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Abstract

In laparoscopy, a small incision size improves the surgical outcome but increases at the

same time the rigidity of the instrument, with consequent impairment of the surgeon’s

maneuverability. Such reduction introduces new challenges, such as the loss of wrist articu-

lation or the impossibility of overcoming obstacles. A possible approach is using multi-steer-

able cable-driven instruments fully mechanical actuated, which allow great maneuverability

while keeping the wound small. In this work, we compared the usability of the two most

promising cable configurations in 3D printed multi-steerable instruments: a parallel configu-

ration with all cables running straight from the steerable shaft to the handle; and a multi con-

figuration with straight cables in combination with helical cables. Twelve participants were

divided into two groups and asked to orient the instrument shaft and randomly hit six targets

following the instructions in a laparoscopic simulator. Each participant carried out four trials

(two trials for each instrument) with 12 runs per trial. The average task performance time

showed a significant decrease over the first trial for both configurations. The decrease was

48% for the parallel and 41% for the multi configuration. Improvement of task performance

times reached a plateau in the second trial with both instruments. The participants filled out

a TLX questionnaire after each trial. The questionnaire showed a lower burden score for the

parallel compared to multi configuration (23% VS 30%). Even though the task performance

time for both configurations was comparable, a final questionnaire showed that 10 out of 12

participants preferred the parallel configuration due to a more intuitive hand movement and

the possibility of individually orienting the distal end of the steerable shaft.

1. Introduction

Laparoscopic surgery is a minimally invasive procedure in which several small incisions allow

access to the human body by means of long and straight surgical tools. The reduction of the

incision size reduces the post-operative pain and the recovery time for the patient, minimizes

the scar tissue, thus obtaining better cosmetic results, and improves the cost-effectiveness of
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the procedure. Despite its great advantages, laparoscopy introduces new hurdles, e.g., due to

the loss of wrist articulation and the introduction of a fulcrum effect [1,2]. Due to the pivoting

point in the abdominal wall, the movement of the end-effector is inverted with respect to the

handle. This so-called fulcrum effect results in a steeper learning curve. With the advent of

new domains of minimally invasive surgery, such as single-port laparoscopy, transluminal,

and intraluminal procedures, new challenges arise. For instance, accessing the target area

becomes demanding when its optimal approach direction is not aligned with the rigid instru-

ment shaft inserted through the incision [3].

Many robotic platforms have been proposed to overcome the limits in laparoscopy. One of

the most famous platforms is the Da Vinci1 robotic system offered by Intuitive Surgical Inc.

(Intuitive Surgical Inc., Sunnyvale, Ca, USA) [4]. Robotic platforms give the surgeon addi-

tional degrees of freedom (DOF), three-dimensional visualization of the surgical site, and elim-

inate the fulcrum effect. However, they require a large footprint and high maintenance cost

that makes the price-benefit ratio unfavorable for many procedures [5].

An alternative approach is the use of handheld mechanical solutions, in which the surgeon’s

dexterity is enhanced by a steering mechanism with an additional two DOF close to the end-

effector. Many research prototypes and commercialized instruments have been designed, and

different solutions have been proposed to control the steerability of the end-effector [6,7]. The

two most used control strategies in handheld instruments are wrist control, in which the move-

ment of the wrist is used to steer the end-effector, such as found in the Laparo-Angle [8] or the

LaparoFlex [9], and thumb control, in which the thumb controls the steering by means of a joy-

stick [10], a trackball [11], or a steering wheel [12,13]. Comparative studies have been carried

out on these two different control strategies to identify the most beneficial handheld control

for the surgeon [14–16]. However, despite the 2-DOF steerable end-effector, the shaft rigidity

of these instruments still restricts the surgeon’s workspace, limiting surgical use to procedures

in which no obstacles need to be passed without being touched. To further improve maneuver-

ability, mechanical solutions such as cable-driven mechanisms [17–19] or continuum concen-

tric tubes [20] have been proposed to design a multi-steerable shaft enabling the surgeon to

move along complex double-curved paths. Cable-driven solutions represent a valid alternative

to robotic solutions due to their low maintenance cost, low noise, high sensitivity, and speed.

Moreover, they directly react to the surgeon’s movements providing direct feedback and they

enable simplification of the design without compromising the instrument functionalities. In

cable-driven solutions, the cable control strategy plays an important role [21]. Cables can vary

from a minimum of three for steering in two planes [22] to four or more as in the so-called

cable-ring configuration [23], Fig 1A. In our group, we have explored two different cable con-

trol strategies for controlling cable-driven multi-steerable instruments: a control strategy

based on cables straightly guided from the steerable shaft to the control handle (parallel config-
uration) [24], and a control strategy based on the combination of straight and helically cables

placed around the backbone of the shaft and the control handle (multi configuration) [17], Fig

1B and 1C.

Whereas control strategy comparisons have been performed for 2-DOF instruments with

only one steerable segment, a comparison in the steering and control of multi-steerable instru-

ments with two or more segments has not yet been carried out. As a result, there is a lack of

information about which way of controlling multi-steerable instruments is more convenient

to the surgeon. In this study, we developed 3D printed multi-steerable instruments using par-

allel and multi configurations. The study aims to highlight and compare important weak and

strong point of the new designs, that can help to improve the design of future multi-steerable

laparoscopic instruments. For this purpose, using these instruments, we carried out an experi-

ment with 12 participants to compare the two control strategies and identify which one has a
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steeper learning curve, faster task performance time, requires a lighter workload, and is pre-

ferred by the participants.

2. Cable configuration strategies

Cable-driven steerable instruments are controlled by actuation forces applied to their steering

cables. In multi-steerable instruments, various deformation modes can be generated with dif-

ferent cable configurations, determining the behavior of the steerable shaft. In a 2D representa-

tion of one segment, we can define a generic steerable segment as an incompressible

compliant backbone, with a length L, in which a rigid end plate of 2R in length is attached at

the distal end, Fig 2. The proximal end of the backbone is fixed and represents the connection

with the shaft. Actuation cables are attached at the outer ends of the end plate. In the case of a

2D symmetrical cable configuration, each segment can have two parallel cables (the parallel

configuration), two diagonal cables, or the combination of diagonal and parallel cables (the

multi configuration).

2.1 Parallel configuration

In the parallel configuration, cables are placed parallel to the backbone, and the pulling force

Fp is parallel to the longitudinal axis of the segment, Fig 2A. Therefore, the bending moment is

constant along the segment length L because the perpendicular distance R between the force

application point and the backbone stays constant along the segment length L. The bending

moment, therefore, defines the orientation angle of the segment (β), and the deflection mode

will result in a curve with a constant bending radius. Segments with a parallel configuration

can be combined by placing them on top of one another so that the base of the first segment

acts as the top of the second segment and so on. The combination of the segment angles

defines the position and the orientation of the end-effector, i.e., the end plate of the most distal

segment, allowing different deformation modes.

2.2 Multi configuration

In the diagonal configuration (Fig 2B), cables connect the end plate to the fixed base by cross-

ing each other forming the α angle fo Fig 2B. Forces Fd are applied along the cable direction

Fig 1. Multi-steerable strategies to control surgical instruments. a) Cable-ring mechanism with its cross-section. Cables are placed

concentrically to actuate the segments and guide each other along the shaft, adapted from [23]. b) Parallel configuration of a multi-

steerable instrument, adapted from [25]. c) Multi configuration of a multi-steerable instrument, adapted from [17].

https://doi.org/10.1371/journal.pone.0275535.g001
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and can be split into the Fx and Fy components. When the cables cross each other at L/2, the

segment will have a symmetric bending moment and, therefore, symmetric behavior, enabling

a double-curved shape deformation mode as shown in Fig 2B. In this case, the end plate

Fig 2. The three cable configurations presented in this work. Left: 2D representation of the segment, center:

Corresponding bending moment diagram, right: Segment deforming under the applied pulling force. a) Parallel

configuration, b) diagonal configuration, c) multi configuration. For the explanation of the used symbols, see the text.

https://doi.org/10.1371/journal.pone.0275535.g002
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translates laterally in the direction of the Fx force while the orientation of the end plate remains

unchanged.

Full control with only one segment can be obtained by combining parallel and diagonal

cables, Fig 2C. This combination, which will be referred to as the multi configuration [17],

results in a mechanical behavior similar to the parallel configuration but with only one seg-

ment instead of multiple segments.

2.3 Three-dimensional representation

Navigation through confined anatomy requires instruments able to move in a 3D space. For

instruments based on the parallel configuration, 3D motion can be achieved by using a mini-

mum of three actuation cables per steerable segment. However, the use of four cables per seg-

ment concentrically placed at a 90 degrees angle allows antagonist movement of the cables and

simplifies control [24]. The steerable segments are placed in series, one after the other, to

increase the DOF of the shaft. The combination of a number of segments allows the control of

the orientation as well as the position of the end-effector. In an instrument with multiple steer-

able segments, the actuation cables that control the end-effector run through dedicated slots of

the preceding segments, the cables of the first preceding segment through the preceding ones,

and so for all segments, Fig 3A. To avoid overlap of the actuation cables, each steerable seg-

ment of the shaft is rotated slightly, as shown in the close-up of Fig 4A.

For instruments based on the multi configuration, 3D motion can be achieved by placing

the parallel cables concentrically at a 90 degrees angle, similar to the parallel configuration but

diagonal cables need a reconfiguration, Fig 3B. In fact, the diagonal cables will cross the back-

bone if positioned like in the 2D representation, and they will not allow any internal lumen to

be included in the instrument. A possible solution, which was successfully investigated by Ger-

boni et al. [17], is to use helically-oriented cables that rotate 180 degrees around the central

backbone [26]. Rotation of the helical cables can be either in the clockwise or in the counter-

clockwise direction. Using only one of the two directions would lead to an undesired torque

along the segment backbone. Combining clockwise and counterclockwise helical cables in

pairs cancels out this effect. In the parallel configuration, the parallel cables of different seg-

ments can be placed at the same distance from the backbone due to the straight nature of the

cable slots. In the multi configuration, the helical cables would cross each other, causing over-

lapping of the cable slots. In order to avoid this arrangement, the three sets of cables (clock-

wise, counterclockwise, and parallel) are placed concentrically at three different radii as close

as possible to each other, but still remaining independent by dedicated grooves Fig 4B. Differ-

ently from the parallel configuration in which we need multiple segments to determine the

position of the end-effector, in the multi configuration, we can consider the steerable shaft as

one long steerable segment due to the possibility of controlling both the position and orienta-

tion of the end effector with four actuation cables of each type (clockwise, counterclockwise,

and parallel).

3. Instrument prototypes

3.1. Design

Two prototypes were designed with an identical outer appearance and size: one based on the

parallel configuration and one on the multi configuration. Both prototypes contain three com-

ponents: a compliant handle, a rigid shaft, and a compliant shaft. A detailed description of the

compliant shaft and the design in the parallel configuration is described by Culmone et al.

[24]. Both designs are based on a cable-driven actuation with a serial control strategy, in which

the movements of the compliant handle and the one of the shaft are mirrored [21]. The
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compliant shaft is based on a modular compliant segment, composed of a central flexible back-

bone and four helicoids that run concentrically around the centerline, Fig 5. The helicoids

have a T-shaped cross-section that is thin close to the backbone to ensure low bending stiffness

and enlarges towards the outer side of the segment to limit the bending angle and prevent fail-

ure for excessive bending, Fig 5B. Segments with helicoids inversely placed around the back-

bone (clockwise and counterclockwise helicoids) are alternately placed on top of one another

to form the compliant shaft and ensure equally divided torsion stiffness around the backbone.

The actuation cables run through holes in the helicoids and are looped into a cross-shaped

groove at the top of the steering segment to fix and control them independently, Fig 5C and

5D.

The rigid shaft is connected directly to the compliant shaft. The rigid shaft contains dedi-

cated slots to guide the actuation cables from the compliant shaft to the handle. The compliant

handle is based on using wrist control, in which all fingers and the wrist are used to manipulate

the handle to define the desired shape of the compliant shaft. The design of the compliant han-

dle is similar to a large version of the compliant shaft. For each compliant segment of the shaft,

there is a respective segment for the handle. Similar to the compliant shaft, each segment of

the handle has an inner backbone surrounded by an outer helicoid structure. The helicoid

structure has the function of guiding the cables as well as creating a cable fixation point. The

Fig 3. 3D model of the parallel and multi configurations. a) The parallel cable configuration with a close-up on the shaft and the final

design of the device. Each color corresponds to a segment mirrored on the control side. b) Multi configuration of the cables and the final

design of the device. In this configuration, all cables are connected at the ends. The close-up shows the cable configuration in the

steerable shaft.

https://doi.org/10.1371/journal.pone.0275535.g003
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connection between the rigid shaft and the handle is smoothened by an amplification compo-

nent, the rigid distal part of the handle that, with an amplification factor of three, guides the

cables from the shaft to the handle, amplifying the movement between the handle and the

shaft (Fig 3). Moreover, both designs have four lumens to insert flexible thin tools for diagnos-

tic or treatment.

In the two prototypes, the steerable shaft shares the same design based on six steerable seg-

ments. However, in the parallel configuration, actuation cables control every single segment

Fig 4. Cross-section of the shaft for the parallel and the multi configurations. a) In the parallel configuration all cables are equally

distant from the central backbone Segments S are numbered from 1 to 6. In the multi configuration, cables are concentrically placed at

three different radii to avoid overlapping. S represents the steerable shaft.

https://doi.org/10.1371/journal.pone.0275535.g004

Fig 5. Steerable segment with parallel cables. A) Four helicoids concentrically placed around the central backbone. b) Cross-Section of

the steerable segments with the T-shape of the helicoids highlighted in green and cables in black. c) 3D model of the steerable segment

with d) cross-section A-A showing the looped cables in the fixation point. Adapted from [24].

https://doi.org/10.1371/journal.pone.0275535.g005
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independently, and the cable fixation point needs to be located directly on the segment itself,

in both the compliant shaft and the handle. In the multi configuration, the six segments are

considered as one element. All actuation cables run through the entire body of the instrument

and are fixed at its two ends: at the distal end, the end-effector, and at the proximal end, the

end of the handle. Therefore, while in the parallel configuration, the position and orientation

of the end-effector are controlled indirectly by controlling the orientation of the individual

segments, in the multi configuration, the position and orientation of the end-effector are

directly controlled as if there is only one segment. Moreover, different from the parallel config-

uration where cables run through straight guiding slots, in the multi configuration, the guiding

slots for the cables are both on straight and helical tracks. The parallel configuration uses a

serial control strategy based on mirrored movements. The segments of the shaft are mirrored

in the handle, Fig 3A, resulting in the shaft moving opposite to the handle, i.e., the end of the

handle moving upwards resulting in the end-effector moving downwards. Also, the multi con-

figuration is controlled by mirrored movements: when a cable is pulled by bending the handle,

it will shorten in its distal end, mirroring the handle movement. With the equal length in the

steerable shaft, the two cable configurations are able to cover the same workspace and perform

single curved and double curved shapes. Moreover, having an identical appearance for the two

prototypes allows for comparing the cable configuration performance without influencing the

participants at the test.

3.2. Fabrication

Both instrument prototypes were fabricated using vat photopolymerization as additive

manufacturing technology, Fig 6. All parts were printed using Perfactory1Mini XL (Envi-

sionTEC GmbH, Gladbeck, Germany), with 25 μm layer height in the vertical z-axis. The

printer, based on the so-called Digital Light Processing (DLP), uses a light source and a projec-

tor to harden the liquid resin layer by layer. We used R5 (EnvisionTEC GmbH, Gladbeck,

Fig 6. Instrument prototypes employing the parallel configuration (top) and multi configuration (bottom). The close-ups show the

steerable shafts. Notice that the fixation points in the shafts differ, depending on the configuration. In the parallel configuration, each

segment has two fixation points whereas in the multi configuration all cables are fixed at the distal end of the shaft.

https://doi.org/10.1371/journal.pone.0275535.g006
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Germany), an epoxy photopolymer resin, which is specifically customized for prototyping.

The handle and the shaft were printed in the vertical position, with the main axis parallel to

the z-axis of the printer. The shaft was printed without any support except for the raft, a layer

between the built plate and the printed object. The handle was printed with a raft, and an inter-

nal support made of small pillars autogenerated by the printer software. After printing, the

excess resin was removed by placing the parts in an isopropyl alcohol bath for 30 minutes. The

raft and the support of the handle were manually removed. The dimensions of the printed

devices slightly differ from the CAD model with a tolerance of ± 0.08mm for the shaft

and ± 0.12 mm for the handle. A total of 24 ; 0.2 mm stainless-steel cables in the parallel con-

figuration and 12 ; 0.2 mm stainless-steel cables in the multi configuration, were used to actu-

ate the instruments. To avoid overlapping, the radii of the cable circle in the multi

configuration were determined considering the printability of the instrument and the cable

size. Once decided the amplification factor by fixing the diameter of the handle, the cables

were placed as close as possible to each other but at the same time kept independent with dedi-

cated grooves. Moreover, the order of the cables (clockwise, counterclockwise, and parallel)

was decided considering the easiest way to mount the cables into the instrument. After placing

them in the 3D printed construction, the cables were straightened using weights of 3 grams

and then fixed in the handle by means of dog point set screws. At the end of the assembly, a

small steel plate was glued at the end-effectors for use in the experiments.

4. Functionality evaluation

4.1. Background and goal

A comparative evaluation was carried out to study the maneuverability of the instruments and

investigate which cable configuration enables a faster and easier control strategy. We hypothe-

sized that:

• The parallel configuration requires less workload. The straight arrangement of the cables

within the instrument generates less friction due to the lower normal forces between the

actuation cables and the 3D helical printed structure as compared to the multi configuration.

• The multi configuration would be faster in hitting the target, considering that all cables con-

trol the entire steerable shaft at once, whereas, in the parallel configuration, each steerable

segment of the handle individually controls the corresponding steerable segment of the

shaft.

The two instruments were tested in a laparoscopic simulator where targets with different

orientations and positions were placed. The participants had to hit the indicated targets as fast

as possible. The task was repeated 12 times (runs) per trial. Each participant attended four tri-

als, two for each instrument. For each run, we measured the time to complete the task prop-

erly. We analyzed and compared the task performance time between the two instruments.

Moreover, we examined the learning curve for each instrument and whether the order of use

influences the learning curve. Finally, we analyzed the experienced workload and the individ-

ual preference of the participants using questionnaires.

4.2. Participants

Based on similar studies [13,27–29], a total of 12 participants (5 men and 7 women, aged 27.4

±1.9) were recruited to take part in the experiment. All participants had no prior experience in

laparoscopic or open surgery procedures, nor with laparoscopic instruments and were

recruited within the BioMechanical department of Delft University of Technology (master

PLOS ONE Cable configuration comparison on 3D printed steerable instruments for minimally invasive surgery

PLOS ONE | https://doi.org/10.1371/journal.pone.0275535 October 4, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0275535


students, PhDs, and technicians). Participants were all right handed with different videogames

habits, between 0 to 10 hours a week. One participant played a musical instrument. The partic-

ipants were split randomly into two groups, Group A and Group B, of 6 participants each.

Each group had a different order of instrument use. Group A started with the instrument with

the parallel configuration (PC), whereas Group B started with the instrument with multi con-

figuration (MC). All participants were informed about the purpose, the type of the experiment,

and the use of the collected data. The study was approved by the Human Research Ethics Com-

mittee at Delft University of Technology (ID:1408).

4.3. Experimental setup

The experiment was carried out using a laparoscopic simulator, specifically designed for this

study. The simulator was designed to create, the movement that the surgeon might perform

while navigating a laparoscopic procedure, in a simulated environment. Particular importance

was given to the precision and orientation of the instrument, essential for preserving the sur-

rounding critical areas. The simulator was made of clear PolyMethylMethAcrylate (PMMA)

and PolyPropylene (PP) to replicate an inflated abdomen. We decided to have a transparent

simulator to provide participants with direct 3D visualization. Due to their inexperience in lap-

aroscopic surgery, using an endoscope and a monitor could have resulted in additional diffi-

culties related to the loss of depth rather than the instrument maneuverability. Using 2D

visualization of the target area, the collected data would not reflect the learning curve of the

participants to properly operate the instruments, but rather their learning curve in visualizing

the space in 3D from a 2D image. A silicon valve placed in the center of the simulator allowed

the insertion of the instruments. A 3D printed cylindrical stand with seven targets in different

orientations was placed inside the simulator. Six target tubes (20 mm long, ; 9 mm) were num-

bered and evenly placed around the stand, while a start flat target was placed center of the

stand. The entrance point of the target tubes was marked with a black line. Each target tube

contained two steel plates at its bottom, Fig 7E. When the end-effector was parallel oriented to

the plates and therefore hit them simultaneously, electric contact was made, and a signal was

measured by a Multifunction I/O device (USB-6008, National Instruments, Austin, USA) [30]

that was controlled with a laptop via a LabView 2016 program (National Instruments, Austin,

USA). A monitor showed the next target to be hit. The setup and the monitor were positioned

in front of the participant, and their height could be adjusted to reach a comfortable position,

Fig 7.

4.4. Task and procedure

The task consisted of positioning and orienting the multi-steerable shaft to reach the six tar-

gets. The experiment started when the participant hit the start target. Subsequently, the partici-

pant was asked to move the shaft towards the indicated target (randomly chosen among the

six) and insert the tip into the tube. A low-frequency buzzer indicated that the participant hit

the two steel plates of a wrong target, whereas a high-frequency buzzer indicated that the cor-

rect target was hit and the participant could move the shaft towards the new target. The time

was recorded and was measured from the moment the participant hit the start target until the

last target was hit. In each run, the participant hit the start target and the six other targets in a

randomized order. Each trial consisted of 12 randomized runs. Each participant performed

four trials: two trials for each of the two cable configuration instruments, allowing a compari-

son between the two groups over the two configurations and resulting in a total of 48 runs (12

runs x 2 trials x 2 cable configurations) per participant. The number of attempts per trial has

been based on previous works where similar tests for steerable instruments have been
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performed [13]. Prior to the start, a short demonstration and an instruction sheet were given

to the participant. The participant filled up an intake questionnaire with general information

such as gender, age, educational phase, dominant hand, and video game or musical instru-

ments experience. Before each of the four trials, the participants had two minutes to practice

and familiarize themselves with the instrument. For participants of Group A, the experiment

sequence was PC instrument followed by MC instrument, and again PC and MC. For Group

B, the experiment sequence was MC-PC-MC-PC. In the supplementary materials, S1 Fig.

shows the flow chart of the experiment and the two instruments order for the two groups.

At the end of each trial, the participant had a break of around 10 minutes to fill a self-evalu-

ation questionnaire based on NASA’s Task Load Index (TLX) [31]. The six subscales (mental

demand, physical demand, temporal demand, performance, effort, and frustration) of NASA

TLX were rated from -10 to 10, in which a high score indicated that the task was highly

demanding and a low score that was easy to perform. At the end of the fourth trial, the

Fig 7. Experimental setup. a) Setup and its components: 1. simulator, 2. instruments, 3. participant information letter, 4. general

instruction, 5. informed consent and questionnaires, 6. user interface. b) A participant during the test. c) The user’s interface during the

experiment. Each green circle represents a target. The light green circles are the targets already hit, and the dark green circles are the

targets still to be hit. The status bar displays the next target that the participant has to hit. d) The instrument into one of the targets. d) A

participant during the test. e) CAD model of the target with back view and cross-section. The two steel plates are represented in grey.

https://doi.org/10.1371/journal.pone.0275535.g007

PLOS ONE Cable configuration comparison on 3D printed steerable instruments for minimally invasive surgery

PLOS ONE | https://doi.org/10.1371/journal.pone.0275535 October 4, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0275535.g007
https://doi.org/10.1371/journal.pone.0275535


participant filled out a final questionnaire to express a preference between the two instru-

ments, considering the ease of steering and control. All data were analyzed using Matlab

R2020a scripts (accessible in the data availability). The S1 Video in the supplementary material

shows the execution of one run for each instrument.

5. Results

Fig 8 shows the task performance time per instrument in the two trials. Yellow represents the

PC, and blue the MC. The plot depicts the results as box and whiskers, where the bottom edge

of the box indicates the 25th percentile, the top edge the 75th percentile, and the red central

line the median. The median time for trial one was 102.05 s for the PC and 106.60 s for the

MC. In Trial 2, the median time was 74.15 s and 76.75 s for both configurations, respectively.

The median decreased for both instruments between the first and the second trial. Due to the

asymmetry of the data calculated with the Shapiro-Wilk test (p<0.001), we performed the

Mann-Whitney U test for independent groups of non-parametric data. The test revealed no

significant difference (Z = -0.72, p = 0.44>0.05) on the task performance time of the two

devices in each trial. Moreover, we compared the two trials of the same cable configurations.

In both cases, the Wilcoxon Signed-Rank test for two dependent groups of non-parametric

data showed a significant difference between the two trials (Z = 8.32, p<0.05), and therefore a

Fig 8. Box and whisker plots of the task performance time for the two cable configurations. Yellow represents the parallel

configuration (PC), and blue the multi configuration (MC). For each instrument, the participants performed two trials. The red line in

the box represents the median and the red crosses, the outliers.

https://doi.org/10.1371/journal.pone.0275535.g008
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significant reduction in time between the first and the second trial for both configurations as

the participants got more experienced with the instruments after some training.

Looking at the trend of the runs within the trials, Fig 9 shows the learning curve of the par-

ticipants per each instrument within the 12 performed runs of each of the four trials. The aver-

age time shows a reduction of 48% for the PC and 41% for the MC calculated as the difference

of the average time between the first and the last run of the first trial. Data stabilized in the sec-

ond trial for both instruments with an average time reduction of 24% for the parallel and 14%

for the MC. The time performance for the PC and the MC in the last run of the second trial

shows similar results: 76.42±19.87 s for the PC and 74.99±21.99s for the MC.

The minimum task performance time average was 49.92±8.92 s and was achieved by 9 out

of 12 participants in the last performed trial, Trial 2 with the MC for Group A, and Trial 2 with

the PC for group B. Two participants of Group B achieved the minimum task performance

using the MC; one participant in Trial 1 and one in Trial 2. In Group A, one participant

achieved the minimum task performance time in Trial 2 with the PC.

The maximum task performance time, with an average of 272.15±124.85 s, was achieved in

the first performed trial for 11 out of 12 participants, independently from the instrument.

Only one participant of Group A achieved the maximum task performance time in Trial 1

with the MC.

Moreover, we looked at the influence of one instrument over the other, considering their

order. Fig 10 shows the box and whisker plots of the task performance time for the 12 partici-

pants in the four trials for each run. We compared the task performance time of the first run of

the two groups, A and B, in Trials 1 and 2 for the PC and MC, Fig 10. We performed the

Mann-Whitney U test for independent groups of non-parametric data. The test revealed a sig-

nificant difference (Z = 2.85, p<0.05) between Group A and Group B in Trial 1 for the PC.

Group A (which started with the PC) required more time with an average time of 254.60

±119.12 s than Group B (which started with the MC), which required 113.98±9.65 s for the

same task in Trial 1. Also, for the MC there was a significant difference (Z = 2.43, p<0.05)

between both groups in Trial 1. Group A required 124.30±13.98 s, which is less than Group B,

which required 210.47± 84.53 s. Among the four trials, the learning curve of the participants

shows a decrease in average task performance time. The curve dropped by more than 55% in

Fig 9. Box and whisker plots of the average time per run in the two trials performed by each participant for each instrument.

Yellow represents the parallel configuration (PC), and blue the multi configuration (MC). Each box and whisker plot represents the

median, the upper and the bottom quartile of the average time for 12 participants. The outliers above 350 s have been cut off in the

figure. The full picture can be found in the supplementary material.

https://doi.org/10.1371/journal.pone.0275535.g009

PLOS ONE Cable configuration comparison on 3D printed steerable instruments for minimally invasive surgery

PLOS ONE | https://doi.org/10.1371/journal.pone.0275535 October 4, 2022 13 / 20

https://doi.org/10.1371/journal.pone.0275535.g009
https://doi.org/10.1371/journal.pone.0275535


task performance time between the average time of the first and the last run performed by all

the 12 participants with for the very first instrument used, no matter which configuration, and

flattened to a decrease of 3–7% for the very last instrument used in both groups.

The responses of the TLX self-evaluation that ranged from -10 to 10 were transferred to a

percentage scale. High percentages express a high workload, and low percentages express a low

workload, i.e., -10 expresses 0% workload, whereas 10 expresses 100% workload. The overall

Raw TLX score was 34% (SD = 22) for the parallel and 40% (SD = 23) for the MC in Trial 1. In

Trial 2, the overall Raw TLX score was 23% (SD = 22) and 30% (SD = 23) for the parallel and

the MC, respectively, Fig 11. We performed the Mann Whitney U test for independent groups

of non-parametric data. The test revealed no significant difference (Z = -1.55 p = 0.12>0.05)

between the overall workload in the first trials of the two instruments. In the second trial, the

overall workload was significantly higher (Z = -2.18, p<0.05) for the MC compared to the PC.

The Wilcoxon Signed-Rank test revealed a significant reduction (Zp = 4.92 Zm = 4.58,

p<0.05) in the overall workload of the two instruments from Trial 1 to Trial 2. Participants

expressed the maximum workload for both instruments in the effort subscale of Trial 1, 49%

(SD = 21) for the PC and 57% (SD = 25) for the MC, respectively.

Fig 10. Box and whisker plots of the average time per run in the two trials performed by each participant for each instrument in

the two different groups. Orange represents Group A and purple Group B. Each box and whisker plot represents the median, the

upper, and the bottom quartile of the average time for the six participants of Group A and the six of Group B.

https://doi.org/10.1371/journal.pone.0275535.g010
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Finally, Fig 12 shows the result of the final questionnaire on the subjective participant pref-

erence. The participants expressed a strong overall preference for the PC, 10 out of 12. All par-

ticipants preferred the PC when considering the response in steering.

Fig 11. Average and standard deviation of the Raw TLX score for the six subscales (mental demand, physical demand, temporal

demand, performance, effort, and frustration) in Trials 1 and 2. The average was calculated over the score given by the 12

participants. Yellow represents the parallel, and blue the multi configuration.

https://doi.org/10.1371/journal.pone.0275535.g011

Fig 12. Results of the final questionnaire on personal preference.

https://doi.org/10.1371/journal.pone.0275535.g012

PLOS ONE Cable configuration comparison on 3D printed steerable instruments for minimally invasive surgery

PLOS ONE | https://doi.org/10.1371/journal.pone.0275535 October 4, 2022 15 / 20

https://doi.org/10.1371/journal.pone.0275535.g011
https://doi.org/10.1371/journal.pone.0275535.g012
https://doi.org/10.1371/journal.pone.0275535


6. Discussion

6.1. Experimental findings

The difference in task performance time was not significant when comparing the parallel and

multi configurations to each other over Trials 1 and 2. A significant decrease appeared over

time within the two trials when using the same configuration. This data was also confirmed by

the learning curve of the two configurations. The two learning curves showed that the task per-

formance time decreased quickly in Trial 1 during the first runs, and the participants reached

a plateau after the first runs of Trial 2 for both instruments. It is interesting that for the parallel

configuration, the minimum average task performance time was reached during Run 9 of

Trial 2, instead of the last run, with a slight increase in average time for the subsequent runs.

This effect is probably due to the tiredness of the participants at the end of the test. The flatten-

ing of the curves also showed its effect on the decrease in the workload perceived by the partic-

ipants. The time performance for the parallel and the multi configurations in the last run of

the second trial shows similar results for the parallel and the multi configuration, rejecting our

second hypothesis.

The workload strongly decreased from Trial 1 to Trial 2 for both configurations. However,

even though the task performance time did not show significant differences between the paral-

lel and the multi configuration, the decrease in workload was significantly higher for the paral-

lel configuration. This result can also explain the net difference in the preference of the parallel

configuration over the multi configuration.

Looking at the alternation between the two cable configurations over the four trials, it

becomes clear that the instruments influence each other over the first trials. In Trial 1, Group

A started with the parallel configuration, and the average task performance time is significantly

higher than the one in Trial 1 of Group B (which started with the multi configuration) for the

same configuration. The same result can be observed for the opposite: the task performance

time of Group B with the multi configuration in Trial 1 is significantly higher than the one of

Group A. In the very first run, when they used their first instrument for the first time, the par-

ticipants needed not only to learn to use the instrument and gain dexterity but also needed to

familiarize themselves with the setup and the target positions. When they used their second

instrument for the first time, they only needed to get used to the different cable configurations.

We also analyzed the performance of the participants within each run. An interesting out-

come was the target that required the longest time to be hit and its occurrence within all 48

runs. The analysis revealed that Target 6 was the most difficult target to be hit, 195 times out of

the total of 576 recorded runs. This can be explained by the location of Target 6, which was

located the closest to the participant, requiring the instrument tip to be pointed towards the

participant, mirroring its motion and thus adding an extra layer of difficulty in the maneuver-

ability. The analysis becomes even more interesting when Target 6 is compared to Target 4.

Target 4 has the same orientation angle but has an opposite location of Target 6. Target 4

recorded only 66 times the longest time to hit the target, the lowest occurrence among all tar-

gets. This result is probably due to its convenient location at the front right of the participant.

The net preference of the parallel over the multi configuration was briefly explained by four

participants in the comments at the end of the final questionnaire and was mainly related to

steering possibility. The parallel configuration gives the possibility of steering the segments

independently, which is especially convenient for the most distal segment. By individually con-

trolling the most distal segment, the participants felt more control over the final shaft orienta-

tion during insertion into the target. Therefore, the parallel configuration showed easier

maneuverability over the multi configuration as hypnotized. On the other side, the multi con-

figuration was noticed to be faster in reaching the initial position to hit the target, but less
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precise when aligned the tip to the target. Moreover, the multi configuration was preferred for

the higher stiffness of the entire instrument, which allows for stronger haptic feedback of the

steerable shaft during the test. The higher stiffness perceived by the participants was probably

caused by the friction generated by the higher normal forces between the tensioned helical

cables and the 3D printed helical structure in the handle as compared to the parallel cables.

This observation is also interesting considering that the total number of cables in the multi

configuration is half of the one in the parallel configuration. The different characteristics in

speed, stiffness, and precision of the two cable configurations might open two different paths

for the instruments. Whereas the multi configuration is used when the speed of the task is the

main challenge, the parallel configuration is used when precision is fundamental to success in

the task. It is also important to notice that all participants completed the test and no significant

increase in the performance time was recorded for any of them at the end of the test. This con-

sideration is important for the evaluation of the instrument maneuverability in view of possible

future studies.

6.2. Limitation of this study and future recommendation

Additive manufacturing (AM) represents a significant innovation in terms of fast prototyping

and the complexity of the design. In our work, AM allowed us to print highly complex compli-

ant structures enabling advanced instrument maneuverability with very limited assembly time

—the instruments were printed and assembled in less than one and a half days. Our study was

mainly focused on device maneuverability and functionality. Therefore, the instruments were

fabricated with an acrylic-based polymeric resin, which was non-biocompatible but specifically

designed for easy and precise prototyping. Future work should focus on investigating the use

of biocompatible materials able to guarantee the same compliant characteristics of the material

used in this study. We think that our instruments should, in the end, be used as disposable

devices, opening possibilities for the patient and surgeon-specific designs.

We used the same instrument for more than one participant, and, to always have fully func-

tional instruments, in our experiment, we decided to use a new instrument every time we

noticed signs of failing. All participants used the same two devices from the beginning to the

end of the test (for all the 48 attempts) except for one participant for whom the multi configu-

ration device needed to be replaced due to breakages on the end-effector side. Most of the

time, the breakages were associated with excessive force applied by the participant to hit the

target, and they were mainly on the end-effector side. Another reason for failure was due to

the wear of the polymeric-based material induced by the stainless-steel cables again on the

end-effector side. The stainless steel cables showed no signs of fatigue when straightened, how-

ever, especially during the first few attempts when the participant familiarized with the tool,

excessive bending of the handle resulted in local bends.

The test was performed under direct 3D vision due to the inexperience of the participants

with laparoscopic procedures. This choice was made as no experienced particpants were avail-

able, due to unforeseen limitations due to the global pandemic. Performing the test with an

endoscope and a monitor would improve the resemblance of the task with the clinical setting.

Moreover, it would be interesting to compare the performance and the preference of the nov-

ices with the ones of trained operators. The previous knowledge might affect it positively by

making it faster in reaching the plateau of the learning curve, as shown in previous studies

[28], or negatively affected it due to the mismatch in the movements to manipulate the instru-

ments. The preference is expected to match the novice’s preference due to the similarities with

the two DOF laparoscopic instruments currently used in the field. Another aspect that would
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be interesting to further investigate is the possible applications of our instruments by using the

available lumens to insert flexible instruments to grasp tissues or perform biopsy procedures.

By comparing two cable configurations in 3D printed steerable instruments, this study

explores new possibilities for additive manufacturing technology in medical instruments

where complex geometries for the single parts simplify the overall design while maintaining, if

not enhancing, the instrument’s functionalities.

7. Conclusion

The goal of this study was to compare parallel and multi cable configurations in multi-steer-

able laparoscopic instruments in terms of task performance time and workload. Our experi-

ment showed that there was no significant difference in the task performance time for the two

configurations. In the used NASA TLX scale, however, the participants expressed a lower

workload for the parallel configuration as compared to the multi configuration. Overall, 10 out

of 12 participants preferred the parallel configuration. The preference was mainly determined

by the increased possibility of individually orienting the most distal segment.

Supporting information

S1 Fig. Flow chart of the experiment for each participant. Each trial consists of 12 runs and

the order of the instruments used for the two groups. Parallel configuration (PC), multi config-

uration (MC).

(TIF)

S1 Video. Video of the execution of one run with the parallel configuration in strument

and one run with the multi configutation instrument.
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