirate 

samples revealed that most sites were similar in their microbial composition (values greater 

than 0.7). There were nine patients, however, with MH values <0.7 when comparing sites. 

These patients and the sites responsible for the dissimilarity are represented by the colored 

lines crossing into the white area. These patients are detailed in Figure 2. Asp: aspirate; Dis: 

distal; Prox: proximal.
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Figure 2. 
Patients with Morisita Horn less than 0.7 were not consistent in which sampling site was 

responsible for the dissimilarity. Different genera were responsible for increased diversity in 

most patients. No tracheal aspirate was available for analysis for Patient 3. Asp: aspirate; 

Dis: distal; Prox: proximal
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Table 1

Patient characteristics (n=33)

Range Mean (SD)

Age (years) 0.2–17 years 6.1 (±5.1)

Height (cm) 55–167 cm 109.5 (±30.1)

Weight (kg) 4.1–100 kg 24.8 (±20.0)

Days intubated 3.0–22.0 days 8.8 (±5.0)

PICU length of stay 4.0–41.0 days 13.6 (±8.6)

Hospital length of stay 5.9–143.9 days 30.6 (±26.9)

Number of patients Percent

Gender

 Male 19 57.6

Admission category

 Medical 24 72.7

 Surgical 1 3.0

 Trauma 8 24.3

Admission medical diagnosis

 Lower respiratory tract infection 4 16.7

 Seizures 6 25.0

 Sepsis 3 12.5

 Non-infectious airway obstruction 3 12.5

 Other 8 33.3

Received antibiotics 24 hours prior to extubation 8 24.2

Adv Pediatr Res. Author manuscript; available in PMC 2018 June 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Leroue et al. Page 15

Table 2

Mean relative abundance of bacteria in sampled sites

Bacteria Overall Proximal Distal Tracheal Aspirate

Prevotella 36.78% 41.09% 35.54% 35.22%

Streptococcus 21.55% 16.64% 24.57% 21.69%

Staphylococcus 10.21% 16.77% 7.60% 8.59%

Burkholderia 3.94% 1.85% 1.95% 7.35%

Moraxella 3.92% <1% 6.33% 3.78%

Porphyromonas 2.79% 1.51% 2.41% 4.01%

Neisseria 2.70% 1.46% 3.15% 3.04%

Bacilli 1.99% 2.45% 3% <1%

Veillonella 1.80% 2.51% 1.81% <1%

Stenotrophomonas 1.34% <1% <1% 2.38%

Gammaproteobacteria <1% <1% <1% 1.82%

Haemophilus <1% <1% 1.41% 1.51%

Lacobacillales <1% 1.48% <1% <1%

Carnobacteriaceae <1% 1.45% <1% <1%

Other 12.98% 12.79% 12.25% 10.61%

Adv Pediatr Res. Author manuscript; available in PMC 2018 June 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Leroue et al. Page 16

Ta
b

le
 3

C
om

pa
ri

so
n 

of
 b

ac
te

ri
al

 g
en

er
a 

ac
ro

ss
 s

am
pl

ed
 s

ite
s

B
ac

te
ri

a
D

is
ta

l v
s 

P
ro

xi
m

al
A

sp
ir

at
e 

vs
 P

ro
xi

m
al

A
sp

ir
at

e 
vs

 D
is

ta
l

N
um

be
r

di
sa

gr
ee

M
ed

ia
n

re
la

ti
ve

ab
un

da
nc

e*
P

-v
al

ue
N

um
be

r
di

sa
gr

ee

M
ed

ia
n

re
la

ti
ve

ab
un

da
nc

e†

P
-

va
lu

e
N

um
be

r
di

sa
gr

ee

M
ed

ia
n

re
la

ti
ve

ab
un

da
nc

e‡
P

-v
al

ue

A
ci

ne
to

ba
ct

er
7 

(0
.2

8)
0.

00
2

0.
39

9 
(0

.3
9)

−
0.

00
6

0.
11

11
 (

0.
35

)
0.

00
1

0.
45

B
ur

kh
ol

de
ri

a
8 

(0
.3

2)
−

0.
00

1
0.

81
9 

(0
.3

9)
−

0.
00

5
0.

07
10

 (
0.

32
)

−
0.

00
5

0.
02

*

H
ae

m
op

hi
lu

s
6 

(0
.2

4)
0.

00
6

0.
37

5 
(0

.2
2)

−
0.

02
9

0.
02

*
6 

(0
.1

9)
−

0.
00

2
0.

91

M
or

ax
el

la
10

 (
0.

40
)

−
0.

00
2

0.
29

7 
(0

.3
0)

−
0.

02
8

0.
06

15
 (

0.
48

)
−

0.
01

0
0.

58

N
ei

ss
er

ia
0 

(0
.0

0)
0.

01
1

0.
29

3 
(0

.1
3)

0.
03

3
0.

08
3 

(0
.1

0)
0.

00
1

0.
47

Po
rp

hy
ro

m
on

as
4 

(0
.1

6)
0.

00
2

0.
32

1 
(0

.0
4)

0.
07

6
0.

97
6 

(0
.1

9)
−

0.
00

8
0.

26

Pr
ev

ot
el

la
0 

(0
.0

0)
−

0.
06

3
0.

98
0 

(0
.0

0)
1.

92
9

0.
54

0 
(0

.0
0)

0.
22

1
0.

55

St
ap

hy
lo

co
cc

us
0 

(0
.0

0)
1.

85
4

<0
.0

1*
0 

(0
.0

0)
0.

05
2

0.
99

0 
(0

.0
0)

−
0.

04
0

0.
16

St
en

ot
ro

ph
om

on
as

11
 (

0.
44

)
0.

00
7

<0
.0

1*
9 

(0
.3

9)
0.

00
4

0.
53

13
 (

0.
42

)
−

0.
00

1
0.

08

St
re

pt
oc

oc
cu

s
0 

(0
.0

0)
−

0.
00

3
0.

74
0 

(0
.0

0)
1.

46
3

0.
45

0 
(0

.0
0)

0.
01

6
0.

44

V
ei

llo
ne

lla
0 

(0
.0

0)
0.

56
6

<0
.0

1*
0 

(0
.0

0)
0.

53
0

0.
08

2 
(0

.0
6)

0.
00

9
0.

78

* p<
0.

05 a.
N

eg
at

iv
e 

va
lu

es
 r

ep
re

se
nt

 a
 h

ig
he

r 
re

la
tiv

e 
ab

un
da

nc
e 

ob
se

rv
ed

 in
 th

e 
D

is
ta

l s
ite

 c
om

pa
re

d 
to

 th
e 

Pr
ox

im
al

 s
ite

b.
N

eg
at

iv
e 

va
lu

es
 r

ep
re

se
nt

 a
 h

ig
he

r 
re

la
tiv

e 
ab

un
da

nc
e 

ob
se

rv
ed

 in
 th

e 
A

sp
ir

at
e 

si
te

 c
om

pa
re

d 
to

 th
e 

Pr
ox

im
al

 s
ite

c.
N

eg
at

iv
e 

va
lu

es
 r

ep
re

se
nt

 a
 h

ig
he

r 
re

la
tiv

e 
ab

un
da

nc
e 

ob
se

rv
ed

 in
 th

e 
A

sp
ir

at
e 

si
te

 c
om

pa
re

d 
to

 th
e 

D
is

ta
l s

ite

Adv Pediatr Res. Author manuscript; available in PMC 2018 June 28.


	Abstract
	Introduction
	Materials and methods
	Data collection
	High-throughput DNA sequencing for microbiome analysis
	16S Amplicon Library Construction
	Analysis of Illumina Paired-end Reads

	Statistical analysis

	Results
	Distribution of bacteria identified
	Bacterial load
	Comparison of diversity

	Discussion
	Conclusions
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3

